首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

The past two decades have seen growing pressure on vehicle manufacturers to reduce the environmental impact of their vehicles. One effective way to improve fuel efficiency and lower tailpipe emissions is to use advanced high-strength steels (AHSS) that offer equal strength and crash resistance at lower mass. The present study assesses the life cycle environmental impacts of two steel grades considered for the B-pillar in the Ford Fusion: A press-hardened boron steel design as used in the previous model of the vehicle and a hydroformed component made from a mix of the molybdenum-bearing dual phase steels DP800 and DP1000.

Methods

Information related to the component masses and grades was provided by Ford. Process models for the steelmaking process, finishing, forming, vehicle use and end of life were created in the GaBi LCA software tool. Sensitivity analyses were conducted on the impact of the hydroforming process for the new component, for which only proxy data were available and on the mix of DP800 and DP1000 in the B-pillar. Results have been presented for the environmental impact categories deemed most relevant to vehicle use.

Results and discussion

The life cycle assessment showed that the new DP800/DP1000 B-pillar design has a lower impact for the environmental impact categories assessed. Overall, the global warming potential (GWP) of the new DP800/DP1000 design was 29 % lower than the boron steel design over the full life cycle of the vehicle. The use phase was found to be the major source of environmental impacts, accounting for 93 % of the life cycle GWP impact. The 4 kg weight saving accounts for the majority of the difference in impacts between the two B-pillar designs. Impacts from manufacturing were also lower for the new design for all of the impact categories assessed despite the higher alloy content of the steel. A sensitivity analysis of the hydroforming process showed that even if impacts from forming were 100 % greater than for press hardening, the GWP from production of the new B-pillar design would still be lower than the boron steel version.

Conclusions and recommendations

The molybdenum-bearing DP1000/DP800 B-pillar was found to have lower life cycle and production impacts than the previous boron steel design. The assessment indicates that significant improvements in the environmental impacts associated with the body structure of vehicles could be made through the increased use of AHSS in vehicles without compromising crash performance.
  相似文献   

2.

Purpose

The fifth assessment report by the IPCC includes methane oxidation as an additional indirect effect in the global warming potential (GWP) and global temperature potential (GTP) values for methane. An analysis of the figures provided by the IPCC reveals they lead to different outcomes measured in CO2-eq., depending on whether or not biogenic CO2 emissions are considered neutral. In this article, we discuss this inconsistency and propose a correction.

Methods

We propose a simple framework to account for methane oxidation in GWP and GTP in a way that is independent on the accounting rules for biogenic carbon. An equation with three components is provided to calculate metric values, and its application is tested, together with the original IPCC figures, in a hypothetical example focusing on GWP100.

Results and discussion

The hypothetical example shows that the only set of GWP100 values consistently leading to the same outcome, regardless of how we account for biogenic carbon, is the one proposed in this article. Using the methane GWP100 values from the IPCC report results in conflicting net GHG emissions, thus pointing to an inconsistency.

Conclusions

In order to consistently discriminate between biogenic and fossil methane sources, a difference of 2.75 kg CO2-eq. is needed, which corresponds to the ratio of the molecular weights of CO2 and methane (44/16). We propose to correct the GWP and GTP values for methane accordingly.
  相似文献   

3.

Purpose

This study advocates a modular approach combining unit processes as building blocks to formulate biomass process chains. This approach facilitates a transparent environmental life cycle impact assessment for bio-based products. It also enhances the ability to develop and assess more complex biorefinery systems, identifies critical parameters and offers useful material to support environmental impact assessment in early design stages.

Methods

Twenty-three different products were assessed with regard to the environmental burden associated with their production paths. Life cycle inventories (LCIs) for 32 unit processes were compiled (using information from pilot plants, simulation and literature data) and organized in biomass process chains. Then, 58 study systems were formed based on various combinations of the unit processes, each study system referring to the production of a selected product. Three indicators were used for quantification of the impacts: non-renewable fossil cumulative energy demand (CED), global warming potential (GWP) and water depletion as defined in the ReCiPe method.

