首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A variety of neural factors can influence reproductive hormone secretion by neuromodulatory actions within the hypothalamus or neuroendocrine actions within the anterior pituitary gland. Passive immunoneutralization and antagonist administration protocols have suggested physiological roles for a number of these factors; however, both experimental approaches have severe technical limitations. We have developed novel methodology utilizing cytotoxin cell targeting with neuropeptides linked to the toxic A chain of the plant cytotoxin ricin. With this methodology we can target and destroy in vivo or in vitro cells bearing receptors for that peptide. Ricin A chain conjugated to atrial natriuretic peptide (ANP), a neuropeptide known to pharmacologically inhibit luteinizing hormone-releasing hormone (LHRH) release, was injected into the cerebroventricular system of intact, cycling rats and ovariectomized rats. Cytotoxin conjugate treatment significantly lengthened the estrous cycle. In ovariectomized rats the luteinizing hormone surge induced by steroid priming was completely inhibited. LHRH content of the median eminences of these rats was not significantly altered. These data suggest that ANP binding to clearance receptors in the hypothalamus displaces the C-type natriuretic peptide (CNP) from the shared clearance receptor, making more CNP available to inhibit LHRH release. In the absence of cells bearing the clearance receptor all available CNP binds to the ANPR-B receptor and exerts its effect via an inhibitory interneuron, since LHRH fibers are spared by this treatment.  相似文献   

2.
Investigations were undertaken to study the effect of in vitro addition of testosterone (0.3 mM) on the release of luteinizing hormone (LH), follicle stimulating hormone (FSH) and prolactin (PRL) by pituitary-hypothalamus complex (PHC) or the whole pituitary (PI) incubated for 72 hr, with incubation media changed every 24 hr. PHC or PI were from adult intact or castrated (7 days post castration) rats. The tissues incubated with or without testosterone were further exposed to 0.1 nM luteinizing hormone-releasing hormone (LHRH) for 4 hr. Incubation media and the pituitary were analyzed for PRL and gonadotrophin content. While PHC from normal and castrated rats released increasing amounts of LH with diminishing amounts of FSH and PRL at different periods of incubation, PI showed a decrease in the amounts of gonadotrophin and PRL released. Co-incubation of PHC or PI of intact or castrated rats with testosterone stimulated the release of LH and FSH during the first or second-24 hr incubation but inhibited the release of PRL in all the three incubations of 24 hr each. The extent of PRL inhibition increased with increasing incubation period. Testosterone had no effect on LHRH induced release of PRL but inhibited LHRH induced release of LH and FSH by pituitaries from constructs of normal rats. Testosterone reduced intrapituitary contents of PRL and FSH of intact and castrated rats. The data are interpreted to suggest that hypothalamus is essential for the maintenance of functional pituitary in vitro and that intrinsic differences exist in mechanisms regulating the secretion of LH, FSH and PRL.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The effect of a superactive agonistic analog of luteinizing hormone-releasing hormone (LHRH), [D-Trp6]LHRH on prolactin (PRL) secretion by perifused rat pituitary cells was investigated. Constant infusion of [D-Trp6]LHRH (0.5 ng/min) for 2-3 h elicited a significant decrease in PRL secretion by these cells. This decrease in PRL release started ca. 30 min after the beginning of the infusion with the LHRH analog and lasted up to 1.5-2 h. [D-Trp6]LHRH significantly stimulated luteinizing hormone (LH) secretion during the first 30 min of peptide infusion; thereafter, LH levels began to return to control values. In animals pretreated in vivo with 50 micrograms of [D-Trp6]LHRH (s.c.) 1 h before sacrifice, PRL secretion by the rat pituitary cell perifusion system was significantly lower than vehicle-injected controls throughout the entire [D-Trp6]LHRH infusion period. On the other hand, thyrotropin-releasing hormone (TRH)-stimulated PRL secretion was slightly, but significantly imparied by [D-Trp6]LHRH infusion, while dopamine (DA) inhibition of PRL release was unaffected by this same treatment. These results reinforce previous observations of a modulatory effect of [D-Trp6]LHRH, probably mediated by pituitary gonadotrophs, on PRL secretion by the anterior pituitary. In addition, our findings suggest that basal PRL secretion by the lactotroph may be dependent on a normal function of the gonadotroph. The collected data from this and previous reports support the existence of a functional link between gonadotrophs and lactotrophs in the rat pituitary gland.  相似文献   

