首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Progesterone and 17 alpha-hydroxyprogesterone (but not other steroids such as testosterone, corticosterone, beta-estradiol, estrone, dehydroepiandrosterone, 20 alpha-hydroxypregnen-3-one, androstenedione, and pregnenolone) were shown to cause an immediate increase, in free cytosolic calcium ([Ca2+]i) in both capacitated and noncapacitated human sperm, using the fluorescent indicator fura 2. Significant increases in [Ca2+]i were observed with 10 ng/ml progesterone, while maximum effects were seen with 1 microgram/ml progesterone. Two other steroids 11 beta-hydroxyprogesterone and 5 alpha-pregnane-3,20-dione exhibited significant activity to increase [Ca2+]i. This increase in [Ca2+]i elicited by progesterone was entirely due to Ca2+ influx from the extracellular medium since the increase in [Ca2+]i was blocked by the Ca2+ chelator EGTA (2.5 mM) and the Ca2+ channel antagonist La3+ (0.25 mM) when added to the medium containing 2.5 mM Ca2+. Progesterone also stimulated the uptake of Mn2+ into sperm as measured by the quenching of fura 2 fluorescence. Progesterone has been found in human follicular fluid at levels capable of stimulating increases in [Ca2+]i. The similarities in responses induced by human follicular fluid and progesterone an increase in [Ca2+]i, and hence the acrosome reaction, is progesterone and/or 17 alpha-hydroxyprogesterone. Progesterone (1 microgram/ml) did not increase [Ca2+]i in somatic cells such as adipocytes, hepatocytes, Balb/c 3T3 cells, normal rat kidney, or DDT1 MF-2 cells. The effects of these progestins to increase [Ca2+]i, by activating a receptor-operated calcium channel, is the first report of such an activity in sperm. This phenomena possibly opens up a new field of steroid action in the area of sterility, fertility, and contraception at the level of the sperm.  相似文献   

2.
1. The effect of nitroprusside on cGMP concn., cAMP concn., shape change, aggregation, intracellular free Ca2+ concn. (by quin-2 fluorescence) and Mn2+ entry (by quenching of quin-2) was investigated in human platelets incubated with 1 mM-Ca2+ or 1 mM-EGTA. 2. Nitroprusside (10 nM-10 microM) caused similar concentration-dependent increases in platelet cGMP concn. and was without effect on cAMP concn. in the presence of extracellular Ca2+ or EGTA. 3. In ADP (3-6 microM)-stimulated platelets, nitroprusside caused 50% inhibition of shape change at 0.4 microM (+Ca2+) or 1.3 microM (+EGTA), aggregation at 0.09 microM (+Ca2+) and of increased intracellular Ca2+ at 0.02 microM (+Ca2+) or 2.1 microM (+EGTA). Entry of 1 mM-Mn2+ (-Ca2+) was inhibited by 80% by 5 microM-nitroprusside. 4. In ionomycin (20-500 nM)-stimulated platelets, nitroprusside (10 nM-100 microM) did not inhibit shape change or intracellular-Ca2+-increase responses, and only partially inhibited aggregation. 5. In phorbol myristate acetate (10 nM)-stimulated platelets, neither shape change nor aggregation was inhibited by 5 microM-nitroprusside. 6. The data demonstrate that nitroprusside inhibits ADP-mediated Ca2+ influx more potently than Ca2+ mobilization. Nitroprusside appears not to influence Ca2+ efflux or sequestration and not to affect the sensitivity of the activation mechanism to intracellular Ca2+ concn. or activation of protein kinase C.  相似文献   

3.
The relationship between thrombin-evoked changes in intracellular calcium concentration [( Ca2+]i) and aggregation was examined in Indo-1-loaded human platelets. The stimulus-induced intracellular calcium release and external calcium influx, as well as platelet aggregation, were studied in the same cell preparation. A close correlation between the sustained high [Ca2+]i level, depending on calcium entry, and the aggregation response was found. Gramicidin, at a concentration high enough to induce membrane depolarization, strongly inhibited the calcium influx and aggregation, but did not influence the thrombin-induced intracellular calcium release. We conclude that calcium influx through depolarization-inhibited calcium channels is a prerequisite of thrombin-induced platelet aggregation.  相似文献   