Results and discussion

Factors influencing the variation of results even for similar products are discussed (e.g. production path and allocation method lead to a range of GWP values for ethylene production from 0.43 to 3.37 kg CO2 eq/kg ethylene). For the majority of bio-products, CED has lower values than fossil-based equivalents (average difference 39–70 MJ eq/kg product depending on the allocation method), while mixed trends are obtained for the GWP and water depletion indicators. Assessments also highlight attributes that have a significant effect in the environmental profile of a production path such as the synthesis path, the process chemistry (water intensity) and process-related factors (energy intensity, degree of energy integration/heat recovery).

Conclusions

The analysis of impacts per unit process is able to demonstrate the particular production stages featuring high environmental intensities along a path further hinting to suggestions for amendments and improvements from an overall performance perspective. The study makes a useful source for biorefinery design studies especially in adopting a modular approach to represent and to analyse biomass process chains; it also provides a reference point for comparison (benchmarking) between different process technologies for biomass utilization. Finally, the analysis is compatible with the standards of the LCA methodology, and it is based on the use of the most common LCA databases, which facilitates the comparison of the results with other relevant studies.
  相似文献   

4.

Purpose

In order to meet the upscaling demand of food products worldwide, the aquaculture industry has been expanding within the last few years in developed countries. Major expansions of aquaculture farming occurred in many developed countries such as Bangladesh, Indonesia, and Egypt. Egypt ranks ninth in fish farming production worldwide and first on Africa. Egypt has the largest aquaculture industry in Africa which represents two-thirds of African aquaculture production. Tilapia production accounts for 75.5 % of aquaculture production in Egypt. Tilapia aquaculture production has grown exponentially in recent decades until it reached 4.5 million tonnes in 2012 placing Egypt as the second worldwide producer of tilapia after China. The production of tilapia is practiced in different production systems including intensive and semi-intensive systems. These production systems require different resources and impact differently on the environment. The aim of the current study was to model the environmental performance of tilapia production and compare semi-intensive and intensive production systems. The main questions were the following: What are the different impacts of tilapia production on the environment? Which production system is more environmentally friendly? What are the preferable practices for better environmental performance and sustainable ecofriendly industry of Tilapia production?

Methods

Life cycle assessment (LCA) was employed to determine the environmental impacts of tilapia production and compare semi-intensive and intensive production systems. Data for life cycle inventory were collected from two case study farms for tilapia production in Egypt. Four impact categories were taken into consideration: Global Warming Potential (GWP), Acidification Potential (AP), Eutrophication Potential (EP), and Cumulative Energy Demand (CED).

Results and discussion

LCA revealed that production of tilapia in intensive farming has less impact on GWP, AP, and CED, while its impact on EP is higher than in semi-intensive farming. The identified impacts from 1-tonne live weight production of tilapia were the following: GWP 960.7 and 6126.1 kg CO2 eq; AP 9.8 and 24.4 kg SO2 eq; EP 14.1 and 6.3 kg PO2 eq; and CED 52.8 GJ and 238.3 GJ eq in intensive and semi-intensive systems, respectively.

Conclusions

Fish meal production and energy consumption were the major contributors to different impact indicators in both systems. An overall improvement in environmental performance for tilapia production can be achieved by novel feed formulations that have better environmental performance. Energy consumption is a major area for improvement as well, as proper energy management practices will reduce the overall impact on the environment.
  相似文献   

5.

Purpose

Currently, the reduction of weight in automotive is a very important topic in order to lower the air pollution. In this context, the purpose of the present paper was to analyze a real case study through a comparison of the environmental sustainability between a conventional steel crossbeam for light commercial vehicles and an innovative lightweight aluminum one.

Methods

For both scenarios, a cradle-to-grave life cycle assessment methodology and a sensitivity analysis has been used through the study of the following phases: mineral extraction, component manufacturing, use on vehicle, and end of life. In particular, many primary data and a complete vehicle model simulation with three different European driving cycles have been used in order to reach the highest possible level of accuracy during the analysis.

