首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Introduction

TNFα is a proinflammatory cytokine that plays a central role in the pathogenesis of rheumatoid arthritis (RA). We investigated the effects of certolizumab pegol, a TNFα blocker, on endothelial cell function and angiogenesis.

Methods

Human dermal microvascular endothelial cells (HMVECs) were stimulated with TNFα with or without certolizumab pegol. TNFα-induced adhesion molecule expression and angiogenic chemokine secretion were measured by cell surface ELISA and angiogenic chemokine ELISA, respectively. We also examined the effect of certolizumab pegol on TNFα-induced myeloid human promyelocytic leukemia (HL-60) cell adhesion to HMVECs, as well as blood vessels in RA synovial tissue using the Stamper-Woodruff assay. Lastly, we performed HMVEC chemotaxis, and tube formation.

Results

Certolizumab pegol significantly blocked TNFα-induced HMVEC cell surface angiogenic E-selectin, vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 expression and angiogenic chemokine secretion (P < 0.05). We found that certolizumab pegol significantly inhibited TNFα-induced HL-60 cell adhesion to HMVECs (P < 0.05), and blocked HL-60 cell adhesion to RA synovial tissue vasculature (P < 0.05). TNFα also enhanced HMVEC chemotaxis compared with the negative control group (P < 0.05) and this chemotactic response was significantly reduced by certolizumab pegol (P < 0.05). Certolizumab pegol inhibited TNFα-induced HMVEC tube formation on Matrigel (P < 0.05).

Conclusion

Our data support the hypothesis that certolizumab pegol inhibits TNFα-dependent leukocyte adhesion and angiogenesis, probably via inhibition of angiogenic adhesion molecule expression and angiogenic chemokine secretion.  相似文献   

2.
Interaction ofthe 2-integrin complex on thepolymorphonuclear neutrophil (PMN) with intercellular adhesionmolecule-1 (ICAM-1) has been implicated in PMN-mediated cytotoxicity.This study examined interaction of the CD11a, CD11b, and CD18 subunitsof the 2-integrin with ICAM-1,transfected into Chinese hamster ovarian (CHO) cells to avoid effectsof other adhesion molecules. Incubation of quiescent PMNs withwild-type and ICAM-1-transfected CHO cells produced nominal cell lysis.Similarly, when phorbol myristate acetate (PMA)-activated PMNs wereincubated with wild-type CHO cells, minimal cytotoxicity was produced.However, when ICAM-1-transfected CHO cells were incubated withPMA-activated PMNs, 40% cell lysis occurred. Blockade with amonoclonal antibody (MAb) to ICAM-1 or MAbs to CD11a, CD11b, or CD18reduced PMN-mediated cytotoxicity to baseline. To examine the role ofadhesion in cytotoxicity, we studied2-integrin-mediated PMNadhesion to ICAM-1-transfected CHO cells and found that MAbs for CD11a,CD11b, and CD18 all abrogated PMN cytotoxicity despite disparateeffects on adhesion. To assess the role of CD18,2-integrin subunits werecross-linked, and CD18 alone mediated protease release. Moreover,ICAM-1 was immunoprecipitated from transfected CHO cells and incubatedwith PMNs. This soluble ICAM-1 provoked elastase release, similar toPMA, which could be inhibited by MAbs to CD18 but not MAbs to other2-integrin subunits. Inaddition, coincubation with protease inhibitors eglin C and AAPVCKreduced PMN-mediated cytotoxicity to control levels. Finally,ICAM-1-transfected CHO cells were exposed to activated PMNs from apatient with chronic granulomatous disease that caused significant celllysis, equivalent to that of PMNs from normal donors. Collectively,these data suggest that ICAM-1 provokes PMN-mediated cytotoxicity viaCD18-mediated protease release.

  相似文献   

3.

Background

The role of advanced glycation end products (AGEs) in the development of diabetes, especially diabetic complications, has been emphasized in many reports. Accumulation of AGEs in the vasculature triggers a series of morphological and functional changes in endothelial cells (ECs) and induces an increase of endothelial permeability. This study was to investigate the involvement of RhoA/ROCK-dependent moesin phosphorylation in endothelial abnormalities induced by AGEs.