4.
1. The rate of 45Ca2+ efflux from prelabelled rat islets of Langerhans was stimulated by carbachol in a dose-dependent manner. 2. Significant stimulation occurred in the presence of 0.2 microM-carbachol; the response was half-maximal at 3-5 microM and was maximal at 20 microM. 3. Stimulation of 45Ca2+ efflux by carbachol was not dependent on the presence of extracellular Ca2+ and was enhanced in Ca2+-depleted medium. 4. Stimulation of 45Ca2+ efflux by 5 microM-carbachol occurred independently of any change in [3H]arachidonic acid release in prelabelled islets, and probably reflected generation of inositol trisphosphate in the cells. 5. The amphipathic peptide melittin failed to increase islet-cell 45Ca2+ efflux at a concentration of 1 microgram/ml, and caused only a modest increase at 10 micrograms/ml. 6. Despite its failure to increase 45Ca2+ efflux, melittin at 1 microgram/ml caused a marked enhancement of 3H release from islets that had been prelabelled with [3H]arachidonic acid. 7. The stimulation of 3H efflux caused by melittin correlated with a dose-dependent increase in the unesterified [3H]arachidonic acid content of prelabelled islets and with a corresponding decrease in the extent of labelling of islet phospholipids. 8. Combined addition of melittin (1 microgram/ml) and 5 microM-carbachol to perifused islets failed to augment 45Ca2+ efflux relative to that elicited by carbachol alone. 9. The data indicate that melittin promotes an increase in arachidonic acid availability in intact rat islets. They do not, however, support the proposal that this can either directly reproduce or subsequently modify the extent of intracellular Ca2+ mobilization induced by agents that cause an increase in inositol trisphosphate.  相似文献   

5.
The time-sequential relationship between Ca2+ flux, phospholipid metabolism and platelet activation have been examined. Thrombin-activation caused a marked enhancement in 45Ca2+ influx and a decrease in extracellular Ca2+ concentration measured by murexide dye, which occurred in parallel with the conversion of 1,2-diacylglycerol (DG) to phosphatidic acid (PA). The incorporated 45Ca2+ was located mainly in cytosolic fraction. The influx of Ca2+ was observed to commence prior to the onset of lysophospholipids formation and subsequent liberation of arachidonic acid. These data provide evidence which indicates a coupling between the rapid PI-turnover and the active Ca2+ influx, in which phosphatidic acid (PA) may serve as a Ca2+ ionophore.  相似文献   

6.
Blood platelets, upon stimulation with various substances, take up calcium ions from the suspending medium. This influx occurs simultaneously with the release reaction, i.e. the specific secretion of a variety of substances from storage organelles and the second wave of aggregation. Various inhibitors of the release reaction inhibit this Ca2+ influx. Platelets previously loaded with 45Ca show an increased efflux of the cation upon stimulation by thrombin. These results suggest that the plasma membrane acquires an increased permeability to Ca2+ only in a later phase of platelet activation, in most cases after the earlier release of Ca2+ into the cytoplasm from Ca-storing organelles. Rapid shape change and release proceed independently of external calcium, whereas clot retraction depends upon a prolonged increased permeability of the plasma membrane to this cation.  相似文献   

7.
The effects of arachidonic acid and thrombin on calcium movements have been studied in fura-2-loaded platelets by a procedure which allows simultaneous monitoring of the uptake of manganese, a calcium surrogate for Ca2+ channels, and the release of Ca2+ from intracellular stores. Arachidonic acid induced both Ca2+ (Mn2+) entry through the plasma membrane and Ca2+ release from the intracellular stores. The release of Ca2+ was prevented by cyclo-oxygenase inhibitors and mimicked by the prostaglandin H2/thromboxane A2 receptor agonist U46619. Ca2+ (Mn2+) entry required higher concentrations of arachidonic acid and was not prevented by either cyclo-oxygenase or lipoxygenase inhibitors. Several polyunsaturated fatty acids reproduced the effect of arachidonic acid on Ca2+ (Mn2+) entry, but higher concentrations were required. The effects of maximal concentrations of arachidonic acid and thrombin on the uptake of Mn2+ were not additive. Both agonists induced the entry of Ca2+, Mn2+, Co2+ and Ba2+, but not Ni2+, which, in addition, blocked the entry of the other divalent cations. However, arachidonic acid, but not thrombin, increased a Ni2(+)-sensitive permeability to Mg2+. The effect of thrombin but not that of arachidonic acid was prevented either by pretreatment with phorbol ester or by an increase in cyclic-AMP levels. Arachidonic acid also accelerated the uptake of Mn2+ by human neutrophils, rat thymocytes and Ehrlich ascites-tumour cells.  相似文献   