Results and discussion

Regarding the manufacturing phase, the aluminum component’s production gave the highest impact because of the high energy required in the mineral reduction. Anyway, this stage of the analysis had a low effect on the entire LCA, because the benefit of weight reduction during vehicle use showed a strongly higher contribution. The urban driving cycle had the most relevant impact, as a consequence of the frequent start and stop operations and the longest time with engine at idle speed, while the extra-urban cycle is the less demanding due to its higher average speed and no start and stop.

Conclusions

In conclusion, the present research demonstrated the environmental importance of the lightweight for an actual case study in the commercial vehicles field.
  相似文献   

6.

Purpose

Refrigeration and air conditioning systems have high, negative environmental impacts due to refrigerant charge leaks from the system and their corresponding high global warming potential. Thus, many efforts are in progress to obtain suitable low GWP alternative refrigerants and more environmentally friendly systems for the future. The system’s life cycle climate performance (LCCP) is a widespread metric proposed for the evaluation of the system’s environmental impact.

Methods

In this paper, the potential emission reductions in the commercial refrigeration and residential air conditioning systems, made possible by shifting towards more environmentally friendly refrigerants in the US, are presented. First, the current LCCP of the most common commercial refrigeration and residential air conditioning systems is calculated. Then, the LCCP of the baseline systems, when using the potential low GWP alternative refrigerants, is presented. This helps to determine the systems which have the highest potential for emission reductions.

Results and discussion

By shifting from the baseline refrigerants, R-404A and R-410A, to the suggested low GWP refrigerants, N-40 and L-41a, in the commercial refrigeration and residential HVAC systems, respectively, a combined drop of 30.43 % in the total emissions (i.e., total equivalent mass of emissions in kg CO2eq) is obtained. This results from a 50.5 and 28.01 % drop in total emissions from supermarket refrigeration systems and residential air conditioning, respectively.

Conclusions

Shifting to lower GWP refrigerants in the refrigeration and air conditioning systems helps to reduce the total emissions and negative environmental impacts of these systems. Shifting to a secondary circuit commercial refrigeration system using N-40/L-40 and residential air conditioning and heat pump systems using L-41a helps in reducing the total emissions.
  相似文献   

7.

Introduction

Collecting feces is easy. It offers direct outcome to endogenous and microbial metabolites.

Objectives

In a context of lack of consensus about fecal sample preparation, especially in animal species, we developed a robust protocol allowing untargeted LC-HRMS fingerprinting.

Methods

The conditions of extraction (quantity, preparation, solvents, dilutions) were investigated in bovine feces.

Results

A rapid and simple protocol involving feces extraction with methanol (1/3, M/V) followed by centrifugation and a step filtration (10 kDa) was developed.

Conclusion

The workflow generated repeatable and informative fingerprints for robust metabolome characterization.
  相似文献   

8.

Purpose

The environmental impact of the social building stock is relevant, particularly in emerging economies. Life cycle thinking is not yet established, however. Locally available, alternative building concepts could potentially reduce the environmental impact of the construction segment. This paper examines the environmental performance of “as-built” low-cost housing for an example of the Philippines, and the potential to reduce its environmental impact through use of three alternative building technologies: cement–bamboo frames, soil–cement blocks, and coconut board-based housing.

Methods

Life cycle assessment models are implemented and evaluated with software SimaPro, using the single-impact indicators global warming potential (GWP) and cumulative energy demand (CED) and the multi-impact indicator Impact2002+. According to EN 15978, the life cycle phase product and construction process (A), use stage (B), end-of-life (C) and supplementary information beyond the building life cycle (D) have been assessed. Theoretically calculated inflows from standard construction procedures used in phase A have been verified with 3 years of empirical data from implemented construction projects. For phases B, C and D, attention was given to service life, use-phase, allocation of waste products, biogenic carbon and land-use assumptions. Scenarios reflect the actual situation in the emerging economy. Processes, such as heat recovery from thermal utilization, which are not existing nor near to implementation, were excluded.