4.
We have prepared a conjugate of epidermal growth factor (EGF) and ferritin that retains substantial binding affinity for cell receptors and is biologically active. Glutaraldehyde-activated EGF was covalently linked to ferritin to produce a conjugate that contained EGF and ferritin in a 1:1 molar ratio. The conjugate was separated from free ferritin by affinity chromatography using antibodies to EGF. Monolayers of human epithelioid carcinoma cells (A-431) were incubated with EGF:ferritin at 4 degrees C and processed for transmission electron microscopy. Under these conditions, approximately 6 X 10(5) molecules of EGF:ferritin bound to the plasma membrane of each cell. In the presence of excess native EGF, the number of bound ferritin particles was reduced by 99%, indicating that EGF:ferritin binds specifically to cellular EGF receptors. At 37 degrees C, cell-bound EGF:ferritin rapidly redistributed in the plane of the plasma membrane to form small groups that were subsequently internalized into pinocytic vesicles. By 2.5 min at 37 degrees C, 32% of the cell-bound EGF:ferritin was localized in vesicles. After 2.5 min, there was a decrease in the proportion of conjugate in vesicles with a concomitant accumulation of EGF:ferritin in multivesicular bodies. By 30 min, 84% of the conjugate was located in structures morphologically identified as multivesicular bodies or lysosomes. These results are consistent with other morphological and biochemical studies utilizing 125I-EGF and fluorescein-conjugated EGF.  相似文献   

5.
The effect of bombesin (5 ng/kg/min X 2.5 h) on basal pituitary secretion as well as on the response to thyrotropin releasing hormone (TRH; 200 micrograms) plus luteinizing hormone releasing hormone (LHRH; 100 micrograms) was studied in healthy male volunteers. The peptide did not change the basal level of growth hormone (GH), prolactin, thyroid-stimulating hormone (TSH), luteinizing hormone (LH) and follicle-stimulating hormone (FSH). On the contrary, the pituitary response to releasing hormones was modified by bombesin administration. When compared with control (saline) values, prolactin and TSH levels after TRH were lower during bombesin infusion, whereas LH and FSH levels after LHRH were higher. Thus bombesin affects in man, as in experimental animals, the secretion of some pituitary hormones.  相似文献   

6.
Polyelectrolyte complex (PEC) micelles modified with cancer cell targeting moieties were prepared for intracellular delivery of vascular endothelial growth factor (VEGF) small interfering RNA (siRNA). A luteinizing hormone-releasing hormone (LHRH) peptide analogue was coupled as a cancer targeting ligand to the distal end of the poly(ethylene glycol) (PEG)-siRNA conjugate. The siRNA-PEG-LHRH conjugate self-assembled to form nanosized PEC micelles upon mixing with poly(ethylenimine) (PEI) via ionic interactions. The PEC micelles showed spherical morphology with a hydrodynamic diameter of ca. 150 nm. For LHRH receptor overexpressing ovarian cancer cells (A2780), the PEC micelles with LHRH exhibited enhanced cellular uptake compared to those without LHRH, resulting in increased VEGF gene silencing efficiency via receptor-mediated endocytosis. This study showed that PEC micelles decorated with specific cell-recognizable targeting ligands could be used for targeted delivery of siRNA.  相似文献   

7.
K Barnes  A J Kenny 《Peptides》1988,9(1):55-63
Endopeptidase-24.11, an ectoenzyme with a key role in metabolizing peptides at cell surfaces, is present in the adenohypophysis. A specific polyclonal antibody to the endopeptidase has been used to explore its localization in cryostat sections of pig pituitary glands by an immunoperoxidase method. Immunoreactivity was symmetrically but not uniformly distributed over the anterior lobe, with the highest intensity a zone just beneath the capsule along the anterior surface. In detail, the staining was observed to be in the cell membrane, but in some cells a small area of intense paranuclear staining was also observed. Serial 5 micron sections were immunostained alternately for endopeptidase-24.11 and for pituitary proteohormone. Luteinizing hormone (LH), follicular stimulating hormone (FSH), thyrotropin, adrenocorticotropin, prolactin and growth hormone were studied in this way. It was possible to identify groups of cells in adjacent sections and a good correlation was observed for endopeptidase-24.11-immunoreactivity with that for LH and FSH. The association of the endopeptidase with gonadotrophs was confirmed by double labelling. No evidence of colocalization was observed with the other proteohormone antibodies. We conclude that among the cells of the adenohypophysis only the gonadotrophs express endopeptidase-24.11 and discuss the possible significance of this observation in regard to the termination of peptide signals, such as that of luteinizing hormone-releasing hormone (LHRH) acting at this site.  相似文献   

