首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Experiments were conducted on the effect of growth temperature on phospholipids of Neurospora. Strains grown at high (37 degrees C) and low (15 degrees C) temperatures show large differences in the proportions of phospholipid fatty acid alpha-linolenate (18 : 3) which can vary by 10-fold over this temperature range. Changes in the phospholipid base composition are less dramatic; the most significant is an increase in phosphatidylethanolamines at low temperatures accompanied by a concomitant decrease in phosphatidylcholine. It appears that phospholipid fatty acid desaturation is closely regulated with respect to growth temperature. Over the 37 to 15 degrees C growth temperature range there appear to be at least two desaturase systems in Neurospora which are under different controls. Production of 18 : 1 and 18 : 2 species appears to occur at high levels over the entire temperature range, whereas the production of 18 : 3 seems to be inversely related to growth temperature. Shifting 37 degrees C-acclimated cultures to 15 degrees C produces a growth lag period of approximately 3 h, during which the level of 18 : 3 increases markedly. Differential scanning calorimetry of phospholipids from 37 degrees C cells shows a phase transition at -22 degrees C while lipids from 15 degrees C cultures exhibit a phase transition with reduced enthalpy at about -41 degrees C. The data are consistent with the idea that phospholipid composition in Neurospora is under strict control and suggest that membrane fluidity is regulated with respect to growth temperature through changes in membrane lipid composition.  相似文献   

2.
Membrane fluidity adaptation to the low growth temperature in Bacillus subtilis involves two distinct mechanisms: (1) long-term adaptation accomplished by increasing the ratio of anteiso- to iso-branched fatty acids and (2) rapid desaturation of fatty acid chains in existing phospholipids by induction of fatty acid desaturase after cold shock. In this work we studied the effect of medium composition on cold adaptation of membrane fluidity. Bacillus subtilis was cultivated at optimum (40 degrees C) and low (20 degrees C) temperatures in complex medium with glucose or in mineral medium with either glucose or glycerol. Cold adaptation was characterized by fatty acid analysis and by measuring the midpoint of phospholipid phase transition T(m) (differential scanning calorimetry) and membrane fluidity (DPH fluorescence polarization). Cells cultured and measured at 40 degrees C displayed the same membrane fluidity in all three media despite a markedly different fatty acid composition. The T(m) was surprisingly the highest in the case of a culture grown in complex medium. On the contrary, cultivation at 20 degrees C in the complex medium gave rise to the highest membrane fluidity with concomitant decrease of T(m) by 10.5 degrees C. In mineral media at 20 degrees C the corresponding changes of T(m) were almost negligible. After a temperature shift from 40 to 20 degrees C, the cultures from all three media displayed the same adaptive induction of fatty acid desaturase despite their different membrane fluidity values immediately after cold shock.  相似文献   

3.
The following study was carried out with the aim of widening our understanding of the thermoadaptive mechanisms of the membrane of thermophiles, using Bacillus stearothermophilus var. nondiastaticus as test-organism. The phospholipids and their acyl chain composition of this Bacillus studied in relation to the physical properties of its membrane from bacteria grown at various temperatures. Phospholipids account for 68-75 weight% of the total lipid in cells grown at 45, 55 or 65 degrees C. Phosphatidylglycerol and diphosphatidylglycerol constitute up to 90% of the total phospholipids; no amino phospholipids were found. Increasing the growth temperatures from 45 degrees to 65 degrees C caused an approximately 4-fold decrease in the proportion of the branched-chain fatty acids and a 2-fold increase in the amount of the saturated acyl chains. The reduced proportion of the branched fatty acids was mainly due to a decrease in their anteiso forms. Unsaturated fatty acids were not produced by cells grown at 65 degrees C. In accordance with the fatty acid composition, the molecular packing of phospholipids in monolayers was more expanded with phospholipids from 45 degrees C grown cells as compared with cultures grown at 55 degrees C. The thermotropic gel to liquid-crystalline phase transition of the membrane lipids was monitored by differential scanning calorimetry and fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene. With increase of the growth temperature the phase transition was progressively shifted to higher but narrower range of temperatures. Completion of the lipid melting occurred always at temperatures below those employed for growth. A constructed phase diagram enabled to relate the growth temperature, the fatty acid composition and the lipid apparent microviscosity at temperatures not used in the present study for growth of the thermophile. The minimum temperature for growth and the upper boundary temperature of the least saturated lipid crystallization were extrapolated in this manner; they correspond to the experimentally determined minimal growth temperature. The apparent microviscosity, a measure of membrane order, decreased gradually and conspicuously as the growth temperature was elevated. The delimiting apparent microviscosity values, at the maximal (65 degrees C) and minimal (41 degrees C) growth temperatures were 0.8 and 1.8 poise, respectively. This lack of rigorous homeostatic control of the bulk lipid viscosity prompted reevaluation of the physiological significance of 'homeoviscous adaptation' in Bacillus stearothermophilus.  相似文献   