Methods

Using human dermal microvascular endothelial cells (HMVECs), the effects of human serum albumin modified-AGEs (AGE-HSA) on the endothelium were assessed by measuring monolayer permeability and staining of F-actin in HMVECs. Activations of RhoA and ROCK were determined by a luminescence-based assay and immunoblotting. Transfection of recombinant adenovirus that was dominant negative for RhoA (RhoA N19) was done to down-regulate RhoA expression, while adenovirus with constitutively activated RhoA (RhoA L63) was transfected to cause overexpression of RhoA in HMVECs. H-1152 was employed to specifically block activation of ROCK. Co-immunoprecipitation was used to further confirm the interaction of ROCK and its downstream target moesin. To identify AGE/ROCK-induced phosphorylation site in moesin, two mutants pcDNA3/HA-moesinT558A and pcDNA3/HA-moesinT558D were applied in endothelial cells.

Results

The results showed that AGE-HSA increased the permeability of HMVEC monolayer and triggered the formation of F-actin-positive stress fibers. AGE-HSA enhanced RhoA activity as well as phosphorylation of ROCK in a time- and dose-dependent manner. Down-regulation of RhoA expression with RhoA N19 transfection abolished these AGE-induced changes, while transfection of RhoA L63 reproduced the AGE-evoked changes. H-1152 attenuated the AGE-induced alteration in monolayer permeability and cytoskeleton. The results also confirmed the AGE-induced direct interaction of ROCK and moesin. Thr558 was further identified as the phosphorylating site of moesin in AGE-evoked endothelial responses.

Conclusion

These results confirm the involvement of RhoA/ROCK pathway and subsequent moesin Thr558 phosphorylation in AGE-mediated endothelial dysfunction.  相似文献   

4.

Background

Reactive oxygen species (ROS) are largely considered to be pathogenic to normal endothelial function in disease states such as sepsis. We hypothesized that Angiopoietin-1 (Angpt-1), an endogenous agonist of the endothelial-specific receptor, Tie-2, promotes barrier defense by activating NADPH oxidase (NOX) signaling.

Methods and Findings

Using primary human microvascular endothelial cells (HMVECs), we found that Angpt-1 stimulation induces phosphorylation of p47phox and a brief oxidative burst that is lost when chemical inhibitors of NOX activity or siRNA against the NOX component p47phox were applied. As a result, there was attenuated ROS activity, disrupted junctional contacts, enhanced actin stress fiber accumulation, and induced gap formation between confluent HMVECs. All of these changes were associated with weakened barrier function. The ability of Angpt-1 to prevent identical changes induced by inflammatory permeability mediators, thrombin and lipopolysaccharides (LPS), was abrogated by p47phox knockdown. P47phox was required for Angpt-1 to activate Rac1 and inhibit mediator-induced activation of the small GTPase RhoA. Finally, Angpt-1 gene transfer prevented vascular leakage in wildtype mice exposed to systemically administered LPS, but not in p47phox knock out (p47−/−) littermates.

Conclusions

These results suggest an essential role for NOX signaling in Angpt-1-mediated endothelial barrier defense against mediators of systemic inflammation. More broadly, oxidants generated for signal transduction may have a barrier-promoting role in vascular endothelium.  相似文献   

5.
We examined the effect of tumor necrosis factor alpha (TNF alpha) on the increase in pulmonary microvascular endothelial monolayer permeability induced by activated neutrophils (PMN). Layering of PMN onto endothelial monolayers followed by activation of PMN with phorbol 12-myristate 13-acetate (PMA) increased 125I-albumin clearance rate across the monolayers. Pretreatment of endothelial monolayers for 6 hr with TNF alpha (200 U/ml) potentiated the PMN-dependent increase in endothelial permeability, whereas 1 hr or 6 hr pretreatment of endothelial monolayers with 200 U/ml and 100 U/ml, respectively, TNF alpha did not enhance the response. Adherence of PMN to the endothelial cells was increased at 1 and 6 hr after TNF alpha (200 U/ml) treatment, but the adherence response was markedly greater following 6 hr of TNF alpha. The TNF alpha treatment of endothelial cells did not enhance neutrophil activation responses to PMA. Pretreatment of PMN with IB4, a MAb to the CD18 integrin, the common beta subunit of the adhesion proteins LFA-1, Mac-1, and p150,95 of PMN, reduced the increases in PMN adherence and the endothelial monolayer permeability induced by the 6 hr TNF alpha treatment. In contrast, pretreatment of PMN with OKM-1, a MAb to the CD11b epitope (alpha-subunit), had no effect on the adherence and the potentiation of the increase in permeability. The potentiation of the PMN-dependent permeability increase and enhanced endothelial adhesivity at 6 hr after TNF alpha priming of endothelial cells was dependent on protein synthesis. The results indicate that protein synthesis-dependent expression of an endothelial ligand for CD18 and resultant endothelial hyperadhesiveness potentiates the PMN-mediated increase in endothelial permeability after TNF alpha activation of endothelial cells. The priming of endothelial cells by TNF alpha may be a critical step in the mediation of endothelial injury.  相似文献   