8.
Oestrogen and progesterone have marked effects on the secretion of the gonadotrophins and prolactin. During most of the oestrous or menstrual cycle the secretion of gonadotrophin is maintained at a relatively low level by the negative feedback of oestrogen and progesterone on the hypothalamic-pituitary system. The spontaneous ovulatory surge of gonadotrophin is produced by a positive feedback cascade. The cascade is initiated by an increase in the plasma concentration of oestradiol-17 beta which triggers a surge of luteinizing hormone releasing hormone (LHRH) and an increase in pituitary responsiveness to LHRH. The facilitatory action of oestrogen on pituitary responsiveness is reinforced by progesterone and the priming effect of LHRH. How oestrogen and progesterone exert their effects is not clear but the facilitatory effects of oestrogen take about 24 h, and the stimulation of LHRH release is produced by an indirect effect of oestradiol on neurons which are possibly opioid, dopaminergic or noradrenergic and which modulate the activity of LHRH neurons. In the rat, a spontaneous prolactin surge occurs at the same time as the spontaneous ovulatory gonadotrophin surge. The prolactin surge also appears to involve a positive feedback between the brain-pituitary system and the ovary. However, the mechanism of the prolactin surge is poorly understood mainly because the neural control of prolactin release appears to be mediated by prolactin inhibiting as well as releasing factors, and the precise role of these factors has not been established. The control of prolactin release is further complicated by the fact that oestradiol stimulates prolactin synthesis and release by a direct action on the prolactotrophes. Prolactin and gonadotrophin surges also occur simultaneously in several experimental steroid models. A theoretical model is proposed which could explain how oestrogen and progesterone trigger the simultaneous surge of LH and prolactin.  相似文献   

9.
Neuroendocrine control of gonadotropin secretion   总被引:1,自引:0,他引:1  
Luteinizing hormone releasing hormone (LHRH), a hypothalmic peptide that is concentrated in granules of neurons, has the capacity to release gonadotropins (luteinizing hormone (LH) and follicle stimulating hormone) from the pituitary gland. LHRH has been found in hypophysial portal blood of rats, monkeys, and rabbits. Antibodies to LHRH depress plasma LH concentrations in castrated animals and evoke testicular atrophy, but passive immunization against LHRH does not block the LH surge induced by estrogen in monkeys. Estrogens, progestin, prolactin, and dopamine have marked effects on LH secretion, yet an association between these effects and altered hypophysial portal blood concentrations of LHRH is not established. In view of the paucity of evidence demonstrating such a cause and effect relationship, two alternative proposals have become tenable. One, hormones and neurotransmitters may not alter the levels of portal blood LHRH, but rather alter the frequency of pulsatile LHRH secretion. Two, hormones, such as estrogens, progesterone, and prolactin, may alter the responsiveness of the gonadotropin-secreting cells to LHRH by affecting the secretion of dopamine.  相似文献   

10.
Abstract: A role for copper in the release of luteinizing hormone releasing hormone (LHRH) from hypothalamic neurons has been previously proposed. To elucidate further the mechanism of action of copper, we addressed two questions: (a) what is the active form of copper that interacts with the LHRH granule (ionic or chelated)? and (b) is copper-stimulated LHRH release a result of an interaction of copper with thiol groups and, if so, does it require oxygen? Granules were isolated from hypothalami of adult male rats and were then incubated at 37°C for 3–5 min in a buffered medium. When granules were incubated with various copper complexes, CuATP stimulated LHRH release by 45 ± 4% (mean ± SE), copper tartrate by 44 ± 4%, CuBSA by 27 ± 7%, and copper histidine by 16 ± 6%. Neither CuEDTA nor CuCl2 stimulated LHRH release. CuATP-stimulated LHRH release from granules incubated under N2 was 50% of that incubated under air. Furthermore, the CuATP-stimulated release of LHRH was completely inhibited by dithiothreitol or glutathione (10?3M each), partially (40–50%) by iodoacetate or 5,5-dithiobis-(2-nitrobenzoic acid), and not at all by oxidized dithiothreitol. Thus, chelated copper, rather than ionic copper, is the active form of the metal, and the action of copper involves an oxidation reaction and granule thiol groups. The precise mechanism of action of copper, however, has yet to be elucidated. We propose that copper may affect LHRH release as follows: copper, bound to an intracellular chelator (protein, peptide, or amino acid), oxidizes thiols of the LHRH granule, leading to a change in granule-membrane permeability and hence to LHRH release.  相似文献   