4.
Temperature-dependent compositional changes of phospholipids and their fatty acids were analysed in Yersinia enterocolitica grown at 5°, 25° and 37°C. The relative amounts of the four phospholipids, phosphatidylethanolamine (75–78%), phosphatidylglycerol (10–11%), cardiolipin (<7%) and lysophosphatidylethanolamine (<5%), were essentially the same at all growth temperatures. The degree of fatty acid unsaturation of the four phospholipids increased with decrease in growth temperature, mainly due to an increase of C16:1 and C18:1 and a corresponding decrease of C16;0, C18:0 and cyclo C17:0. An electron spin resonance spectroscopic study of the membrane lipids showed that membrane lipid fluidity was enhanced by decreasing the growth temperatures. The changes in fatty acid composition of phospholipids in response to varied temperatures were consistent with the temperature-dependent changes in the membrane lipid fluidity of Y. enterocolitica , and were similar to those reported for other bacteria.  相似文献   

5.
The thermal stability of excitation transfer from pigment proteins to the Photosystem II reaction center of Nerium oleander adjusts by 10 Celsius degrees when cloned plants grown at 20°C/15°C, day/night growth temperatures are shifted to 45°C/32°C growth temperature or vice versa. Concomitant with this adjustment is a decrease in the fluidity of thylakoid membrane polar lipids as determined by spin labeling. The results are consistent with the hypothesis that there is a limiting maximum fluidity compatible with maintenance of native membrane structure and function. This limiting fluidity was about the same as for a number of other species which exhibit a range of thermal stabilities. Inversely correlated shifts in lipid fluidity and thermal stability occurred during the time course of acclimation of N. oleander to new growth temperatures. Thus, the temperature at which the limiting fluidity was reached changed during acclimation while the limiting fluidity remained constant. Although the relative proportion of the major classes of membrane polar lipids remained constant during adjustments in fluidity, large changes occured in the abundance of specific fatty acids. These changes were different for the phospho- and galacto-lipids suggesting that the fatty acid composition of these two lipid classes is regulated by different mechanisms. Comparisons between membrane lipid fluidity and fatty acid composition indicate that fluidity is not a simple linear function of fatty acid composition.  相似文献   

6.
李宗军 《微生物学报》2005,45(3):426-430
通过对大肠杆菌生长温度、膜脂肪酸组成和压力抗性之间关系研究发现,10℃培养,对数期细胞有最大的压力抗性,随着培养温度的升高直到4 5℃,压力抗性呈下降的趋势;相反,10℃培养,稳定期的细胞对压力最敏感,随着培养温度的升高,压力抗性呈增加趋势,30~37℃时达到最大,之后到4 5℃有下降。对数期和稳定期细胞膜脂中不饱和脂肪酸的组成随温度的上升而下降,这与从全细胞中抽提的磷脂的熔点密切相关。因此,对数期细胞压力抗性随着膜流动性的增大而升高;但稳定期细胞,膜流动性与压力抗性之间不存在简单的对应变化关系  相似文献   