6.
Human microvascular endothelial cell-1 (HMEC-1) generated by transfection with SV40 large T antigen has been the prevailing model for in vitro studies on endothelium. However, the transduction of SV40 may lead to unwanted cell behaviors which are absent in primary cells. Thus, establishing a new microvascular endothelial cell line, which is capable of maintaining inherent features of primary endothelial cells, appears to be extremely important. Here, we immortalized primary human microvascular endothelial cells (pHMECs) by engineering the human telomerase catalytic protein (hTERT) into the cells. Endothelial cell-specific markers were examined and the angiogenic responses were characterized in these cells (termed as HMVECs, for human microvascular endothelial cells). We found that VEGF receptor 2 (Flk-1/KDR), tie1, and tie2 expression is preserved in HMVEC, whereas Flk-1/KDR is absent in HMEC-1. In addition, HMVEC showed similar angiogenic responses to VEGF as HMEC-1. Furthermore, the HMVEC line was found to generate a prominent angiogenic response to periostin, a potent angiogenic factor identified recently. The data indicate that HMVEC may serve as a suitable in vitro endothelium model.  相似文献   

7.
Acute respiratory distress syndrome (ARDS) is a contemporary term incorporating the historic ‘acute lung injury’ and the colloquial term ‘shock lung’. ARDS remains a serious and enigmatic human disease, causing significant mortality. The mechanisms involved at the alveolar cell/capillary endothelial interface have been explored but to date we lack clarity on the role of intracellular calcium ([Ca2+]i) fluxes across this interface. To explore the mechanisms of Ca2+ induced inflammatory reaction in epithelial cells and pulmonary microvascular endothelial cells (HMVEC) located at the two sides of blood-air barrier, lung epithelial A549 and HMVEC cells were treated with LPS. Our results demonstrated that LPS evoked the increase of [Ca2+]i, TNF-α and IL-8 in both cells types. The [Ca2+]i increases involved intracellular but not extracellular Ca2+ sources in A549, but both intracellular and extracellular Ca2+ sources in HMVEC cells. The effects of LPS on both cells types were completely inhibited by the combination of LPS and CaSR-targeted siRNA. Furthermore, LPS-inhibited cell proliferations were significantly reversed by the combined treatment. Therefore, LPS induced different mechanisms of [Ca2+]i increase during the activation of CaSR in A549 and HMVEC cells, which translates into functional outputs related to ARDS.  相似文献   

8.
Porphyromonas gingivalis is a major etiological pathogen of adult periodontitis characterized by alveolar bone resorption. Vascular endothelial cells supply many inflammatory cytokines into periodontal tissue. However, whether the cells contribute to bone metabolism in periodontitis remains unknown. In this study, we investigated the effect of P. gingivalis on osteoprotegerin (OPG) and receptor activator of NF-kappaB ligand (RANKL) production, both of which are key regulators of bone metabolism, in human microvascular endothelial cells (HMVECs). We showed that P. gingivalis upregulated expression of OPG but not RANKL mRNA in HMVEC. P. gingivalis induced NF-kappaB activation, and the induction of OPG in HMVEC by the pathogen was blocked by the inhibitors of NF-kappaB. In addition, incubation of OPG with P. gingivalis supernatant resulted in loss of the protein. These results indicate that P. gingivalis-stimulated HMVEC secrete OPG via a NF-kappaB-dependent pathway, while the OPG is partly degraded by the bacteria. Thus, microvascular endothelial cells can act as a source of OPG and thereby may play an important role in regulating bone metabolism in periodontitis.  相似文献   

