首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 4,5-dimethoxy-2-mercaptobenzyl (Dmmb) group attached to a main chain amide in a peptide is easily transformed into an S-peptide via an intramolecular NS acyl shift reaction under acidic conditions, and the S-peptide produces a peptide thioester through an intermolecular thiol–thioester exchange reaction. In order to develop a method for efficiently preparing peptide thioesters based on the NS acyl shift reaction, the factors involved in this process were analyzed in detail. The general features of the transformation at the Dmmb group attached amide bond in a trifluoroacetic acid (TFA) solution and the generation of a peptide thioester were examined by 13C-NMR spectral measurements, reversed-phase (RP) HPLC analyses, mass measurements, and amino acid analyses. The methoxy group of the Dmmb group was not essential for the NS acyl shift reaction, but played a role in stabilizing the thioester form. The addition of water to the TFA solution accelerated the NS acyl shift reaction mediated by the Dmmb group and also suppressed the acid-catalyzed cleavage of the Dmmb group. A peptide thioester was produced from the S-peptide via an intermolecular thiol–thioester exchange reaction with minimal epimerization of the amino acid residue that constituted the thioester bond. Undesirable side reactions, such as the hydrolysis of the thioester bond and an S–N acyl shift reaction occurred during the synthetic process, which is a subject of further investigation.  相似文献   

2.
An efficient method of peptide thioester synthesis is described. The reaction is based on an N‐4,5‐dimethoxy‐2‐mercaptobenzyl (Dmmb) auxiliary‐assisted NS acyl shift reaction after assembling a peptide chain by Fmoc‐solid phase peptide synthesis. The Dmmb‐assisted NS acyl shift reaction proceeded efficiently under mildly acidic conditions, and the peptide thioester was obtained by treating the resulting S‐peptide with sodium 2‐mercaptoethanesulfonate. No detectable epimerization of the amino acid residue adjacent to the thioester moiety in the case of Leu was found. The reactions were also amenable to the on‐resin preparation of peptide thioesters. The utility was demonstrated by the synthesis of a 41‐mer peptide thioester, a phosphorylated peptide thioester and a 33‐mer peptide thioester containing a trimethylated lysine residue. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

3.
An efficient synthesis of an auxiliary group, the 2-mercapto-4,5-dimethoxybenzyl (Dmmb) moiety, to form a Gly-building block is presented. The building block was incorporated into peptides to study the reaction with thiobenzyl-activated derivatives. The target peptides have been obtained by standard chemical ligation reaction, followed by TMSBr-assisted cleavage to remove the auxiliary group. Prior to Dmmb removal, under acidic conditions an unexpected rearrangement was observed and evidence for a mechanism is provided.  相似文献   

4.
Here we report a bi-directional and interchangeable three-segment peptide ligation of N, M, and C-segments, mimicking the reverse process of protein splicing to form, in tandem, a tripartite NMC-peptide using a synthetic intein, a role served by the M-segment with an N-terminal Ser or Thr and a C-terminal thioester.  相似文献   

5.
Methods and strategies of peptide ligation.   总被引:3,自引:0,他引:3  
J P Tam  J Xu  K D Eom 《Biopolymers》2001,60(3):194-205
This review focuses on the concept, methods, and strategies of orthogonal peptide ligation. It updates our previous review in 1999 on the same subject matter in Biopolymers (Peptide Science, 1999, Vol. 51, p. 311). Orthogonal peptide ligation is an amino terminal specific method to couple chemically unprotected peptides or proteins derived from synthetic or biosynthetic sources. Unlike conventional chemical methods, peptide ligation methods do not require coupling reagents or protection schemes, but are achieved through a variable chemoselective capture step and then an invariable intramolecular acyl transfer reaction. It is also a convergent method with the fewest steps. More than a dozen orthogonal ligation methods have been developed based on captures by either imine or thioester chemistries to afford native and unusual amino acids at ligation sites of linear, branched, or cyclic peptides. The ligation strategies for multiple segments including sequential and tandem ligations are also discussed.  相似文献   

