首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The assimilation of nitrate and nitrite under dark and lightconditions in Zea mays L. leaves was investigated. Nitrate wasassimilated under dark-aerobic conditions. Anaerobiosis stimulatednitrate reduction and nitrite accumulation under dark conditions.Vacuum infiltration of inhibitors of respiratory electron transport,antimycin A and rotenone, stimulated nitrate reduction and nitriteaccumulation under dark-aerobic conditions. Vacuum infiltrationof low concentrations of PCP, DNP and mCCCP depressed nitratereduction and nitrite accumulation under dark-aerobic conditions,whereas, infiltration of higher concentrations stimulated nitratereduction and nitrite accumulation. The greatest level of nitrateand nitrite reduction occurred under light conditions. The inhibitorof photosynthetic electron transport, DCMU, stimulated the accumulationof nitrite in the light, but decreased nitrate reduction. Whenthe inhibitors of respiratory electron transport antimycin Aand rotenone, were supplied together with DCMU in the light,nitrite accumulation was enhanced. Low concentrations of mCCCPdecreased both nitrate reduction and nitrite accumulation underlight conditions when supplied with DCMU. Key words: Nitrate reduction, Nitrite accumulation, Leaves  相似文献   

2.
Pyruvate,Pi dikinase (PPDK, EC 2.7.9.1) and NADP-malate dehydrogenase (MDH, EC 1.1.1.82) were activated in the light and inactivated following a dark treatment in mesophyll protoplasts of maize. DCMU (up to 33 micromolar), an inhibitor of noncyclic electron transport, inhibited activation of MDH much more strongly than it did PPDK. Antimycin A (6.6-33 micromolar), an inhibitor of cyclic photophosphorylation, inhibited the activation of PPDK (up to 61%), but had little or no effect on activation of MDH. Carbonyl cyanide m-chlorophenylhydrazone (0.2-2 micromolar) and nigericin (0.4 micromolar), uncouplers of photophosphorylation, inhibited activation of PPDK while stimulating the activation of MDH. Phlorizin (0.33-1.7 millimolar), an inhibitor of the coupling factor for ATP synthesis, strongly inhibited activation of PPDK but only slightly effected light activation of MDH. These results suggest that noncyclic electron flow is required for activation of NADP-MDH and that photophosphorylation is required for activation of PPDK.  相似文献   

3.
M. Goller  R. Hampp  H. Ziegler 《Planta》1982,156(3):255-263
Adenylate levels in chloroplasts, mitochondria and the cytosol of oat mesophyll protoplasts were determined under light and dark conditions, in the absence and presence of plasmalemma-permeable inhibitors of electron transfer and uncouplers of phosphorylation. This was achieved using a microgradient technique which allowed an integrated homogenization and fractionation of protoplasts within 60 s (Hampp et al. 1982, Plant Physiol. 69, 448–455), under conditions which quench bulk activities of metabolic interconversion in less than 2 s. In illuminated controls, ATP/ADP ratios were found to be 2.1 in chloroplasts, about unity in mitochondria, and 11 in the cytosol; whereas, in the dark, this ratio only showed a large drop in chloroplasts (0.4). None of the compounds used [carbonylcyanide m-chlorophenylhydrazone (CCCP), carbonylcyanide p-trifluoromethoxy-phenylhydrazone (FCCP), antimycin A, dibromothymoquinone (DBMIB), dichlorophenyldi-methylurea (DCMU), or salicylhydroxamic acid (SHAM)] affected the stroma adenylate ratio in the dark. Under illumination, however, the ATP/ADP ratios were partly reduced in the presence of antimycin (inhibitor of cyclic photophosphorylation) and of DCMU (inhibitor of linear electron flow), while in the presence of DBMIB, DCMU+ antimycin (inhibition of both cyclic and linear electron flow), and CCCP (uncoupling) the ratio obtained was the same as that occurring in the dark. In contrast, mitochondrial adenylate levels did not exhibit large variations under the various treatments. The cytosolic ATP/ADP ratio, however, showed dramatic changes: in darkened protoplasts, cytosolic values dropped to 0.2 and 0.1 in the presence of uncouplers and antimycin, respectively, while SHAM did not induce any significant alteration. In the light, a similar pronounced decrease in ATP levels was observed only after the application of uncouplers or inhibitors of both mitochondrial and photosynthetic electron transport, whereas selective inhibition of the latter was largely ineffective in reducing the cytosolic ATP/ADP ratio. Thus, the results show that the antimycin-sensitive electron transport is, potentially, equally active in light and darkness. In addition, they indicate that antimycin-insensitive electron transport in mitochondria (alternative pathway) does not significantly contribute to the cytosolic energy state.Abbreviations CCCP carbonylcyanide m-chlorophenylhydrazone - DBMIB dibromothymoquinone (2,5-dibromo-3-methyl-6-isopropy-p-benzoquinone) - DCMU dichlorophenyldimethylurea - FCCP carbonylcyanide-p-trifluoromethoxy-phenylhydrazone - SHAM sancylhydroxamic acid  相似文献   

