共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Genetic Mapping of the minB Locus in Escherichia coli K-12 总被引:5,自引:4,他引:1
The minB (minicell production) locus of Escherichia coli K-12 was mapped by transduction using bacteriophage P1. minB is located at min 25.6, between purB (min 25.2) and dadR (min 25.8). The mapping was facilitated by the use of insertion zcf-236::Tn10, which is inserted at min 25.4. 相似文献
3.
Bacterial Cell Division Regulation: Characterization of the dnaH Locus of Escherichia coli 总被引:31,自引:17,他引:14
Camille C. Filip Jane Smith Allen Ralph A. Gustafson Robert G. Allen James R. Walker 《Journal of bacteriology》1974,119(2):443-449
The dnaH locus is the fourth gene to be identified as required for deoxyribonucleic acid polymerization in Escherichia coli. A temperature-sensitive mutant defective in this gene exhibited an abrupt decrease in rate of deoxyribonucleic acid synthesis when shifted to 42 C. The locus mapped in the proC-purE region of the chromosome by conjugation and was co-transducible with purE. dnaH(+) is carried on the F'(13) episome and is dominant over the dnaH(-) mutation. 相似文献
4.
Threonine Locus of Escherichia coli K-12: Genetic Structure and Evidence for an Operon 总被引:12,自引:7,他引:12
下载免费PDF全文
![点击此处可从《Journal of bacteriology》网站下载免费的PDF全文](/ch/ext_images/free.gif)
Three genes, thrA, thrB, and thrC, were previously defined and localized in the threonine locus of Escherichia coli K-12. thrA, thrB, and thrC specify the enzymes aspartokinase I-homoserine dehydrogenase I, homoserine kinase, and threonine synthetase, respectively. A complementation analysis of the threonine cluster using derivatives of a lambda phage carrying the threonine genes (lambdadthr(c)) demonstrates that: (i) thrB and thrC each consist of a single cistron; and (ii) thrA is composed of two cistrons, thrA(1) and thrA(2), although it specifies a single polypeptide chain. thrA(1) and thrA(2) correspond to aspartokinase I and homoserine dehydrogenase I, respectively. Their relative order is established. The demonstration of polar effects of mutations (nonsense or induced by phage Mu) in thrA and thrB is taken as evidence for the existence of a thrA thrB thrC operon, transcribed in this order. 相似文献
5.
Shinichi Kawamoto Shinji Tokuyama Kenji Aoyama Shigetaka Yashima Yoshitomo Eguchi 《Bioscience, biotechnology, and biochemistry》2013,77(8):2067-2071
Using cold resistant mutants, MET1 and MET2, obtained from Escherichia coli K-12, genetic mapping of the cold resistance gene(s) of E. coli was performed by the conjugation and transduction techniques. The gene(s) was confirmed to be located close to trpB at 28 min (revised chromosome linkage map, 1983) on the E. coli chromosome. 相似文献
6.
There are two loci for resistance to the antibiotic kasugamycin (Ksg) in Escherichia coli. Mutations at ksgA resulted in 30S ribosomal subunit resistance to Ksg. The map location of ksgA was near minute 0.5: ksgA was 95% cotransducible with pdxA, and the apparent gene order was thr... ksgA... pdxA. Studies in stable ksgA/ksgA+ merodiploids showed that sensitivity was dominant over resistance. Mutations at a second gene (ksgB), located between minutes 25 and 39, resulted in phenotypic KsgR indistinguishable from ksgA mutations, but ribosomes from ksgB strains were sensitive to the drug in vitro. Spontaneous and induced mutations to KsgR were usually of the ksgA (ribosomal) type. 相似文献
7.