6.
The CC chemokine CCL14/HCC-1(9-74), a 66-residue polypeptide containing two disulfide bonds, was recently discovered from a human hemofiltrate peptide library as a high-affinity ligand of the chemokine receptors CCR1 and CCR5. It has been shown to inhibit HIV infection by blocking CCR5. Using Fmoc methodology, we report the chemical synthesis of CCL14/HCC-1 by conventional stepwise solid-phase peptide synthesis (SPPS) and, alternatively, native chemical ligation. To optimize SPPS of CCL14/HCC-1, difficult sequence regions were identified by mass spectrometry, in order to obtain a crude tetrathiol precursor suitable for oxidative disulfide formation. For synthesis of CCL14/HCC-1 by native chemical ligation, the peptide was divided into two segments, CCL14/HCC-1(9-39) and CCL14/HCC-1(40-74), the latter containing a cysteine residue at the amino-terminus. The synthesis of the thioester segment was carried out comparing a thiol linker with a sulfonamide safety-catch linker. While the use of the thiol linker led to very low overall yields of the desired thioester, the sulfonamide linker was efficient in obtaining the 31-residue thioester of CCL14/HCC-1(9-39), suggesting a superior suitability of this linker in generating larger thioesters using Fmoc chemistry. The thioester of CCL14/HCC-1 was subsequently ligated with the cysteinyl segment to the full-length chemokine. Disulfides were introduced in the presence of the redox buffer cysteine/cystine. The products of both SPPS and native chemical ligation were identical. The use of a sulfonamide safety-catch linker enables the Fmoc synthesis of larger peptide thioesters, and is thus useful to generate arrays of larger polypeptides.  相似文献   

7.
Summary The CC chemokine CCL14/HCC-1(9–74), a 66-residue polypeptide containing two disulfide bonds, was recently discovered from a human hemofiltrate peptide library as a high-affinity ligand of the chemokine receptors CCR1 and CCR5. It has been shown to inhibit HIV infection by blocking CCR5. Using Fmoc methodology, we, report the chemical synthesis of CCL14/HCC-1 by conventional stepwise solid-phase peptide synthesis (SPPS) and, alternatively, native chemical ligation. To optimize SPPS of CCL14/HCC-1, difficult sequence regions were identified by mass spectrometry, in order to obtain a crude tetrathiol precursor suitable for oxidative disulfide formation. For synthesis of CCL14/HCC-1 by native chemical ligation, the peptide was divided into two segments, CCL14/HCC-1(9–39) and CCL14/HCC-1(40–74), the latter containing a cysteine residue at the amino-terminus. The synthesis of the thioester segment was carried out comparing a thiol linker with a sulfonamide safety-catch linker. While the use of the thiol linker led to very low overall yields of the desired thioester, the sulfonamide linker was efficient in obtaining the 31-residue thioester of CCL14/HCC-1(9–39), suggesting a superior suitability of this linker in generating larger thioesters using Fmoc chemistry. The thioester of CCL14/HCC-1 was subsequently ligated with the cysteinyl segment to the full-length chemokine. Disulfides were introduced in the presence of the redox buffer cysteine/cystine. The products of both SPPS and native chemical ligation were identical. The use of a sulfonamide safety-catch linker enables the Fmoc synthesis of larger peptide thioesters, and is thus useful to generate arrays of larger polypeptides.  相似文献   

8.
The development of synthetic methodologies for cyclic peptides is driven by the discovery of cyclic peptide drug scaffolds such as the plant-derived cyclotides, sunflower trypsin inhibitor 1 (SFTI-1) and the development of cyclized conotoxins. Currently, the native chemical ligation reaction between an N-terminal cysteine and C-terminal thioester group remains the most robust method to obtain a head-to-tail cyclized peptide. Peptidyl thioesters are effectively generated by Boc SPPS. However, their generation is challenging using Fmoc SPPS because thioester linkers are not stable to repeated piperidine exposure during deprotection. Herein we describe a Fmoc-based protocol for synthesizing cyclic peptides adapted for microwave assisted solid phase peptide synthesis. The protocol relies on the linker Di-Fmoc-3,4-diaminobenzoic acid, and we demonstrate the use of Gly, Ser, Arg and Ile as C-terminal amino acids (using HBTU and HATU as coupling reagents). Following synthesis, an N-acylurea moiety is generated at the C-terminal of the peptide; the resin bound acylurea peptide is then deprotected and cleaved from the resin. The fully deprotected peptide undergoes thiolysis in aqueous buffer, generating the thioester in situ. Ultimately, the head-to-tail cyclized peptide is obtained via native chemical ligation. Two naturally occurring cyclic peptides, the prototypical Möbius cyclotide kalata B1 and SFTI-1 were synthesized efficiently, avoiding potential branching at the diamino linker, using the optimized protocol. In addition, we demonstrate the possibility to use the approach for the synthesis of long and synthetically challenging linear sequences, by the ligation of two truncated fragments of a 50-residue long plant defensin.  相似文献   