7.
Membranes were prepared from four temperature range variants of Bacillus megaterium: one obligate thermophile, one facultative thermophile, one mesophile, and one facultative psychrophile, covering the temperature interval between 5 and 70 degrees C. The following changes in membrane composition were apparent with increasing growth temperatures: (i) the relative amount of iso fatty acids increased and that of anteiso acids decreased, the ratio of iso acids to anteiso acids being 0.34 at 5 degrees C and 3.95 at 70 degrees C, and the pair iso/anteiso acids thus seemed to parallel the pair saturated/unsaturated acids in their ability to regulate membrane fluidity; (ii) the relative/unsaturated acids in their ability to regulate membrane fluidity; (ii) the relative amount of long-chain acids (C16 to C18) increased fivefold over that of short-chain acids (C14 and C15) between 5 and 70 degrees C; (iii) the relative amount of phosphatidylethanolamine increased, and this phospholipid accordingly dominated in the thermophilic strains, whereas diphosphatidylglycerol was predominant in the two other strains; and (iv) the ratio of micromoles of phospholipid to milligrams of membrane protein increased three-fold between 5 and 70 degrees C. Moreover, a quantitative variation in membrane proteins was evident between the different strains. Briefly, membrane phospholipids with higher melting points and packing densities appeared to be synthesized at elevated growth temperatures.  相似文献   

8.
The lipid composition of leaves has been investigated in different genotypes of cucumber ( Cucumis sativus L.), which differ in temperature requirement for cultivation. In addition the effects of hardening by low but non-chilling temperature, soil heating and grafting (on the chilling-resistant C. ficifolia L.) on lipid composition have been studied. Content and composition of phospholipids and sterols were determined as well as phospholipid/sterol ratio, and fatty acid composition of total lipids and the different phospholipids.
The effects of genetic differentiation and of the various culture treatments on lipid composition of the leaves were very different. Genetic differentiation was evident as higher levels of Iinolenic acid in several phospholipids in the more cold-tolerant cultivars. Hardening the plants by low temperature resulted in a higher phospholipid level (especially phosphatidyl choline), more unsaturated phospholipid, and lowering of the sterol/phiospholipid ratio, all properties which may contribute to a higher membrane fluidity and lower growth temperature limit. Soil healing reduced the phospholipid level of the leaves slightly, and a higher content of 3- trans -hexadece-noic acid in phosphatidyl glycerol was observed. Grafting cucumber on the cold-resistant rootstock of C. ficifolia also raised the level of trans -hexadecenoic acid in phosphatidyl glycerol. The role of this fatty acid in the functioning of the chloroplast is discussed.  相似文献   

9.
Yersinia enterocolitica is capable of growing in a broad range of temperatures from 4 to 45 C. How this organism alters its membrane lipids in response to the change of growth temperature is very interesting. The fatty acids of membrane lipids of cells cultured at 5, 15, 25 and 37 C were analyzed and the physical states of these membrane lipids were characterized. The major phospholipids of this bacterium were phosphatidylethanolamine, phosphatidylglycerol, cardiolipin, lysophosphatidylglycerol and lysophosphatidylethanolamine. No significant difference in phospholipid composition in response to culture temperatures was observed. It was reported in our previous paper that the major fatty acids of membrane phospholipids of Y. enterocolitica were C15:0, C16:0, C16:1, cyclopropane C17:0 and C18:0. Some differences in the fatty acid composition were, however, observed with the change of culture temperature. When the culture temperature was raised, the saturated and cyclopropane fatty acids substantially increased and the unsaturated ones decreased. A reverse phenomenon was observed when culture temperature was lowered. From the viewpoints of membrane physical state, adaptational changes were analyzed using a nylon microcapsule method. Phase transition in membrane lipids of cells grown at each culture temperature took place in the range of about 5 C below and about 10 C above the culture temperature. It is, therefore, considered that Y. enterocolitica maintains its membrane rigidity and fluidity in response to growth temperature by changing the membrane fatty acid composition.  相似文献   