Genetic Stability of Various Resistance Factors in Escherichia coli and Salmonella typhimurium 总被引:4,自引:10,他引:4
下载免费PDF全文
![点击此处可从《Journal of bacteriology》网站下载免费的PDF全文](/ch/ext_images/free.gif)
Genetic stability of R factors was studied in Salmonella typhimurium LT-2 and Escherichia coli K-12. It was found that fi(+) R [or R(f)] factors were unstable in LT-2, losing their drug-resistance markers at high frequencies, and were stable in K-12; fi(-) R [or R(i)] factors were stable in both hosts. Both fi(+) and fi(-) R factors were genetically stable also in recombination-deficient mutants of K-12. An fi(+) R factor, which was unstable in S. typhimurium LT-2 wild type, was relatively stable in a recombination-deficient mutant of LT-2. In the spontaneous loss of the drug-resistance markers of fi(+) R factors in LT-2, the markers for sulfanilamide, streptomycin, and chloramphenicol resistance were lost together at high frequencies and the tetracycline marker was retained stably. The remaining drug-resistance markers of the spontaneous segregants of LT-2 were transmissible to K-12 by mixed cultivation, indicating that they were still in the form of R factors. 相似文献
8.
Heat Shock Protein-Mediated Resistance to High Hydrostatic Pressure in Escherichia coli 总被引:1,自引:0,他引:1
下载免费PDF全文
![点击此处可从《Applied microbiology》网站下载免费的PDF全文](/ch/ext_images/free.gif)
Abram Aertsen Kristof Vanoirbeek Philipp De Spiegeleer Jan Sermon Kristel Hauben Anne Farewell Thomas Nystr?m Chris W. Michiels 《Applied microbiology》2004,70(5):2660-2666
A random library of Escherichia coli MG1655 genomic fragments fused to a promoterless green fluorescent protein (GFP) gene was constructed and screened by differential fluorescence induction for promoters that are induced after exposure to a sublethal high hydrostatic pressure stress. This screening yielded three promoters of genes belonging to the heat shock regulon (dnaK, lon, clpPX), suggesting a role for heat shock proteins in protection against, and/or repair of, damage caused by high pressure. Several further observations provide additional support for this hypothesis: (i) the expression of rpoH, encoding the heat shock-specific sigma factor σ32, was also induced by high pressure; (ii) heat shock rendered E. coli significantly more resistant to subsequent high-pressure inactivation, and this heat shock-induced pressure resistance followed the same time course as the induction of heat shock genes; (iii) basal expression levels of GFP from heat shock promoters, and expression of several heat shock proteins as determined by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis of proteins extracted from pulse-labeled cells, was increased in three previously isolated pressure-resistant mutants of E. coli compared to wild-type levels. 相似文献
9.
Genetic Control of the Transport of Hexose Phosphates in Escherichia coli: Mapping of the uhp Locus 总被引:2,自引:9,他引:2
下载免费PDF全文
![点击此处可从《Journal of bacteriology》网站下载免费的PDF全文](/ch/ext_images/free.gif)
Kadner RJ 《Journal of bacteriology》1973,116(2):764-770
A number of mutations affecting the transport of hexose phosphates in Escherichia coli were ordered within the uhp locus. Three-point crosses by transduction or conjugation allowed the ordering of the alleles relative to the adjacent pyrE marker. The same linear map was obtained by both methods. This, combined with the regulatory properties of revertants of these mutants, allowed a tentative identification of two genes, one presumably coding for the transport system (uhpT) and the other(s) specifying a regulatory element (uhpR). The order of these is pyrE-uhpT-uhpR. Mutants exhibiting constitutive expression of the transport system were isolated. This behavior is genetically linked to the uhp locus, but more precise localization was not possible. 相似文献
10.
11.