9.
We report an efficient approach for the chemical synthesis of Rhesus θ-defensin-1 (RTD-1) using Fmoc-based solid-phase peptide synthesis in combination with an intramolecular version of native chemical ligation. The corresponding linear thioester precursor was cyclized and folded in a one-pot reaction using reduced glutathione. The reaction was extremely efficiently yielding natively folded RTD-1 with minimal or no purification at all. This approach is fully compatible with the high throughput production of chemical libraries using this peptide scaffold.  相似文献   

10.
Fujita Y  Moyle PM  Hieu S  Simerska P  Toth I 《Biopolymers》2008,90(5):624-632
We applied native chemical ligation (NCL) method to the synthesis of highly pure lipid-core peptide (LCP) vaccines to attach various peptide epitopes. In the case of the synthesis of LCP vaccine with two different peptide epitopes, LCP moieties having two free Cys and two protected Cys derivatives (S-acetamidemethyl-Cys, (Cys(Acm)), N-methylsulfonylethyloxycarbonyl-Cys (Msc-Cys), or 1,3-thiazolidine-4-carboxylic acid (Thz)) on oligolysine branches were prepared in order to couple two different epitopes by stepwise NCL. It was found that the difficulty in NCL of first two peptide antigen was associated with the steric hindrance. Using Thz instead of Cys(Acm) and Msc-Cys was important to reduce the steric hindrance and improve NCL yield.  相似文献   

11.
A molt-inhibiting hormone (Prc-MIH) of the American crayfish, Procambarus clarkii, a member of the type II CHH family, was chemically synthesized and the location of its three disulfide linkages was determined. Prc-MIH consists of 75 amino acid residues and was synthesized by a thioester method. Two peptide segments, Boc-[Cys(Acm)(7,24,27), Lys(Boc)(19)]-Prc-MIH(1-39)-SCH(2)CH(2)CO-Nle-NH(2) and H-[Cys(Acm)(40,44,53), Lys(Boc)(42,51,67)]-Prc-MIH(40-75)-NH(2), were prepared using peptides obtained via the Boc solid-phase method. Condensation of the building blocks in the presence of silver chloride, 3,4-dihydro-3-hydroxy-4-oxo-1,2,3-benzotriazine, and N, N-diisopropylethylamine, followed by removal of the protecting groups, gave the reduced form of Prc-MIH(1-75)-NH(2). This product was converted to the native form of Prc-MIH (synthetic Prc-MIH) in a buffer which contained cysteine and cystine. The synthetic Prc-MIH showed the same behavior by RP-HPLC and biological activity assays as the natural Prc-MIH. The disulfide bond between Cys7 and Cys44 was determined by isolation of a fragment from an enzymatic digest of the synthetic Prc-MIH by RP-HPLC, followed by mass analysis. The disulfide bonds between Cys24 and Cys40 and between Cys27 and Cys53 were determined by comparing the elution position of an enzymatic digest of the synthetic Prc-MIH with authentic chemically synthesized samples, which contained three types of possible disulfide linkages.  相似文献   

12.
Established methodology for the preparation of peptide thioesters requires the use of t-butoxycarbonyl chemistry owing to the lability of thioester linkers to the nucleophilic reagents used in Fmoc solid phase peptide synthesis. Both the greater ease of use and the broad applicability of the method has led to the development of an Fmoc-based methodology for direct peptide thioester synthesis. It was found that successful preparation of a peptide thioester could be achieved when the non-nucleophilic base, 1,8-diazabicyclo[5.4.0]undec-7-ene, together with 1-hydroxybenzotriazole in dimethylformamide, were used as the N(alpha)-Fmoc deprotection reagent. Native chemical ligation of the resulting thioester product to an N-terminal cysteine-containing peptide was successfully performed in aqueous solution to produce a fragment peptide of human alpha-synuclein. The formation of aspartimide (cyclic imide) in a base-sensitive hexapeptide fragment of scorpion toxin II was found to be significant under the deprotection conditions used. However, this could be controlled by the judicious protection of sensitive residues using the 2-hydroxy-4-methoxybenzyl group.  相似文献   