8.
When aequorin-loaded glomerulosa cells were incubated in isotonic Na2+-free medium containing N-methyl-D-glucamine instead of NaCl, there was an increase in cytoplasmic free calcium concentration, [Ca2+] c, which was not observed when extracellular calcium concentration was reduced to 1 microM. Upon removal of extracellular sodium, there was nearly five-fold increase in fractional efflux ratio of calcium. The reduction of extracellular sodium resulted in a stimulation of calcium influx rate, the magnitude of which was dependent on extracellular sodium concentration. Similar stimulation of calcium influx was observed when extracellular sodium was replaced with lithium. Nitrendipine did not affect the calcium influx induced by the reduction of extracellular sodium while a derivative of amiloride 3',4'-dichlorobenzamil, which inhibits Na-Ca exchange, attenuated calcium influx observed in sodium-free medium. These results indicate that removal of extracellular sodium leads to an increase in [Ca2+] c by stimulating calcium influx and that calcium enters the cell via Na-Ca exchanger.  相似文献   

9.
10.
11.
Intracellular calcium fluxes in human platelets   总被引:2,自引:0,他引:2  
Fluorescence changes and secretory responses have been measured on addition of various excitatory agonists to platelets loaded with the cytosolic Ca2+ probe, Quin 2 or with chlortetracycline as a probe for membrane-associated Ca2+. When extracellular [Ca2+] is decreased to less than 0.1 microM by addition of EGTA a linear correlation is observed between the extent of increase in cytosolic [Ca2+] and the extent of mobilisation of membrane-associated Ca2+ on stimulation by maximal doses of five excitatory agonists. A similar linear correlation between the increase in cytosolic [Ca2+] and the extent of ATP secretion is observed over the thrombin dose/response curve. Similar EC50 values are observed for ATP secretion, the increase in cytosolic [Ca2+] and the decrease in chlortetracycline fluorescence induced by thrombin. However, the decrease in chlortetracycline fluorescence shows a sigmoidal relationship with the increase in cytosolic [Ca2+] and a hyperbolic relationship with ATP secretion over this dose/response curve. Addition of prostaglandin D2 prior to thrombin causes parallel inhibition of the increase in cytosolic [Ca2+] and the decrease in chlortetracycline fluorescence induced by this agonist. However, addition of prostaglandin D2 after thrombin reverses the increase in cytosolic [Ca2+] induced by this agonist but fails to cause a similar reversal of the decrease in chlortetracycline fluorescence. The data provide further evidence supporting the proposal that chlortatracycline can be used as a probe to monitor mobilisation of membrane-associated Ca2+ but suggest that, in platelets stimulated in the effective absence of extracellular Ca2+, both Ca2+ mobilisation and Ca2+ removal can under some conditions involve sites which are not monitored by this probe.  相似文献   

12.
Activation of store-operated channels (SOCs) and capacitative calcium influx are triggered by depletion of intracellular calcium stores. However, the exact molecular mechanism of such communication remains unclear. Recently, we demonstrated that native SOC channels can be activated by calcium influx factor (CIF) that is produced upon depletion of calcium stores, and showed that Ca(2+)-independent phospholipase A(2) (iPLA(2)) has an important role in the store-operated calcium influx pathway. Here, we identify the key plasma-membrane-delimited events that result in activation of SOC channels. We also propose a novel molecular mechanism in which CIF displaces inhibitory calmodulin (CaM) from iPLA(2), resulting in activation of iPLA(2) and generation of lysophospholipids that in turn activate soc channels and capacitative calcium influx. Upon refilling of the stores and termination of CIF production, CaM rebinds to iPLA(2), inhibits it, and the activity of SOC channels and capacitative calcium influx is terminated.  相似文献   

13.
Extracellular signal-regulated kinases (ERKs), are common participants in a broad variety of signal transduction pathways. Several studies have demonstrated the presence of ERKs in human platelets and their activation by the physiological agonist thrombin. Here we report the involvement of the ERK cascade in store-mediated Ca(2+) entry in human platelets. Treatment of dimethyl-bis-(o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid-loaded platelets with thapsigargin to deplete the intracellular Ca(2+) stores resulted in a time- and concentration-dependent activation of ERK1 and ERK2. Incubation with either U0126 or PD 184352, specific inhibitors of mitogen-activated protein kinase kinase (MEK), prevented thapsigargin-induced ERK activation. Furthermore, U0126 and PD 184352 reduced Ca(2+) entry stimulated by thapsigargin or thrombin, in a concentration-dependent manner. The role of ERK in store-mediated Ca(2+) entry was found to be independent of phosphatidylinositol 3- and 4-kinases, the tyrosine kinase pathway, and actin polymerization but sensitive to treatment with inhibitors of Ras, suggesting that the ERK pathway might be a downstream effector of Ras in mediating store-mediated Ca(2+) entry in human platelets. In addition, we have found that store depletion stimulated ERK activation does not require PKC activity. This study demonstrates for the first time a novel mechanism for regulation of store-mediated Ca(2+) entry in human platelets involving the ERK cascade.  相似文献   