9.
Infection and injury are frequently accompanied by hemolysis. Endothelial cells are direct targets of free Hb or its oxidative derivatives, including methemoglobin (MHb) and hemin. This study tested whether Hb or its derivatives alter chemokine (IL-8) and cytokine (IL-6) production and the membrane expression of cell adhesion molecule (E-selectin) in human umbilical vein endothelial cells (passages 2-4, HUVECs). E-selectin membrane content and IL-6 and IL-8 release were quantified by ELISA; cellular mRNA levels were determined by RT-PCR. MHb in vitro resulted in a dose (1-50 µM)- and time (2-16 h)-dependent increase in E-selectin membrane content and IL-6 and IL-8 release in HUVECs. The stimulatory effect of MHb (12 µM) on E-selectin membrane expression and IL-6 and IL-8 release was similar to that produced after treatment with TNF- (5 ng/ml) and IL-1 (0.25 ng/ml). In contrast, Hb or hemin had no effects. As expected, MHb, Hb, and hemin markedly induced heme oxygenase-1 expression in HUVECs. Haptoglobin, cytochalasin D, and actinomycin inhibited the MHb-induced responses, whereas zinc protoporphyrin IX (a heme oxygenase inhibitor) or desferroxamine (an iron chelator) did not inhibit MHb-induced responses. MHb also increased cellular mRNA levels of E-selectin, IL-6, and IL-8. MHb treatment activated cellular NF-B and NF-B inhibitors; N-acetyl cysteine, SN50, and caffeic acid phenylethyl ester inhibited the MHb-induced responses. These data indicate that MHb is a potent activator of endothelial cells through NF-B-mediated upregulation of cell adhesion molecule expression and chemokine and cytokine production. MHb-induced endothelial cell activation may have clinical significance after infections, hemolysis, or methemoglobinemia. human umbilical vein endothelial cells; cytokine; chemokine; adhesion molecule; hemolysis; hemoglobin; hemin; nuclear factor-B  相似文献   

10.
Activated polymorphonuclear leukocytes (PMNs) release various types of proteases and express them on the cell surface. The proteases play important roles in PMN-mediated events. In the present study, flow cytometric analysis revealed that CD14 expression on human gingival fibroblasts (HGF) was markedly reduced by PMA-activated PMNs in a coculture system. We found that this reduction was caused by both secreted and cell surface proteases produced by activated PMNs. A protease responsible for the reduction was found to be human leukocyte elastase (HLE) secreted from the activated PMNs by use of various protease inhibitors, although HLE was only partially involved in CD14 reduction caused by cell-bound molecule(s) on fixed PMNs. Analysis with purified HLE revealed a time- and dose-dependent reduction of CD14 on HGF, and complete reduction was observed by 20 microg/ml HLE treatment for 30-60 min, but the other molecules such as CD26, CD59, CD157, and MHC class I on HGF were only slightly reduced. This reduction of CD14 resulted from direct proteolysis by HLE on the cell surface, because HLE reduced CD14 on fixed HGF and also on purified cell membranes. As a result of CD14 proteolysis, IL-8 production by HGF was suppressed when triggered by 10 ng/ml LPS, but not by IL-1alpha, indicating that HLE inhibited a CD14-dependent cell activation. These findings suggested that activated PMNs have a potential negative feedback mechanism for HGF function at the inflammatory site, particularly in periodontal tissues.  相似文献   

11.
12.

Background

This study investigated whether lipopolysaccharide (LPS) increase protease-activated receptor-2 (PAR-2) expression and enhance the association between PAR-2 expression and chemokine production in human vascular endothelial cells (ECs).

Methods

The morphology of ECs was observed through microphotography in cultured human umbilical vein ECs (EA. hy926 cells) treated with various LPS concentrations (0, 0.25, 0.5, 1, and 2 μg/mL) for 24 h, and cell viability was assessed using the MTT assay. Intracellular calcium imaging was performed to assess agonist (trypsin)-induced PAR-2 activity. Western blotting was used to explore the LPS-mediated signal transduction pathway and the expression of PAR-2 and adhesion molecule monocyte chemoattractant protein-1 (MCP-1) in ECs.