Results and discussion

For an assessment of the phases A–B–C–D with GWP, a 35% reduction of environmental impact for soil–cement blocks, 74% for cement–bamboo frame, and 83% for coconut board-based houses is obtained relative to a concrete reference house. In absolute terms, this relates to a reduction of 4.4, 9.3, and 10.3 t CO2 equivalents over a service life of 25 years. CED showed higher impacts for the biogenic construction methods coconut board and cement–bamboo frames of +8.0 and +4.7%, while the soil–cement technology was evaluated ?7.1% compared to GWP. Sixteen of 17 midpoint categories of Impact2002+ confirmed an overall reduction potential of the alternative building methods, with the midpoint category land occupation being the exception rating the conventional practice over the alternatives.

Conclusions

It is concluded that the alternative construction technologies have substantial potential to reduce the environmental burden caused by the social housing sector. The service life of the alternative technologies plays a vital role for it. LCA for emerging economies needs to incorporate realistic scenarios applicable at their current state or belonging to the most probable alternatives to ensure valuable results. Recommendations for further research are provided.
  相似文献   

9.

Purpose

The purpose of this research is to identify at what extent e-book reading reduces global warming potential (GWP) of book reading activities relative to that of reading only paper books. Past studies assume e-books and paper books are interchangeable during consumption, but adopting e-book reading can alter reading patterns in reality. This research comparatively assessed the GWP of reading only paper books and that of reading pattern of after e-reader adoption of consumer segments.

Methods

We computed GWP of book reading activities of consumer segments that include a life cycle of paper book, e-book, and e-book reading device. Two e-book devices were considered: a designated e-book device (e-reader) and a tablet. The functional units are book reading activities per person and per person-book, which account the number of books purchased or acquired and the reading hours per person. We collected data through a web survey in the USA. Consumer segmentation was performed by analyzing the level of importance in the aspects of book reading activities as a measurement variable. To observe the changes in reading patterns upon e-reader adoption within the same population, we conducted a 3-month social experiment involving e-readers in the USA.

Results and discussion

Adopting e-readers was discovered to reduce both the GWP per person and the GWP per person-book of book reading activities. The GWP of e-books read with an e-reader and the GWP of paper books were found to break even at 4.7 books per year, provided consumers read less than 11 h a day. According to the web survey, e-reader users purchase more than seven e-books annually on average, which resulted in a smaller GWP per person-book relative to that of one paper book. Furthermore, the GWP per person in the social experiment was smaller for e-reader adopters than those who only read paper books because they substituted e-books for paper books. The overall book reading volume remains unchanged upon e-reader adoption.

Conclusions

Adoption of e-readers reduces the GWP from book reading activities with only paper books, provided more than 4.7 paper books are substituted by e-books annually, and provided consumers’ total consumption volume remain unchanged. E-reader adopters read sufficient number of e-books to break even with paper books. However, most e-reader adopters are yet to fully abandon paper books for e-books. Analyzing the differences in the reading experience between e-books and paper books is a future task.
  相似文献   

10.

Introduction

Concerning NMR-based metabolomics, 1D spectra processing often requires an expert eye for disentangling the intertwined peaks.

Objectives

The objective of NMRProcFlow is to assist the expert in this task in the best way without requirement of programming skills.

Methods

NMRProcFlow was developed to be a graphical and interactive 1D NMR (1H & 13C) spectra processing tool.

Results

NMRProcFlow (http://nmrprocflow.org), dedicated to metabolic fingerprinting and targeted metabolomics, covers all spectra processing steps including baseline correction, chemical shift calibration and alignment.

Conclusion

Biologists and NMR spectroscopists can easily interact and develop synergies by visualizing the NMR spectra along with their corresponding experimental-factor levels, thus setting a bridge between experimental design and subsequent statistical analyses.
  相似文献   

11.

Introduction

Data sharing is being increasingly required by journals and has been heralded as a solution to the ‘replication crisis’.

Objectives

(i) Review data sharing policies of journals publishing the most metabolomics papers associated with open data and (ii) compare these journals’ policies to those that publish the most metabolomics papers.

Methods

A PubMed search was used to identify metabolomics papers. Metabolomics data repositories were manually searched for linked publications.

Results

Journals that support data sharing are not necessarily those with the most papers associated to open metabolomics data.

Conclusion

Further efforts are required to improve data sharing in metabolomics.
  相似文献   

12.