4.
Chlorella pyrenoidosa can utilize sodium acetate as a carbonsource for growth in the light. Growth proceeds under aerobicconditions both in the presence and in the absence of carbondioxide, but under anaerobic conditions only in its presence.The assimilation of acetate does not result from oxidation tocarbon dioxide followed by photosynthetic fixation because theproducts of 14C-acetate assimilation are different from theproducts of 14CO2 fixation in the presence of unlabelled acetate. In aerobic conditions 10-6 M DCMU induces a pattern of acetateassimilation in the light similar to that in the dark. Thus,in the presence of DCMU in the light, less acetate carbon isincorporated into cells, particularly into lipids, polysaccharide,and protein, and more is released as carbon dioxide than inits absence. The effect of 4 x 10-3 M MFA on acetate assimilationin the presence of 10-6 M DCMU is the same in light and dark.Acetate assimilation is unaffected by desaspidine and sodiumbisulphite. The mean generation time of C. pyrenoidosa growing on acetatein the light under aerobic conditions is 20 hours. When 10-5M DCMU is added the mean generation time is 60 hours, the sameas that for Chlorella growing on acetate in the dark. The activityof the enzymes of the glyoxylate cycle, isocitrate lyase (E.C.4.1.3.1.)and malate synthetase (E.C.4.1.3.2.) is repressed in the light,but activity of both enzymes increases markedly when DCMU isadded.  相似文献   

5.
The effects of cyanide and 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) on photosynthesis and respiration of intact chlorophyllic moss (Funaria hygrometrica) spore was investigated. Thirty micromolar cyanide strongly inhibited dark respiration, was without effect on photosynthesis at high light intensities (above the saturation plateau values), and stimulated photosynthesis at low light intensities (below the saturation plateau values). Three hundred nanomolar DCMU inhibited the photosynthesis and was without effect, even under light conditions, on the dark respiration. It seems likely, therefore, that in the chlorophyllic moss spore the cytochrome oxidase pathway is not functioning under high light intensities unless the photosynthesis is inhibited by DCMU.  相似文献   

6.
The light-supported component of 36Cl uptake from 5 mM K36Cl by green laminae, either chopped or vacuum-infiltrated, of Triticum aestivum L. seedlings has been determined by subtraction of dark uptake values from light uptake values and the energy sources for the uptake elucidated on the basis of the effects of 3-(3,4-dichlorophenyl)-1,1 dimethylurea (DCMU), carbonyl cyanide p-trifluoromethoxy-phenylhydrazone (FCCP), antimycin A1 (AA), and N2 on light and dark uptake. The light-supported Cl−1 uptake is shown to be partially inhibited by DCMU or AA but unaffected or stimulated by FCCP or N2. There is no additive effect on inhibition caused by DCMU + N2 or FCCP + AA but there is an added inhibition caused by DCMU + AA, DCMU + FCCP, and by FCCP or AA in anaerobic conditions. The effect of these inhibitors on photosynthetic gas exchange of chopped tissue has also been determined. On the basis of the results it is concluded that the uptake of Cl, supported in the dark by oxidative phosphorylation, is enhanced by light and may be supported by cyclic and non-cyclic electron-flow energy. Uptake is not obligatorily linked to any one energetic pathway and there may be switching from one source to another.  相似文献   

7.
The effect of respiration on the positive phototactic movement of swarming agar colonies of the facultative phototroph Rhodospirillum centenum was studied. When the electron flow was blocked at the bc 1 complex level by myxothiazol, the oriented movement of the colonies was totally blocked. Conversely, inhibition of respiration via the cytochrome c oxidase stimulated the phototactic response. No phototaxis was observed in a photosynthesis deficient mutant (YB707) lacking bacteriochlorophylls. Analyses of the respiratory activities as monitored by a oxygen microelectrode in single agar colonies during light/dark transitions showed a close functional correlation between the photosynthetic and respiratory apparatuses. The respiratory chain of Rsp. centenum was formed by two oxidative pathways: one branch leading to a cytochrome c oxidase inhibited by low cyanide concentrations and a second pathway formed by an oxidase less-sensitive to cyanide that also catalyzes the light-driven respiration. These results were interpreted to indicate that (1) there is a cyclic electron transport, and (2) photoinduced cyclic electron flow is required for the phototactic response of Rsp. centenum. Furthermore, under oxic conditions in the light, reducing equivalents may switch from photosynthetic to respiratory components so as to reduce both the membrane potential and the rate of locomotion. Received: 25 September 1996 / Accepted: 11 November 1996  相似文献   