Results

Trypsin stimulation increased intracellular calcium release in ECs. The calcium influx was augmented in cells pretreated with a high LPS concentration (1 μg/mL). After 24 h treatment of LPS, no changes in ECs viability or morphology were observed. Western blotting revealed that LPS increased PAR-2 expression and enhanced trypsin-induced extracellular signal-regulated kinase (ERK)/p38 phosphorylation and MCP-1 secretion. However, pretreatment with selective ERK (PD98059), p38 mitogen-activated protein kinase (MAPK) (SB203580) inhibitors, and the selective PAR-2 antagonist (FSLLRY-NH2) blocked the effects of LPS-activated PAR-2 on MCP-1 secretion.

Conclusions

Our findings provide the first evidence that the bacterial endotoxin LPS potentiates calcium mobilization and ERK/p38 MAPK pathway activation and leads to the secretion of the pro-inflammatory chemokine MCP-1 by inducing PAR-2 expression and its associated activity in vascular ECs. Therefore, PAR-2 exerts vascular inflammatory effects and plays an important role in bacterial infection-induced pathological responses.
  相似文献   

13.
Inflammation facilitates tumor progression including metastasis. Interleukin-8 (IL-8) is a chemokine that regulates polymorphonuclear neutrophil (PMN) mobilization and activity and we hypothesize that this cytokine influences tumor behavior. We have demonstrated that IL-8 is crucial for PMN-mediated melanoma extravasation under flow conditions. In addition, IL-8 is up-regulated in PMNs upon co-culturing with melanoma cells. Melanoma cells induce IkappaB-alpha degradation in PMNs indicating that NF-kappaB signaling is active in PMNs. Furthermore, the production of IL-8 in PMNs is NF-kappaB dependent. We have further identified that interleukin-6 (IL-6) and interleukin-1beta (IL-1beta) from PMN-melanoma co-cultures synergistically contribute to IkappaB-alpha degradation and IL-8 synthesis in PMNs. Taken together, these findings show that melanoma cells induce PMNs to secrete IL-8 through activation of NF-kappaB and suggest a model in which this interaction promotes a microenvironment that is favorable for metastasis.  相似文献   

14.
Bacterial colonization is a secondary feature of many lung disorders associated with elevated cytokine levels and increased leukocyte recruitment. We hypothesized that, alongside macrophages, the epithelium would be an important source of these mediators. We investigated the effect of LPS (0, 10, 100, and 1000 ng/ml LPS, up to 24 h) on primary human lung macrophages and alveolar type II epithelial cells (ATII; isolated from resected lung tissue). Although macrophages produced higher levels of the cytokines TNF-alpha and IL-1beta (p < 0.0001), ATII cells produced higher levels of chemokines MCP-1, IL-8, and growth-related oncogene alpha (p < 0.001), in a time- and concentration-dependent manner. Macrophage (but not ATII cell) responses to LPS required activation of ERK1/2 and p38 MAPK signaling cascades; phosphorylated ERK1/2 was constitutively up-regulated in ATII cells. Blocking Abs to TNF-alpha and IL-1beta during LPS exposure showed that ATII cell (not macrophage) MCP-1 release depended on the autocrine effects of IL-1beta and TNF-alpha (p < 0.003, 24 h). ATII cell release of IL-6 depended on autocrine effects of TNF-alpha (p < 0.006, 24 h). Macrophage IL-6 release was most effectively inhibited when both TNF-alpha and IL-1beta were blocked (p < 0.03, 24 h). Conditioned media from ATII cells stimulated more leukocyte migration in vitro than conditioned media from macrophages (p < 0.0002). These results show differential activation of cytokine and chemokine release by ATII cells and macrophages following LPS exposure. Activated alveolar epithelium is an important source of chemokines that orchestrate leukocyte migration to the peripheral lung; early release of TNF-alpha and IL-1beta by stimulated macrophages may contribute to alveolar epithelial cell activation and chemokine production.  相似文献   