Purpose

We evaluated and quantified the environmental impact of a radial tire product for passenger vehicles throughout the product’s life cycle to identify key stages that contribute to the overall environmental burden and to find ways to reduce these burdens effectively. The study covers all relevant life cycle stages, from the acquisition of raw materials to the production, use, and end of life.

Methods

Data collected onsite in 2014 by one of the largest Chinese tire companies were used in the assessment. The evaluation is presented in terms of individual impact category according to the CML model. Five impact categories (i.e., global warming potential (GWP), acidification potential (AP), photochemical oxidant creation potential (POCP), eutrophication potential (EP), and human toxicity potential (HTP)) were considered. The research was conducted in accordance with the ISO 14040/14044 standards.

Results and discussion

Fuel (gasoline) consumption represents an important contribution to most impact categories, including the GWP, AP, POCP, and EP, during the use stage. The largest contributor to the HTP category is raw material acquisition, mainly because of the impact of the production of organic chemicals. In the end-of-life stage, assuming that 100 % of used tires are collected and recycled to produce reclaimed rubber, the GWP, EP, and HTP contributions are negative, whereas those to the AP and POCP are positive. During the raw material acquisition stage, natural rubber, synthetic rubber, carbon black, and organic chemicals represent the largest contribution to the environmental impact categories. During the production stage, the compound blending process is the largest contributor to the AP and POCP, whereas vulcanizing and testing contribute most to the GWP, EP, and HTP.

Conclusions

Vehicle fuel consumption and its proportion consumed by the tires during the use stage are key factors that contribute to environmental impact during tire life. Further investigations should be conducted to decrease the impact of these factors and improve the environmental performance of tire products.
  相似文献   

13.

BACKGROUND

Recurrent pregnancy loss (RPL) is a heterogeneous condition and thrombophilias have been considered as a probable cause.

OBJECTIVE

The aim of this study was to investigate the prevalence of the coagulation factor XIII Val34Leu polymorphism among women with unexplained RPL.

METHODS

A total of 140 women with a history of unexplained RPL and 100 age-matched healthy fertile women were recruited. The presence of FXIII Val34Leu polymorphism among the cases and controls was investigated using PCR-RFLP method.

RESULTS

Genotype analyses of the subjects revealed that the patients had a significantly higher prevalence of V/L and L/L than the controls (P<0.05): 33.5% vs. 15%, and 9.2% vs. 2%, respectively.

CONCLUSION

These results indicate a significant association between FXIII Val34Leu polymorphism and unexplained RPL in the Iranian patient.
  相似文献   

14.

Background

In recent years the visualization of biomagnetic measurement data by so-called pseudo current density maps or Hosaka-Cohen (HC) transformations became popular.

Methods

The physical basis of these intuitive maps is clarified by means of analytically solvable problems.

Results

Examples in magnetocardiography, magnetoencephalography and magnetoneurography demonstrate the usefulness of this method.

Conclusion

Hardware realizations of the HC-transformation and some similar transformations are discussed which could advantageously support cross-platform comparability of biomagnetic measurements.
  相似文献   

15.

Purpose

The well-to-wheel (WTW) methodology is widely used for policy support in road transport. It can be seen as a simplified life cycle assessment (LCA) that focuses on the energy consumption and CO2 emissions only for the fuel being consumed, ignoring other stages of a vehicle’s life cycle. WTW results are therefore different from LCA results. In order to close this gap, the authors propose a hybrid WTW+LCA methodology useful to assess the greenhouse gas (GHG) profiles of road vehicles.

Methods

The proposed method (hybrid WTW+LCA) keeps the main hypotheses of the WTW methodology, but integrates them with LCA data restricted to the global warming potential (GWP) occurring during the manufacturing of the battery pack. WTW data are used for the GHG intensity of the EU electric mix, after a consistency check with the main life cycle impact (LCI) sources available in literature.

Results and discussion

A numerical example is provided, comparing GHG emissions due to the use of a battery electric vehicle (BEV) with emissions from an internal combustion engine vehicle. This comparison is done both according to the WTW approach (namely the JEC WTW version 4) and the proposed hybrid WTW+LCA method. The GHG savings due to the use of BEVs calculated with the WTW-4 range between 44 and 56 %, while according to the hybrid method the savings are lower (31–46 %). This difference is due to the GWP which arises as a result of the manufacturing of the battery pack for the electric vehicles.