11.
To study the role of androgens in the control of gonadotropin and prolactin secretion in ther ewe, we have characterized androgen receptors in pituitary cytosol, and investigated the effect of androgens on pituitary hormone release in vivo and in vitro. High affinity, low capacity receptors, with an affinity for methyltrienolone (R1881) greater than 5 alpha-dihydrotestosterone (5 alpha-DHT) greater than testosterone (T) much greater than androstenedione (A4), estradiol-17 beta (E2) and progesterone (P), were identified in pituitary cytosol. Addition of 1 nM 5 alpha-DHT, but not A4, inhibited luteinizing hormone (LH) release from pituitary cells in vitro, induced by 10(10) to 10(-7) M luteinizing hormone releasing hormone (LHRH). The release of follicle-stimulating hormone (FSH) with 10(-9) M LHRH was inhibited when cells were incubated with 1 nM 5 alpha-DHT. 5 alpha-DHT had no effect when higher or lower doses of LHRH were used. In ovariectomized ewes, neither an i.v. injection of 1 mg, nor intracarotid injections of up to 1 mg, 5 alpha-DHT affected plasma LH, FSH or prolactin levels, despite dose-related increases in plasma 5 alpha-DHT levels. Daily or twice daily i.m. injections of 5 mg 5 alpha-DHT in oil did not affect LH or FSH levels, but daily injections of 20 mg significantly reduced plasma LH levels within 4 days and plasma FSH levels within 6 days. Thus, despite the presence of androgen receptors in the ewe pituitary, we conclude that androgens per se are of minimal importance in the regulation of pituitary LH, FSH and prolactin secretion in the ewe. The low binding affinity of A4 and the lack of its effect on hormone secretion in vitro suggests that A4 may act as an estrogen precursor rather than an androgenic hormone. The function of the pituitary androgen receptor remains to be established.  相似文献   

12.
Studies were conducted to evaluate the effects of acute (24 h) thermal stress on anterior pituitary function in hens. Circulating levels of luteinizing hormone (LH) were measured and the ability of the pituitary to respond to luteinizing hormone-releasing hormone (LHRH) challenge was determined. Moreover, bioassayable hypothalamic LHRH content was assessed by using dispersed anterior pituitary cells. In two separate experiments, circulating levels of LH were reduced in hens exposed to acute thermal stress (35 degrees C). Injection of LHRH did not result in significant differences in release of LH between normothermic and hyperthermic hens. However, the hypothalamic content of bioassayable hypothalamic releasing activity from hyperthermic hens were significantly reduced compared with normothermic hens. Taken together, these data suggest that the reproductive decline in the acutely heat-stressed hen is mediated by reduced LH releasing ability of the hypothalamus.  相似文献   

13.
Recent reports indicate that luteinizing hormone-releasing hormone (LHRH) releases prolactin (PRL) under some circumstances. We examined the chronic effects of LHRH, growth hormone-releasing hormone (GHRH), and corticotrophin-releasing hormone (CRH) on the release of PRL, luteinizing hormone (LH), and follicle-stimulating hormone (FSH) by pituitary allografts in hypophysectomized, orchidectomized hamsters. Entire pituitary glands removed from 7-week-old-male Golden Syrian hamsters were placed under the renal capsule of hypophysectomized, orchidectomized 12-week-old hamsters. Beginning 6 days postgrafting, hamsters were injected subcutaneously twice daily with 1 microgram LHRH, 4 micrograms GHRH, or 4 micrograms CRH in 100 microliter of vehicle for 16 days. Six hosts from each of the four groups were decapitated on Day 17, 16 hr after the last injection. Prolactin, LH, and FSH were measured in serum collected from the trunk blood. Treatment with LHRH significantly elevated serum PRL levels above those measured in the other three groups, which were all similar to one another. Serum LH levels in hosts treated with vehicle were elevated above those measured in the other three groups. Serum FSH levels in hosts treated with LHRH were greater than FSH levels in any of the other three groups. These results indicate that chronic treatment with LHRH can stimulate PRL and FSH release by ectopic pituitary cells in the hamster.  相似文献   