15.
The matricellular protein thrombospondin 2 (TSP2) regulates a variety of cell-matrix interactions. A prominent feature of TSP2-null mice is increased microvascular density, particularly in connective tissues synthesized after injury. We investigated the cellular basis for the regulation of angiogenesis by TSP2 in cultures of murine and human fibroblasts and endothelial cells. Fibroblasts isolated from murine and human dermis synthesize TSP2 mRNA and secrete significant amounts of immunoreactive TSP2, whereas endothelial cells from mouse lung and human dermis did not synthesize TSP2 mRNA or protein. Recombinant mouse TSP2 inhibited growth of human microvascular endothelial cells (HMVECs) mediated by basic fibroblast growth factor, insulin-like growth factor-1, epidermal growth factor, and vascular endothelial growth factor (VEGF). HMVECs exposed to TSP2 in the presence of these growth factors had a decreased proportion of cells in S and G2/M phases. HMVECs cultured with a combination of basic fibroblast growth factor, insulin-like growth factor-1, and epidermal growth factor displayed an increased proportion of nonviable cells in the presence of TSP2, but the addition of VEGF blocked this TSP2-mediated impairment of cell viability. TSP2-mediated inhibition of DNA synthesis by HMVECs in the presence of VEGF was not affected by the broad-spectrum caspase inhibitor zVAD-fmk. Similar findings were obtained with TSP1. Taken together, these observations indicate that either TSP2 or TSP1 can inhibit HMVEC proliferation by inhibition of cell cycle progression and induction of cell death, but the mechanisms responsible for TSP2-mediated inhibition of cell cycle progression are independent from those leading to cell death.  相似文献   

16.
Interstitial inflammation has emerged as a key event in the development of acute renal failure. To gain better insight into the nature of these inflammatory processes, the interplay between tubular epithelial cells, endothelial cells, and neutrophils (PMN) was investigated. A coculture transmigration model was developed, composed of human dermal microvascular endothelial (HDMEC) and human renal proximal tubular cells (HK-2) cultured on opposite sides of Transwell growth supports. Correct formation of an endoepithelial bilayer was verified by light and electron microscopy. The model was used to study the effects of endotoxin (LPS), tumor necrosis factor (TNF)-, and -melanocyte-stimulating hormone (-MSH) by measuring PMN migration and cytokine release. To distinguish between individual roles of microvascular endothelial and epithelial cells in transmigration processes, migration of PMN was investigated separately in HK-2 and HDMEC monolayers. Sequential migration of PMN through endothelium and epithelium could be observed and was significantly increased after proinflammatory stimulation with either TNF- or LPS (3.5 ± 0.58 and 2.76 ± 0.64-fold vs. control, respectively). Coincubation with -MSH inhibited the transmigration of PMN through the bilayer after proinflammatory stimulation with LPS but not after TNF-. The bilayers produced significant amounts of IL-8 and IL-6 mostly released from the epithelial cells. Furthermore, -MSH decreased LPS-induced IL-6 secretion by 30% but had no significant effect on IL-8 secretion. We established a transmigration model showing sequential migration of PMN across microvascular endothelial and renal tubular epithelial cells stimulated by TNF- and LPS. Anti-inflammatory effects of -MSH in this bilayer model are demonstrated by inhibition on PMN transmigration and IL-6 secretion. coculture; polymorphonuclear neutrophil migration; HK-2; interleukin-8; interleukin-6; -melanocyte-stimulating hormone  相似文献   

17.
Preincubation of pulmonary microvascular endothelial cells (PMVECs) with platelet-activating factor (PAF) for 3.5 h increased the adhesion rate of polymorphonuclear leukocytes (PMNs) to PMVECs from 57.3% to 72.8% (p < 0.01). Preincubation of PMNs with PAF also increased PMN-PMVEC adhesion rate. All-trans retinoic acid (RA) blocked the adherence of untreated PMNs to PAF-pretreated PMVECs but not the adherence of PAF-pretreated PMNs to untreated PMVECs. PAF increased the expression of intercellular adhesion molecule-1 (ICAM-1) and E-selection (ELAM-1) on PMVECs, PMN chemotaxis to zymosan-activated serum and histamine, and PMN aggregation and the release of acid phosphatase from PMNs. Co-incubation of RA inhibited PAF-induced PMN aggregation, the release of acid phosphatase from PMNs, and PMN chemotaxis to zymosan-activated serum and histamine while the expression of ICAM-1 and ELAM-1 did not change. Our results suggest that RA can be used to ameliorate PMN-mediated inflammation.  相似文献   