13.
Joe K  Borgford TJ  Bennet AJ 《Biochemistry》2004,43(24):7672-7677
The construction and characterization of a novel, thermostable, peptide ligase are described. Three amino acid substitutions were introduced into the secreted bacterial protease Streptomyces griseus protease B (SGPB). Mutations were chosen on the basis of two separate observations: (i) that a single substitution of the nucleophilic serine (S195A) created an enzyme with significant peptide-ligation activity, albeit greatly reduced stability [(2000) Chem. Biol. 7, 163], and (ii) that a pair of substitutions in the substrate-binding pocket (T213L and F228H) greatly increased the thermostability of the wild-type enzyme [(1996) J. Mol. Biol. 257, 233]. The triple mutant, named streptoligase, was found to catalyze peptide ligation (aminolysis of both a thiobenzyl ester and a p-nitroanilide-activated peptide) efficiently in nondenaturing and denaturing conditions including SDS (0.5% w/v) and guanidine hydrochloride (4.0 M). Moreover, streptoligase exhibited a half-live for unfolding of 16.3 min at 55 degrees C in the absence of stabilizing substrates. The fraction of the streptoligase-catalyzed reaction that gave coupled product with the acceptor peptide FAASR-NH(2) was greater for the p-nitroanilide donor (Sc-AAPF-pNA) than for the benzyl thioester substrate (Sc-AAPF-SBn). These observations are consistent with ligation proceeding through an acyl-enzyme intermediate involving histidine-57. In the case of the thioester donor the triple mutant promotes the direct attack of water on the thioester carbonyl carbon, in addition to hydrolysis occurring at the stage of the acyl-enzyme intermediate. The strategy of multiple point mutations outlined in this study may provide a general means of converting enzymes with chymotrypsin-like protein folds into peptide ligases.  相似文献   

14.
During the last years native chemical ligation (NCL) gained in popularity as a method allowing the chemical synthesis of large peptides and entire proteins. NCL is particularly well-suited for chemoselective and nondenaturing attachment of biomolecules on solid substrates. In the present work, we show the feasibility of monitoring of peptide synthesis, NCL and its catalysis on silicon oxide modified gold surfaces by surface plasmon resonance (SPR). NCL of a model peptide-bradykinin thioester-was carried out and monitored with a custom-built SPR apparatus. Solid-phase produced bradykinin thioester was ligated to the surface in the presence of variable concentrations of 4-mercaptophenylacetic acid as transthioesterification catalyst. At catalyst concentration of 48 mM and above, the NCL reaction was maximal and identical to the reaction of the purified peptide-mercaptophenylacetic acid thioester. SPR curves indicate typical first-order kinetics with t(1/2) of 81 s for this aryl thioester, but of 104 min for the primary alkyl thioester.  相似文献   

15.
Various proteins are modified post-translationally to localize them at the cell membrane. Among them, hedgehog-family proteins are modified by cholesterol at the C-terminal. In this study, green fluorescent protein (GFP) modified with cholesterol (GFP-Chol) at the C-terminal was prepared semisynthetically and investigated. This semi-synthesis was performed using the following native chemical ligation: GFP-Cα-thioester was prepared using the intein-mediated thioester exchange reaction and was ligated to Cys-NH-diethylene glycol-NHCO-cholesterol in the presence of a detergent. After removal of the detergent, the GFP-Chol was applied to mouse live cells. Confocal laser fluorescent microscopy confirmed localization of GFP-Chol at the cell membrane. The findings suggest that modifying proteins with cholesterol at the C-terminal is useful for targeting the proteins to the cell membrane of live cells.  相似文献   

16.
The anaphase-promoting complex (APC) regulates the eukaryotic cell cycle by targeting specific proteins for proteasomal degradation. Its activity must be strictly controlled to ensure proper cell cycle progression. The co-activator proteins Cdc20 and Cdh1 are required for APC activity and are important regulatory targets. Recently, budding yeast Acm1 was identified as a Cdh1 binding partner and APC(Cdh1) inhibitor. Acm1 disappears in late mitosis when APC(Cdh1) becomes active and contains conserved degron-like sequences common to APC substrates, suggesting it could be both an inhibitor and substrate. Surprisingly, we found that Acm1 proteolysis is independent of APC. A major determinant of Acm1 stability is phosphorylation at consensus cyclin-dependent kinase sites. Acm1 is a substrate of Cdc28 cyclin-dependent kinase and Cdc14 phosphatase both in vivo and in vitro. Mutation of Cdc28 phosphorylation sites or conditional inactivation of Cdc28 destabilizes Acm1. In contrast, inactivation of Cdc14 prevents Acm1 dephosphorylation and proteolysis. Cdc28 stabilizes Acm1 in part by promoting binding of the 14-3-3 proteins Bmh1 and Bmh2. We conclude that the opposing actions of Cdc28 and Cdc14 are primary factors limiting Acm1 to the interval from G(1)/S to late mitosis and are capable of establishing APC-independent expression patterns similar to APC substrates.  相似文献   