14.
An enzymatically dispersed pituitary preparation from Japanese quail (Coturnix coturnix) was used to study the dynamics of gonadotropin release. After an 18-h incubation, the cells were challenged with different luteinizing hormone-releasing hormones (LHRH) for 90 min. Using pituitary cells from mature males, mammalian and chicken LHRH I (Gln8-LHRH) had approximately equal luteinizing hormone (LH)-releasing activity whereas chicken LHRH II (His5, Trp7, Tyr8-LHRH) was 8-9 times more potent. The LHRH agonist (Trp6, Pro9-NEt-LHRH) had 15 times greater potency than chicken LHRH I. Pre-incubation with an LHRH antagonist (D-Phe2, D-Trp6-LHRH) significantly suppressed LH release. Acid extracts of median eminence released LH from pituitary cells, extracts from short-day and long-day males had equal activity, while tissue extracts from castrated males had significantly greater LH-releasing activity. Pituitary cells from sexually immature males released LH in response to chicken LHRH I in a similar profile to cells from mature males. These data indicate that the quail LHRH receptor in the male recognizes several different molecular species of LHRH and the response to LHRH is comparable between short- and long-day males. Pituitary cells from ovulating females were variably sensitive to LHRH peptides, possibly due to changes in pituitary sensitivity during the ovulatory cycle. Pituitary cells from immature females did not release LH in response to chicken LHRH I. However, pituitary cells from immature females photostimulated for 1 wk displayed a response to chicken LHRH I and II similar to that of pituitary cells from males.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Treatment of intact rats with luteinizing hormone-releasing hormone (LHRH) agonists has been shown to produce atrophy of a variable number of testicular seminiferous tubules. These findings raised the question of a possible direct versus indirect action of LHRH agonists on spermatogenesis. To answer this question, we treated hypophysectomized rats with the LHRH agonist [D-Trp6, des-Gly-NH2(10)]-LHRH ethylamide, dihydrotestosterone (DHT), or a combination of these two compounds for a period of 1 mo. Treatment of hypophysectomized animals with the LHRH agonist alone had no significant effect on the atrophy of seminiferous tubules found after hypophysectomy. DHT, however, maintained spermatogenesis at 80% of the level seen in intact animals. When DHT and the LHRH agonist were administered in combination, the stimulatory effects of DHT were observed with no significant interference caused by the LHRH agonist. This study shows that an LHRH agonist has no direct effect on the morphology of the seminiferous tubules in the absence of the pituitary gland and strongly suggests that the atrophy observed in the testis after LHRH agonist treatment in intact animals is mediated by the LHRH agonist-induced changes in luteinizing hormone secretion and/or direct action of the peptide on Leydig cells.  相似文献   

16.
Human prostate and breast tumor cells produce luteinizing hormone-releasing hormone (LHRH) receptors on their cell surface even when they have lost dependency on sex steroid hormones for growth. To investigate whether LHRH can be used as a cell-binding moiety to deliver toxin molecules into prostate and breast tumor cells, LHRH-bovine RNase A conjugates were constructed using the chemical cross-linking method. The treatment of the LHRH receptor-positive cells such as prostate LNCapFGC and breast MCF7 tumor cells with LHRH-RNase A conjugates resulted in a dose-dependent inhibition of growth. The cytotoxic activities of these conjugates were effectively reduced by the presence of exogenous LHRH. Either free RNase A or LHRH alone did not affect the proliferation of these cells. The LHRH-RNase A conjugates did not show cytotoxicity against FRTL5 and TM4 cells which do not express the LHRH receptors. These results suggest that LHRH can be used as a cell-binding molecule for the specific delivery of toxin molecules into the cells which express LHRH receptors on their surface. Thus, a new class of biomedicines that act as fusion proteins between LHRH and toxins will give us a new avenue for the treatment of human prostate and breast cancers, regardless of their steroid hormone dependency.  相似文献   

17.
We have recently purified a novel pituitary polypeptide designated 7B2. By raising polyclonal antibodies to a synthetic 7B2 fragment in rabbits, we have developed a sensitive and specific radioimmunoassay for this novel polypeptide, and it has been used for the study of the release of immunoreactive 7B2 from rat anterior pituitary cells in vitro. In addition, immunocytochemical study shows that 7B2 is present in the gonadotropin cells of rat anterior pituitary. The aim of the present studies is to investigate the effect of human beta-inhibin, testosterone, and combined testosterone plus human beta-inhibin on the induced release of immunoreactive 7B2, follicle-stimulating hormone (FSH), and luteinizing hormone (LH) in rat anterior pituitary cell culture in vitro. Our results show that both human beta-inhibin and testosterone effectively suppress the stimulatory effect of luteinizing hormone-releasing hormone (LHRH) on immunoreactive 7B2, FSH, and LH release. The present data indicate that the regulation of secretion of 7B2 and pituitary gonadotropins may be under a similar type of feedback mechanism.  相似文献   