10.
Growth temperature-induced compositional changes in membranes of Fusarium oxysporum provided a test system for study of the relationship between physical properties and composition. Growth at 15 degrees C was characterized by a decrease in phospholipid content relative to sterol content, a shift in phospholipid composition from phosphatidylcholine to phosphatidylethanolamine and a marked enhancement in the amount of polyunsaturated fatty acids in the phospholipid and triglyceride classes. Uptake of a spin labelled analog of stearic acid during growth and subsequent solution of the probe in the membranes allowed estimation of viscosity and molecular order of the membranes of live cells and of isolated membrane preparations. Less than 1/20 of the intracellular label was accessible to sodium ascorbate while none was released by sodium dodecyl sulfate. All of the label in live cells was reduced by in vivo respiratory activity above 20 degrees C but this process could be reversed or avoided by added ferricyanide. A cholestane spin probe was also incorporated into the membranes. The probes were not reduced as readily in isolated membranes and hence fluidity of the membranes could be assessed over a wide temperature range. At low temperatures (-10 degrees C) a nonlethal, liquid-solid phase transition was indicated in isolated membrane lipids while at higher (lethal) temperatures (40-45 degrees C), discontinuities appeared in Arrhenius plots of rotational correlation time. Activation energies for isotropic rotation of the stearate probes in the membranes changed markedly in this temperature range and this effect correlated closely with loss of viability of conidial cells. Correlation times for stearate probes showed little variation with growth temperature nor were any breaks in Arrhenius plots of this parameter detected in the range 0-35 degrees C in whole cells or isolated membranes. The data indicated control of membrane physical properties within close tolerances throughout the physiological temperature range regardless of growth temperature. It was concluded that this homeostatic phenomenon was due to the counteractive effects of sterol/phospholipid ratio, phospholipid composition and fatty acid polyunsaturation since the condensing and fluidizing components of the isolated total membranes vary in a reciprocal manner.  相似文献   

11.
12.
Fluidity and composition of cell membranes during progression of Mycoplasma canadense cultures grown in a serum-free medium was assessed. The fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene at 25 degrees C of intact cells and liposomes in the exponential and stationary phases of growth was compared. A decrease in fluidity and an increase in the ratio of saturated to unsaturated fatty acids was detected in cell membranes on aging. Nevertheless, membrane density remained unaltered although the molar ratio of cholesterol to phospholipids decreased. It is proposed that the increase in lipid order is primarily due to the increase in the ratio of saturated to unsaturated membrane fatty acids, being the diminished molar ratio of cholesterol to phospholipids involved in the reduced unsaturated fatty acid uptake.  相似文献   

13.
The phospholipid composition, fatty acid pattern and cholesterol content are studied in mitochondria of red lateral muscle of carp acclimated to high and low environmental temperatures.The results of the experiments are: mitochondria from cold-acclimated carp contain higher proportions of ethanolamine phosphatides than mitochondria from warm-acclimated fish, the opposite is true for the choline phosphatides. Thus, at constant pH, the membrane phospholipids are slightly more negatively charged at low acclimation temperature. The total plasmalogen content is reduced in the cold; this reduction is caused by a decrease in the proportion of the choline plasmalogens. The ethanolamine phosphoglycerides contain approx. 20% of the alk-1-enyl acyl type, irrespective of the acclimation temperature. There is no temperature-dependent difference in the low proportion of cholesterol.The fatty acids of total mitochondrial phospholipids are characterized by large amounts of the n-3 and n-6 families. The ratio of unsaturated to saturated fatty acids and the unsaturation index are remarkably higher than those reported for comparable mammalian phospholipids. Cold acclimation of carp does not significantly increase the unsaturation of total phospholipids. A fatty acid analysis of the main isolated phospholipids, however, shows that cold acclimation considerably increases unsaturation of the neutral phosphatidylcholine, whereas it dramatically decreases unsaturation of the negatively charged cardiolipin. It is suggested that the observed fatty acid substitution in phosphatidylcholine indicates a temperature-induced fluidity adaptation within the mitochondrial lipid bilayer, whereas the inverse acclimation pattern of cardiolipin provides a suitable lipid to accommodate the temperature-dependent modifications in the dynamic surface shape of integral membrane proteins.  相似文献   