14.
The correlation between an increased production of reactive oxygen species (ROS) and an enhanced calcium entry in primed neutrophils stimulated with fMLP suggests that endogenous ROS could serve as an agonist to reinforce calcium signaling by positive feedback. This work shows that exogenous H2O2 produced a rapid influx of Mn2+ and an increase of intracellular calcium. The H2O2 was insufficient to produce significant changes in the absence of extracellular calcium but addition of Ca2+ to H2O2-treated cells suspended in a free Ca2+/EGTA buffer resulted in a great increase in [Ca2+]i reflecting influx of Ca2+ across the cell membrane. The increase of intracellular calcium was inhibited by Ni2+, La3+, and hyperosmotic solutions of mannitol and other osmolytes. This raises the possibility that the secretion of H2O2 by activated neutrophils could act as an autocrine regulator of neutrophil function through the activation of calcium entry.  相似文献   

15.
The incubation of human platelets with methylglyoxal and glucose produces a rapid transformation of the ketoaldehyde to D-lactate by the glyoxalase system and a partial reduction in GSH. Glucose utilization is affected at the level of the glycolytic pathway. No effect of the ketoaldehyde on glycogenolysis and glucose oxidation through the hexose monophosphate shunt was demonstrated. Phosphofructokinase, fructose 1,6 diphosphate (F1, 6DP) aldolase, glyceraldehyde 3-phosphate dehydrogenase and 3-phosphoglycerate mutase were mostly inhibited by methylglyoxal. A decrease in lactate and pyruvate formation and an accumulation of some glycolytic intermediates (fructose 1,6 diphosphate, dihydroxyacetone phosphate, 3-phosphoglycerate) was observed. Moreover methylglyoxal induced a fall in the metabolic ATP concentration. Since methylglyoxal is an intermediate of the glycolytic bypass system from dihydroxyacetone phosphate to D-lactate, it may be assumed that ketoaldehyde exerts a regulating effect on triose metabolism.  相似文献   

16.
The action of two potent store operated Ca2+ entry (SOCE) inhibitors, ML-9 and GdCl3 on Ca2+ fluxes induced by the pro-inflammatory agonists FMLP, PAF, LTB4 as well as the receptor-independent stimulus thapsigargin has not been documented in human neutrophils. In this study, ML-9 enhanced both release and subsequent Ca2+ influx in response to agonists whereas it enhanced Ca2+ release by thapsigargin, but inhibited Ca2+ influx. In contrast, 1 μM GdCl3 completely inhibited Ca2+ influx in response to thapsigargin, but only partially blocked Ca2+ influx after agonist stimulation. These results strongly suggest a major role for receptor-operated Ca2+ influx in human neutrophils.  相似文献   

17.
The effects of cholesterol-perturbing agents on the mobilization of calcium induced upon the stimulation of human neutrophils by chemotactic factors were tested. Methyl-beta-cyclodextrin and filipin did not alter the initial peak of calcium mobilization but shortened the duration of the calcium spike that followed the addition of fMet-Leu-Phe. These agents also inhibited the influx of Mn(2+) induced by fMet-Leu-Phe or thapsigargin. Methyl-beta-cyclodextrin and filipin completely abrogated the mobilization of calcium induced by 10(-10) m platelet-activating factor, which at this concentration depends to a major extent on an influx of calcium as well as the influx of calcium induced by 10(-7) m platelet-activating factor. On the other hand, methyl-beta-cyclodextrin and filipin enhanced the mobilization of calcium induced by ligation of FcgammaRIIA, an agonist that did not induce a detectable influx of calcium. Finally, methyl-beta-cyclodextrin and filipin enhanced the stimulation of the profile of tyrosine phosphorylation, the activity of phospholipase D (PLD), and the production of superoxide anions induced by fMet-Leu-Phe. These results suggest that the calcium channels utilized by chemotactic factors in human neutrophils are either located in cholesterol-rich regions of the plasma membrane, or that the mechanisms that lead to their opening depend on the integrity of these microdomains.  相似文献   