18.
Different peptide hormones influence hormone secretion in pituitary cells by diverse second messenger systems. Recent data indicate that luteinizing-hormone-releasing hormone (LHRH) stimulates and somatostatin inhibits voltage-dependent Ca2+ channels of GH3 cells via pertussis-toxin-sensitive mechanisms [Rosenthal et al. (1988) EMBO J. 7, 1627-1633]. In other pituitary cell lines, somatostatin has been shown to cause a pertussis-toxin-sensitive decrease in adenylate cyclase activity, and LHRH and thyrotropin-releasing hormone (TRH) stimulate phosphoinositol lipid hydrolysis in a pertussis-toxin-independent manner. Whether stimulation of Ca2+ influx by TRH is affected by pertussis toxin is not known. In order to elucidate which of the hormone receptors interact with pertussis-toxin-sensitive and -insensitive G-proteins, we measured the effects of LHRH, somatostatin and TRH on high-affinity GTPases in membranes of GH3 cells. In control membranes, both LHRH and TRH stimulated the high-affinity GTPase by 20%, somatostatin by 25%. Maximal hormone effects were observed at a concentration of about 1 microM. Pretreatment of cells with pertussis toxin abolished pertussis-toxin-catalyzed [32P]ADP-ribosylation of 39-40-kDa proteins in subsequently prepared membranes and reduced basal GTPase activity. The toxin also reduced by more than half the increases in GTPase activity induced by LHRH and TRH; stimulation of GTPase by somatostatin was completely suppressed. Stimulation of adenylate cyclase by vasoactive intestinal peptide (VIP) was not impaired by pretreatment of cells with pertussis toxin. Somatostatin but not LHRH and TRH decreased forskolin-stimulated adenylate cyclase activity. The results suggest that the activated receptors for LHRH and TRH act via pertussis-toxin-sensitive and -insensitive G-proteins, whereas effects of somatostatin are exclusively mediated by pertussis-toxin-sensitive G-proteins.  相似文献   

19.
Irreversible chemical programming of monoclonal aldolase antibody (mAb) 38C2 has been accomplished with β-lactam equipped mono- and bifunctional targeting modules, including a cyclic-RGD peptide linked to either the peptide (d-Lys6)-LHRH or another cyclic RGD unit and a small-molecule integrin inhibitor SCS-873 conjugated to (d-Lys6)LHRH. We also prepared monofunctional targeting modules containing either cyclic RGD or (d-Lys6)-LHRH peptides. Binding of the chemically programmed antibodies to integrin receptors α(v)β(3) and α(v)β(5) and to the luteinizing hormone releasing hormone receptor were evaluated. The bifunctional and bivalent c-RGD/LHRH and SCS-783/LHRH, the monofunctional and tetravalent c-RGD/c-RGD, and the monofunctional bivalent c-RGD chemically programmed antibodies bound specifically to the isolated integrin receptor proteins as well as to integrins expressed on human melanoma M-21 cells. c-RGD/LHRH, SCS-783/LHRH, and LHRH chemically programmed antibodies bound specifically to the LHRH receptors expressed on human ovarian cancer cells. This approach provides an efficient, versatile, and economically viable route to high-valency therapeutic antibodies that target defined combinations of specific receptors. Additionally, this approach should be applicable to chemically programmed vaccines.  相似文献   

20.
Treatment of mice aged 23-25 days with chorionic gonadotrophin induced large amounts of an ovarian alkaline phosphatase activity (phosphatase Ib) kinetically distinct from that of untreated ovaries (phosphatase I). The activities of alkaline phosphatase I and Ib varied with age in untreated mice. Phosphatase Ib appeared when serum luteinizing hormone concentrations increased (days 4-10 and days 35-45), and disappeared when concentrations were low (days 11-35). Injection of human chorionic gonadotrophin induced progressively larger amounts of phosphatase Ib activity between day 19 and day 29. However, gonadotrophin treatment failed to induce this activity on days 10-18 and 30-35. Nevertheless, during the latter period, human chorionic gonadotrophin induced especially large increases in uterine weight. Treatment at different ages with sheep luteinizing hormone plus human pituitary follicle-stimulating hormone induced a pattern of response identical with that induced by human chorionic gonadotrophin, although sheep luteinizing hormone alone was ineffective before 35 days. In contrast, human luteinizing hormone induced a response in the absence of exogenous follicle-stimulating hormone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号