17.
Chemical ligation methods for the assembly of functional proteins continue to advance our basic understanding of protein structure and function. In this work, we report on our progress towards the full synthesis of HIV-1 Tat utilizing our newly developed ligation method; side-chain assisted ligation. The HIV-1 Tat was assembled from three fragments wherein the two thioester peptides were synthesized efficiently using the side-chain anchoring strategy following Fmoc-SPPS. The side-chain assisted ligation step was efficient and provided the ligation product in good yield. Following this step, native chemical ligation was used to fully assemble the HIV-1 Tat protein. Although the removal of the auxiliary in small peptides was straightforward, in the case of HIV-1 Tat this step was inefficient thus hampering the completion of the synthesis.  相似文献   

18.
The major autolysin Acm2 from the probiotic strain Lactobacillus plantarum WCFS1 contains high proportions of alanine, serine, and threonine in its N-terminal so-called AST domain. It has been suggested that this extracellular protein might be glycosylated, but this has not been experimentally verified. We used high-resolution liquid chromatography-tandem mass spectrometry (LC-MS/MS) to study the possible occurrence of glycans on peptides generated from lactobacillary surface proteins by protease treatment. This approach yielded five glycopeptides in various glycoforms, all derived from the AST domain of Acm2. All five glycopeptides contained the hydroxy-amino acids serine and threonine, suggesting that Acm2 is O-glycosylated. By using lectin blotting with succinylated wheat germ agglutinin, and by comparing the wild-type strain with an Acm2-negative derivative (NZ3557), we found that the attached N-acetylhexosamines are most likely N-acetylglucosamines (GlcNAc). NZ3557 was further used as a genetic background to express an Acm2 variant lacking its secretion signal, resulting in intracellular expression of Acm2. We show that this intracellular version of Acm2 is also glycosylated, indicating that the GlcNAc modification is an intracellular process.  相似文献   

19.
Orthogonal ligation strategies for peptide and protein   总被引:1,自引:0,他引:1  
Tam JP  Yu Q  Miao Z 《Biopolymers》1999,51(5):311-332
This review focuses on the concept, criteria, and methods of an orthogonal amide ligating strategy suitable for syntheses of peptides, peptide mimetics, and proteins. Utilizing unprotected peptides or proteins derived from chemical or biosynthetic sources, this ligation strategy has been shown to be general and exceptionally mild. Its orthogonality in ligating two unprotected segments with free N-terminal (NT)-amines at a specific NT-amine is achieved through a chemoselective capture step and then an intramolecular acyl transfer reaction. Both coupling reagents for enthalpic activation and protection schemes therefore become unnecessary. More than a dozen orthogonal ligation methods based on either imine or thioester captures have been developed to afford native and unusual amino acids at ligation sites of linear, branched, or cyclic peptides. Because unprotected peptides and proteins of different sizes and forms can be obtained from either chemical or recombinant sources, orthogonal ligation removes the size limitation imposed on the chemical synthesis of a protein with a native or non-native structure. Furthermore, by using building blocks from biosynthetic sources, orthogonal ligation provides a unifying operational concept for both total and semisynthesis of peptides and proteins.  相似文献   

20.
Liposomes have become popular drug delivery vehicles and have more recently also been applied as contrast agents for molecular imaging. Most current methods for functionalization of liposomes with targeting proteins rely on reactions of amine or thiol groups at the protein exterior, which generally result in nonspecific conjugation at multiple sites on the protein. In this study, we present native chemical ligation (NCL) as a general method to covalently couple recombinant proteins in a highly specific and chemoselective way to liposomes containing cysteine-functionalized phospholipids. A cysteine-functionalized phospholipid (Cys-PEG-DSPE) was prepared and shown to readily react with the MESNA thioester of EYFP, which was used as a model protein. Characterization of the EYFP-liposomes using fluorescence spectroscopy showed full retention of the fluorescent properties of conjugated EYFP and provides a lower limit of 120 proteins per liposome. The general applicability of NCL was further tested using CNA35, a collagen-binding protein recently applied in fluorescent imaging of collagen. NCL of CNA35 thioester yielded liposomes containing approximately 100 copies of CNA35 per liposome. The CNA35-liposomes were shown to be fully functional and bind collagen with a 150-fold higher affinity compared to CNA35. Our results show that NCL is an attractive addition to existing conjugation methods that allows direct, covalent, and highly specific coupling of recombinant proteins to liposomes and other lipid-based assemblies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号