14.
The relationship among growth temperature, membrane fatty acid composition, and pressure resistance was examined in Escherichia coli NCTC 8164. The pressure resistance of exponential-phase cells was maximal in cells grown at 10 degrees C and decreased with increasing growth temperatures up to 45 degrees C. By contrast, the pressure resistance of stationary-phase cells was lowest in cells grown at 10 degrees C and increased with increasing growth temperature, reaching a maximum at 30 to 37 degrees C before decreasing at 45 degrees C. The proportion of unsaturated fatty acids in the membrane lipids decreased with increasing growth temperature in both exponential- and stationary-phase cells and correlated closely with the melting point of the phospholipids extracted from whole cells examined by differential scanning calorimetry. Therefore, in exponential-phase cells, pressure resistance increased with greater membrane fluidity, whereas in stationary-phase cells, there was apparently no simple relationship between membrane fluidity and pressure resistance. When exponential-phase or stationary-phase cells were pressure treated at different temperatures, resistance in both cell types increased with increasing temperatures of pressurization (between 10 and 30 degrees C). Based on the above observations, we propose that membrane fluidity affects the pressure resistance of exponential- and stationary-phase cells in a similar way, but it is the dominant factor in exponential-phase cells whereas in stationary-phase cells, its effects are superimposed on a separate but larger effect of the physiological stationary-phase response that is itself temperature dependent.  相似文献   

15.
Plasma membranes isolated from a cell-wall-less mutant of Neurospora crassa grown at 37 and 15 degrees C display large differences in lipid compositions. A free sterol-to-phospholipid ratio of 0.8 was found in 37 degrees C membranes, while 15 degrees C plasma membranes exhibited a ratio of nearly 2.0. Membranes formed under both growth conditions were found to contain glycosphingolipids. Cultures grown at the low temperature, however, were found to contain 6-fold higher levels of glycosphingolipids and a corresponding 2-fold reduction of phospholipid levels. The high glycosphingolipid content at 15 degrees C compensates for the reduced levels of phospholipids in such a way that sterol/polar lipid ratios are almost the same in plasma membranes under the two growth conditions. Temperature-dependent changes in plasma-membrane phospholipid and glycosphingolipid species were also observed. Phosphatidylethanolamine levels were sharply reduced at 15 degrees C, in addition to a moderate increase in levels of unsaturated phospholipid fatty acids. Glycosphingolipids contained high levels of long-chain hydroxy fatty acids, which constituted 75% of the total fraction at 37 degrees C, but only 50% at 15 degrees C. Compositional changes were also observed in the long-chain base component of glycosphingolipids with respect to growth temperature. Fluorescence polarization studies indicate that the observed lipid modifications in 15 degrees C plasma membranes act to modulate bulk fluidity of the plasma-membrane lipids with respect to growth temperature. These studies suggest that coordinate modulation of glycosphingolipid, phospholipid and sterol content may be involved in regulation of plasma-membrane fluid properties during temperature acclimation.  相似文献   

16.
The membrane lipid composition of Tetrahymena pyriformis NT-I was observed to change in a manner markedly dependent on the progress of culture age. The pellicular, mitochondrial and microsomal membranes were isolated from cell harvested at various growth phases (I, early exponential; II, mid-exponential; III, late exponential; IV, early stationary; V, late stationary) and their lipid composition was analyzed by thin-layer and gas-liquid chromatography. Although the phospholipid composition varied somewhat among membrane fractions, the most general age-dependent alteration was a considerable decrease in the content of phosphatidylethanolamine accompanied by a small increase in phosphatidylcholine. The 2-aminoethylphosphonolipid, enriched in the surface membrane pellicle, did not undergo a consistent change. As for fatty acid composition the most notable variation occurred in unsaturated fatty acids; a great increase in oleic and linoleic acids and a compensatory decrease in palmitoleic acid. This resulted in an augmented unsaturation of the overall phospholipid fatty acid profile of the aged membranes. The age-associated drastic decline in the palmitoleic acid content in membrane phospholipids could be accounted for by the markedly lowered activity of palmitoyl-CoA desaturase. The microsomes from the early exponential phase cells possess a 4-fold higher activity of the desaturase as compared to that of the late stationary phase microsomes. The decreased desaturase activity associated with the culture age was also reflected in the corresponding decrease in the conversion rate of [14C]palmitate to [14C]palmitoleate in cells labelled in vivo. The ESR spectra of the spin-labeled phospholipids extracted from the pellicular and microsomal membranes have led to the suggestion that these types of membrane would become more fluid with the age of growth.  相似文献   