18.
The mechanism by which GnRH increases sperm-zona pellucida binding in humans was investigated in this study. We tested whether GnRH increases sperm-zona binding in Ca(2+)-free medium and in the presence of Ca(2+) channel antagonists. We also examined the GnRH effect on the intracellular free Ca(2+) concentration ([Ca(2+)](i)). Sperm treatment with GnRH increased sperm-zona binding 300% but only when Ca(2+) was present in the medium. In Ca(2+)-free medium or in the presence of 400 nM nifedipine, 80 microM diltiazem, or 50 microM verapamil, GnRH did not influence sperm-zona binding. GnRH increased the [Ca(2+)](i) in the sperm in a dose-dependent manner. The maximum effect was reached with 75 nM GnRH. The GnRH-induced increase in [Ca(2+)](i) was fast and transient, from a basal [Ca(2+)](i) of 413 +/- 22 nM to a peak value of 797 +/- 24 nM. The GnRH-induced increase in [Ca(2+)](i) was entirely due to a Ca(2+) influx from the extracellular medium because the increase in [Ca(2+)](i) was blocked by the Ca(2+) chelator EGTA and by the Ca(2+) channel antagonists nifedipine and diltiazem. These antagonists, however, were not able to inhibit the progesterone-activated Ca(2+) influx. On the contrary, T-type calcium channel antagonists pimozide and mibefradil did not affect GnRH-activated Ca(2+) influx but inhibited the progesterone-activated Ca(2+) influx. Finally, the GnRH-induced Ca(2+) influx was blocked by two specific GnRH antagonists, Ac-D-Nal(1)-Cl-D-Phe(2)-3-Pyr-D-Ala(3)-Arg(5)-D-Glu(AA)(6)-GnRH and Ac-(3,4)-dehydro-Pro(1),-p-fluoro-D-Phe(2), D-Trp(3,6)-GnRH. These results suggest that GnRH increases sperm-zona binding via an elevation of [Ca(2+)](i) through T-type, voltage-operated calcium channels.  相似文献   

19.
GTP or GTP gamma S alone caused low but significant liberation of arachidonic acid in saponin-permeabilized human platelets but not in intact platelets. GTP or GTP gamma S also enhanced thrombin-induced [3H]arachidonic acid release in permeabilized platelets. Inhibitors of the phospholipase C (neomycin)/diacylglycerol lipase (RHC 80267) pathway for arachidonate liberation did not reduce the [3H]arachidonic acid release. The loss of [3H]arachidonate radioactivity from phosphatidylcholine was almost equivalent to the increase in released [3H]arachidonic acid, suggesting the hydrolysis of phosphatidylcholine by phospholipase A2. The effect of GTP gamma S was greater at lower Ca2+ concentrations. These data indicate that the release of arachidonic acid by phospholipase A2 in saponin-treated platelets may be linked to a GTP-binding protein.  相似文献   

20.
Recent work from this laboratory has demonstrated that purinergic-mediated depolarization of human microglia inhibited a store-operated pathway for entry of Ca2+. We have used Fura-2 spectrofluorometry to investigate the effects on store-operated Ca2+ influx induced by replacement of NaCl with Na-gluconate in extracellular solutions. Three separate procedures were used to activate store-operated channels. Platelet activating factor (PAF) was used to generate a sustained influx of Ca2+ in standard physiological saline solution (PSS). The magnitude of this response was depressed by 70% after replacement of PSS with low Cl- PSS. A second procedure used ATP, initially applied in Ca2+-free PSS solution to deplete intracellular stores. The subsequent perfusion of PSS solution containing Ca2+ resulted in a large and sustained entry of Ca2+, which was inhibited by 75% with low Cl- PSS. The SERCA inhibitor cyclopiazonic acid (CPA) was used to directly deplete stores in zero-Ca2+ PSS. Following the introduction of PSS containing Ca2+, a maintained stores-operated influx of Ca2+ was evident which was inhibited by 77% in the presence of the low Cl- PSS. Ca2+ influx was linearly reduced with cell depolarization in elevated K+ (7.5 to 35 mM) suggesting that changes in external Cl- were manifest as altered electrical driving force for Ca2+ entry. However, 50 mM external KCl effectively eliminated divalent entry which may indicate inactivation of this pathway with high magnitudes of depolarization. Patch clamp studies showed low Cl-PSS to cause depolarizing shifts in both holding currents and reversal potentials of currents activated with voltage ramps. The results demonstrate that Cl- channels play an important role in regulating store-operated entry of Ca2+ in human microglia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号