Pleiotropic Properties and Genetic Organization of the tolA, B Locus of Escherichia coli K-12 总被引:8,自引:17,他引:8
下载免费PDF全文
![点击此处可从《Journal of bacteriology》网站下载免费的PDF全文](/ch/ext_images/free.gif)
Colicin-tolerant mutants of Escherichia coli K-12, which map near gal at 17 min (tolA, B mutants), have been isolated and characterized. These mutants exhibited a very broad spectrum of phenotypic changes consistent with the interpretation that they are cell surface mutants. In addition to being colicintolerant and sensitive to deoxycholate and ethylenediaminetetraacetic acid, tolA, B mutants are sensitive to vancomycin, bacitracin, and dodecyl sulfate. The tolA, B mutants from most strains also formed mucoid colonies at 30 C on nutrient agar plates and had a greatly increased plating efficiency for lysisdefective S mutants of bacteriophage lambda. Complementation analysis showed that the four phenotypic groups of tol mutants that map near gal fall into three complementation groups: tolP, tolA, and tolB. Recombination analysis by three-factor crosses established the order of the three groups as tolP-tolA-tolB-gal. Because of the wide variety of phenotypic changes that accompanies mutation to colicin tolerance, revertants were isolated to test whether single or multiple mutations were involved. The reversion analysis, as well as other genetic criteria, confirmed that only single mutations were involved, suggesting that these pleiotropic changes are a consequence of a single change in the E. coli cell surface. 相似文献
12.
13.
14.
Tai Te Wu 《Journal of bacteriology》1969,98(1):314
The locus determining P1 phage restriction has been mapped at 89.3 min on the Escherichia coli map, about 0.2 min away from the hsp marker. 相似文献
15.
16.
Marie-Pierre Castanie-Cornet Thomas A. Penfound Dean Smith John F. Elliott John W. Foster 《Journal of bacteriology》1999,181(11):3525-3535
Acid resistance (AR) in Escherichia coli is defined as the ability to withstand an acid challenge of pH 2.5 or less and is a trait generally restricted to stationary-phase cells. Earlier reports described three AR systems in E. coli. In the present study, the genetics and control of these three systems have been more clearly defined. Expression of the first AR system (designated the oxidative or glucose-repressed AR system) was previously shown to require the alternative sigma factor RpoS. Consistent with glucose repression, this system also proved to be dependent in many situations on the cyclic AMP receptor protein. The second AR system required the addition of arginine during pH 2.5 acid challenge, the structural gene for arginine decarboxylase (adiA), and the regulator cysB, confirming earlier reports. The third AR system required glutamate for protection at pH 2.5, one of two genes encoding glutamate decarboxylase (gadA or gadB), and the gene encoding the putative glutamate:gamma-aminobutyric acid antiporter (gadC). Only one of the two glutamate decarboxylases was needed for protection at pH 2.5. However, survival at pH 2 required both glutamate decarboxylase isozymes. Stationary phase and acid pH regulation of the gad genes proved separable. Stationary-phase induction of gadA and gadB required the alternative sigma factor sigmaS encoded by rpoS. However, acid induction of these enzymes, which was demonstrated to occur in exponential- and stationary-phase cells, proved to be sigmaS independent. Neither gad gene required the presence of volatile fatty acids for induction. The data also indicate that AR via the amino acid decarboxylase systems requires more than an inducible decarboxylase and antiporter. Another surprising finding was that the sigmaS-dependent oxidative system, originally thought to be acid induced, actually proved to be induced following entry into stationary phase regardless of the pH. However, an inhibitor produced at pH 8 somehow interferes with the activity of this system, giving the illusion of acid induction. The results also revealed that the AR system affording the most effective protection at pH 2 in complex medium (either Luria-Bertani broth or brain heart infusion broth plus 0.4% glucose) is the glutamate-dependent GAD system. Thus, E. coli possesses three overlapping acid survival systems whose various levels of control and differing requirements for activity ensure that at least one system will be available to protect the stationary-phase cell under naturally occurring acidic environments. 相似文献
17.