17.
We investigated the fatty acid composition of the membrane of Bacillus amyloliquefaciens grown at different temperatures. A decrease in growth temperature was accompanied by an increase in the ratio of branched- to straight-chain fatty acids and a marked increase in the level of unsaturation of branched-chain fatty acids. When cells of this organism grown at 30 degrees C were cold shocked, viability and ability to secrete extracellular protease were lost. Growth of this organism at lower temperatures or addition of Tween 80 to cells caused the critical temperature zone for cold shocking to be lowered significantly. These results suggest a direct correlation between membrane fluidity and the susceptibility to cold shock.  相似文献   

18.
The relationship between membrane lipid composition and membrane lipid phase transitions was investigated in Yersinia enterocolitica cells grown at 5, 22 and 37°C. The total phospholipid concentrations were 9.4, 7.3 and 6.3% of the cell dry weight for cells grown at 5, 22 and 37°C, respectively. The relative concentrations of the three major phospholipids, phosphatidylethanolamine (73–76%), phosphatidylglycerol (9–11%) and cardiolipin (11–13%) were essentially the same at all three growth temperatures. The ratios of unsaturated to saturated fatty acids were 2.2, 1.1 and 0.4 for cells grown at 5, 22 and 37°C, respectively. This change in the fatty acid composition in response to temperature changes is similar to the patterns reported for other organisms. Reversible thermotropic phase transitions were detected by calorimetric analysis in both pure lipid preparations and membrane preparations. The mid-points of the thermotropic phase transitions were at ?13, ?9 and 1°C for membranes from cells grown at 5, 22 and 37°C, respectively. The phase transitions of the membranes from cells grown at the three different temperatures occurred below the lowest growth temperature (5°C). The alternations in the fatty acid composition in Y. enterocolitica did not, therefore, appear to be required to adjust membrane fluidity but might rather be required for some other membrane function.  相似文献   

19.
In view of the importance of membrane fluidity on cell functions, the influence of phospholipid acyl groups on membrane fluidity, and the changes in lipid metabolism induced by copper (Cu) deficiency, this study was designed to examine the influence of dietary Cu on the lipid composition and fluidity of liver plasma membranes. Male Sprague-Dawley rats were divided into two dietary treatments, namely Cu deficient and Cu adequate. After 8 weeks of treatment, liver plasma membranes were isolated by sucrose density gradient centrifugation. The lipid fluidity of plasma membranes, as assessed by the intramolecular eximer fluorescence of 1,3-di(1-pyrenyl) propane, was significantly depressed by Cu deficiency. In addition, Cu deficiency significantly reduced the content of arachidonic and palmitoleic acids but increased the docosatetraenoic and docosahexaenoic acids of membrane phospholipids. This alteration in unsaturated phospholipid fatty acid composition, especially the large reduction in arachidonic acid, may have contributed to the depressed membrane fluidity. Furthermore, Cu deficiency also markedly altered the fatty acid composition of the triacylglycerols associated with the plasma membranes. Thus, the lipid composition and fluidity of liver plasma membranes are responsive to the animal's Cu status.  相似文献   

20.
Adaptation of the food-borne pathogen Bacillus cereus to carvacrol   总被引:1,自引:0,他引:1  
Carvacrol, a natural antimicrobial compound present in the essential oil fraction of oregano and thyme, is bactericidal towards Bacillus cereus. A decrease of the sensitivity of B. cereus towards carvacrol was observed after growth in the presence of non-lethal carvacrol concentrations. A decrease of the melting temperature (Tm) of membranes from 20.5 degrees C to 12.6 degrees C was the immediate effect of the addition of carvacrol. Cells adapted to 0.4 mM carvacrol showed a lower membrane fluidity than nonadapted cells. Adaptation of 0.4 mM carvacrol increased the Tm from 20.5 degrees C to 28.3 degrees C. The addition of carvacrol to cell suspensions of adapted B. cereus cells decreased Tm again to 19.5 degrees C, approximately the same value as for the non-adapted cells in the absence of carvacrol. During adaptation, changes in the fatty acid composition were observed. The relative amount of iso-C13:0, C14:0, and iso-C15:0 increased and cis-C16:1 and C18:0 decreased. The head-group composition also changed, two additional phospholipids were formed and one phospholipid was lacking in the adapted cells. It could be concluded that B. cereus adapts to carvacrol when present at non-lethal concentrations in the growth medium by lowering its membrane fluidity by changing the fatty acid and headgroup composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号