18.
CD39 modulates IL-1 release from activated endothelial cells   总被引:6,自引:0,他引:6  
The activation of endothelial cells (EC) and monocyte-macrophages (Mφ) by lipopolysaccharide (LPS) is considered an important element of the vascular injury observed in endotoxemia. Interleukin-1 (IL-1) beta release from Mφ in response to LPS, appears to be mediated by the autocrine/paracrine release of ATP via P2X7 receptor activation. In EC, similar nucleotide-mediated signaling pathways may be influenced by high levels of expression of CD39, the vascular nucleoside triphosphate diphosphohydrolase (NTPDase; ENTPD I). To determine whether CD39 modulates ATP-mediated release of IL-1 from EC, we stimulated human EC with LPS and measured levels of ATP secretion and IL-1 release. LPS triggered ATP secretion from EC that was soon followed by IL-1alpha release. Overexpression of CD39 following infection with recombinant CD39 adenoviral vectors (AdCD39) abrogated the initial phase of ATP secretion and inhibited IL-1alpha release; comparable results were obtained with soluble NTPDase. These data demonstrate that CD39/NTPDase modulates IL-1alpha release from LPS stimulated human EC.  相似文献   

19.
Mesenteric lymph is the mechanistic link between splanchnic hypoperfusion and acute lung injury (ALI), but the culprit mediator(s) remains elusive. Previous work has shown that administration of a phospholipase A(2) (PLA(2)) inhibitor attenuated postshock ALI and also identified a non-ionic lipid within the postshock mesenteric lymph (PSML) responsible for polymorphonuclear neutrophil (PMN) priming. Consequently, we hypothesized that gut-derived leukotriene B(4) (LTB(4)) is a key mediator in the pathogenesis of ALI. Trauma/hemorrhagic shock (T/HS) was induced in male Sprague-Dawley rats and the mesenteric duct cannulated for lymph collection/diversion. PSML, arachidonic acid (AA), and a LTB(4) receptor antagonist were added to PMNs in vitro. LC/MS/MS was employed to identify bioactive lipids in PSML and the lungs. T/HS increased AA in PSML and increased LTB(4) and PMNs in the lung. Lymph diversion decreased lung LTB(4) by 75% and PMNs by 40%. PSML stimulated PMN priming (11.56 +/- 1.25 vs. 3.95 +/- 0.29 nmol O(2)(-)/min; 3.75 x 10(5) cells/ml; P < 0.01) that was attenuated by LTB(4) receptor blockade (2.64 +/- 0.58; P < 0.01). AA stimulated PMNs to produce LTB(4), and AA-induced PMN priming was attenuated by LTB(4) receptor antagonism. Collectively, these data indicate that splanchnic ischemia/reperfusion activates gut PLA(2)-mediated release of AA into the lymph where it is delivered to the lungs, provoking LTB(4) production and subsequent PMN-mediated lung injury.  相似文献   

20.

Background

Monocytes can be primed in vitro by lipopolysaccharide (LPS) for release of cytokines, for enhanced killing of cancer cells, and for enhanced release of microbicidal oxygen radicals like superoxide and peroxide. We investigated the proteins involved in regulating priming, using 2D gel proteomics.

Results

Monocytes from 4 normal donors were cultured for 16 h in chemically defined medium in Teflon bags ± LPS and ± 4-(2-aminoethyl)-benzenesulfonyl fluoride (AEBSF), a serine protease inhibitor. LPS-primed monocytes released inflammatory cytokines, and produced increased amounts of superoxide. AEBSF blocked priming for enhanced superoxide, but did not affect cytokine release, showing that AEBSF was not toxic. After staining large-format 2D gels with Sypro ruby, we compared the monocyte proteome under the four conditions for each donor. We found 30 protein spots that differed significantly in response to LPS or AEBSF, and these proteins were identified by ion trap mass spectrometry.

Conclusion

We identified 19 separate proteins that changed in response to LPS or AEBSF, including ATP synthase, coagulation factor XIII, ferritin, coronin, HN ribonuclear proteins, integrin alpha IIb, pyruvate kinase, ras suppressor protein, superoxide dismutase, transketolase, tropomyosin, vimentin, and others. Interestingly, in response to LPS, precursor proteins for interleukin-1β appeared; and in response to AEBSF, there was an increase in elastase inhibitor. The increase in elastase inhibitor provides support for our hypothesis that priming requires an endogenous serine protease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号