Conclusions

The WTW methodology used in policy support to quantify energy content and GHG emissions of fuels and powertrains can produce results closer to the LCA methodology by adopting a hybrid WTW+LCA approach. While evaluating GHG savings due to the use of BEVs, it is important that this method considers the GWP due to the manufacturing of the battery pack.
  相似文献   

16.

Introduction

Intrahepatic cholestasis of pregnancy (ICP) is a common maternal liver disease; development can result in devastating consequences, including sudden fetal death and stillbirth. Currently, recognition of ICP only occurs following onset of clinical symptoms.

Objective

Investigate the maternal hair metabolome for predictive biomarkers of ICP.

Methods

The maternal hair metabolome (gestational age of sampling between 17 and 41 weeks) of 38 Chinese women with ICP and 46 pregnant controls was analysed using gas chromatography–mass spectrometry.

Results

Of 105 metabolites detected in hair, none were significantly associated with ICP.

Conclusion

Hair samples represent accumulative environmental exposure over time. Samples collected at the onset of ICP did not reveal any metabolic shifts, suggesting rapid development of the disease.
  相似文献   

17.

Introduction

Quantification of tetrahydrofolates (THFs), important metabolites in the Wood–Ljungdahl pathway (WLP) of acetogens, is challenging given their sensitivity to oxygen.

Objective

To develop a simple anaerobic protocol to enable reliable THFs quantification from bioreactors.

Methods

Anaerobic cultures were mixed with anaerobic acetonitrile for extraction. Targeted LC–MS/MS was used for quantification.

Results

Tetrahydrofolates can only be quantified if sampled anaerobically. THF levels showed a strong correlation to acetyl-CoA, the end product of the WLP.

Conclusion

Our method is useful for relative quantification of THFs across different growth conditions. Absolute quantification of THFs requires the use of labelled standards.
  相似文献   

18.

Introduction

Untargeted metabolomics is a powerful tool for biological discoveries. To analyze the complex raw data, significant advances in computational approaches have been made, yet it is not clear how exhaustive and reliable the data analysis results are.

Objectives

Assessment of the quality of raw data processing in untargeted metabolomics.

Methods

Five published untargeted metabolomics studies, were reanalyzed.

Results

Omissions of at least 50 relevant compounds from the original results as well as examples of representative mistakes were reported for each study.

Conclusion

Incomplete raw data processing shows unexplored potential of current and legacy data.
  相似文献   

19.

Introduction

It is difficult to elucidate the metabolic and regulatory factors causing lipidome perturbations.

Objectives

This work simplifies this process.

Methods

A method has been developed to query an online holistic lipid metabolic network (of 7923 metabolites) to extract the pathways that connect the input list of lipids.

Results

The output enables pathway visualisation and the querying of other databases to identify potential regulators. When used to a study a plasma lipidome dataset of polycystic ovary syndrome, 14 enzymes were identified, of which 3 are linked to ELAVL1—an mRNA stabiliser.

Conclusion

This method provides a simplified approach to identifying potential regulators causing lipid-profile perturbations.
  相似文献   

20.

Introduction

Aqueous–methanol mixtures have successfully been applied to extract a broad range of metabolites from plant tissue. However, a certain amount of material remains insoluble.

Objectives

To enlarge the metabolic compendium, two ionic liquids were selected to extract the methanol insoluble part of trunk from Betula pendula.

Methods

The extracted compounds were analyzed by LC/MS and GC/MS.

Results

The results show that 1-butyl-3-methylimidazolium acetate (IL-Ac) predominantly resulted in fatty acids, whereas 1-ethyl-3-methylimidazolium tosylate (IL-Tos) mostly yielded phenolic structures. Interestingly, bark yielded more ionic liquid soluble metabolites compared to interior wood.

Conclusion

From this one can conclude that the application of ionic liquids may expand the metabolic snapshot.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号