Prevalence and Genetic Characterization of Shiga Toxin-Producing Escherichia coli Isolates from Slaughtered Animals in Bangladesh
下载免费PDF全文
![点击此处可从《Applied microbiology》网站下载免费的PDF全文](/ch/ext_images/free.gif)
Mohammad A. Islam Abdus S. Mondol Enne de Boer Rijkelt R. Beumer Marcel H. Zwietering Kaisar A. Talukder Annet E. Heuvelink 《Applied microbiology》2008,74(17):5414-5421
To determine the prevalence of Shiga toxin (Stx)-producing Escherichia coli (STEC) in slaughter animals in Dhaka, Bangladesh, we collected rectal contents immediately after animals were slaughtered. Of the samples collected from buffalo (n = 174), cows (n = 139), and goats (n = 110), 82.2%, 72.7%, and 11.8% tested positive for stx1 and/or stx2, respectively. STEC could be isolated from 37.9%, 20.1%, and 10.0% of the buffalo, cows, and goats, respectively. STEC O157 samples were isolated from 14.4% of the buffalo, 7.2% of the cows, and 9.1% of the goats. More than 93% (n = 42) of the STEC O157 isolates were positive for the stx2, eae, katP, etpD, and enterohemorrhagic E. coli hly (hlyEHEC) virulence genes. STEC O157 isolates were characterized by seven recognized phage types, of which types 14 (24.4%) and 31 (24.4%) were predominant. Subtyping of the 45 STEC O157 isolates by pulsed-field gel electrophoresis showed 37 distinct restriction patterns, suggesting a heterogeneous clonal diversity. In addition to STEC O157, 71 STEC non-O157 strains were isolated from 60 stx-positive samples from 23.6% of the buffalo, 12.9% of the cows, and 0.9% of the goats. The STEC non-O157 isolates belonged to 36 different O groups and 52 O:H serotypes. Unlike STEC O157, most of the STEC non-O157 isolates (78.9%) were positive for stx1. Only 7.0% (n = 5) of the isolates were positive for hlyEHEC, and none was positive for eae, katP, and etpD. None of the isolates was positive for the iha, toxB, and efa1 putative adhesion genes. However, 35.2% (n = 25), 11.3% (n = 8), 12.7% (n = 9), and 12.7% (n = 9) of the isolates were positive for the lpfO113, saa, lpfAO157/01-141, and lpfAO157/OI-154 genes, respectively. The results of this study provide the first evidence that slaughtered animals like buffalo, cows, and goats in Bangladesh are reservoirs for STEC, including the potentially virulent STEC strain O157. 相似文献
18.
Genetic Characterization of the Temperature-Sensitive and Suppression Phenotypes of Escherichia coli Mutant N4316
下载免费PDF全文
![点击此处可从《Journal of bacteriology》网站下载免费的PDF全文](/ch/ext_images/free.gif)
Escherichia coli mutant N4316 is temperature sensitive and exhibits temperature-dependent suppression. These phenotypes are due to separate genes, as shown by reversion and mapping studies. The suppressor mutation was mapped and lies near argF. 相似文献
19.
A Third Kasugamycin Resistance Locus, ksgC, Affecting Ribosomal Protein S2 in Escherichia coli K-12 总被引:5,自引:1,他引:5
下载免费PDF全文
![点击此处可从《Journal of bacteriology》网站下载免费的PDF全文](/ch/ext_images/free.gif)
A third kasugamycin-resistant mutant affecting ribosomal protein S2 has been isolated from Escherichia coli K-12. Mating and transduction revealed that this newly recognized kasugamycin resistance locus, designated as ksgC, is located at 0.1 to 0.2 min from purE. 相似文献
20.
Anderson P 《Journal of bacteriology》1969,100(2):939-947
Inhibition of growth and division of Escherichia coli by spectinomycin is reversible, and the kinetics of its interference with deoxyribonucleic and ribonucleic acid synthesis may be interpreted as secondary effects of inhibition of protein synthesis on the ribosome. Spontaneous mutations to spectinomycin resistance occur in E. coli K-12 at a rate of about 2 x 10(-10). Resistance is transducible with a discrete lag in phenotypic expression, and the kinetics of its development is about the same as that for streptomycin resistance. All spectinomycin-resistant mutants tested contain resistant ribosomes, and all map in a locus (spc) counterclockwise to and 70% cotransducible with the classical str locus. Differences in the residual drug sensitivity of various spectinomycin-resistant mutants, and of their ribosomes, indicate the existence of more than one phenotypic class of resistance. 相似文献