8.
DCMU (N'-(3,4-dichlorophenyl)-N, N-dimethylurea) was testedfor effects on the metabolism of galactolipids in Chlorellaand chloroplasts isolated from higher plants. In Chlorella,DCMU affected galactolipid synthesis in the light more thanthat of other lipids, but it showed no effect on lipid synthesisin the dark. DCMU did not affect the turnover of galactolipidsin the light. In vitro studies using 14C-acetate or 14C-UDP-galactoseas a precursor showed that DCMU had no effect on the synthesisof gross lipid or galactolipids in chloroplasts isolated fromhigher plants. The significance of these observations are discussed. (Received September 21, 1974; )  相似文献   

9.
Cells of the alga Golenkinia are bleached by growth in darknessin media containing sodium acetate. Re-greening of these cellsis light dependent; neither glucose nor intermediates of chlorophyllsynthesis can substitute. The amount of chlorophyll synthesizedis proportional to the light intensity between darkness and1,000 lux and to the duration of the exposure. Initially, onlychlorophyll a is synthesized. After 9–12 hr illumination,formation of chlorophyll b and carotenoids begins. Chlorophyllproduction apparently occurs in two stages: (1) the first 12–16hr of greening. This stage is sensitive to cyanide, azide oranaerobiosis and relatively resistant to DCMU. (2) the second16–24 hr of greening. This stage is sensitive to DCMUand relatively resistant to inhibitors of respiration. Glucosestimulates greening in both stages. The metabolic requirementsof chlorophyll synthesis are discussed. (Received December 17, 1980; Accepted June 25, 1981)  相似文献   

10.
L-Leucine uptake and incorporation in the blue-green alga Anacystisnidulans were measured during illumination with monochromaticlight of 630 and 717 nm. With near as well as far red light,an enhanced uptake of 14C-L-leucine was observed. In far redlight, the leucine uptake depended on light intensity and pHvalue. After the first few minutes, the uptake remained constantfor more than one hour. The rate of uptake in light was thesame in air as in nitrogen. The incorporation of 14C-leucinein the soluble fraction decreased in the presence of chloramphenicolwhich prevents protein synthesis. In far red light, its incorporationwas insensitive to DCMU (5 ? 10–6 M) but was depressedby uncouplers like CCCP or desaspidin. These effects are takenas evidence that leucine incorporation under the conditionsused is dependent on photosystem I reactions and cyclic photophosphorylation.DBMIB and KCN in high concentrations decrease the leucine incorporationin far red light and indicate that plastoquinone and plastocyaninare members of the cyclic electron flow also in intact cellsof Anacystis. Antimycin A has no inhibitory effect. The inhibitionby other less specific inhibitors like salicylaldoxime, desaspidinand DSPD is discussed. (Received August 19, 1978; )  相似文献   

11.
Addition of ethylene glycol (EG) or NaCl to cells of Chlamydomonasreinhardtii induced transient non-photochemical quenching ofChl fluorescence correlated with the inhibition of photosyntheticoxygen evolution. The induction of the quenching and subsequentrecovery proceeded not only in the light but also in the dark.The quenching was almost unaffected by the protonophore nigericin,suggesting the involvement of a type of non-photochemical quenchingattributable to a state 2 transition. Higher concentrationsof EG or NaCl caused a delay of the recovery of the maximumfluorescence yield (Fm'). Dark reduction rate of P700+ afterthe application of a flash light in the presence of DCMU wasenhanced by the hyperosmotic shock, suggesting a stimulatedreduction of the intersystem electron carriers. It is proposedthat the osmotic stress stimulates electron donation from stromalcomponents via the NAD(P)H dehydrogenase, which results in thereduction of the intersystem chain and triggering of a state2 transition leading to stimulated cyclic PSI activity. (Received May 16, 1995; Accepted July 26, 1995)  相似文献   

12.
The state transitions of the cyanobacterium Synechococcus sp. PCC 7002 and of three mutant strains, which were impaired in PsaE-dependent cyclic electron transport (psaE(-)), respiratory electron transport (ndhF(-)) and both activities (psaE(-)ndhF(-)), were analyzed. Dark incubation of the wild type and psaE(-) cells led to a transition to state 2, while the ndhF(-) strains remained in state 1 after dark incubation. The ndhF(-) cells adapted to state 2 when the cells were incubated under anaerobic conditions or in the presence of potassium cyanide; these results suggest that the ndhF(-) cells were inefficient in performing state 1 to state 2 transitions in the dark unless cytochrome oxidase activity was inhibited. In the state 2 to state 1 transition of wild-type cells induced by light in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), there was still a significant reduction of the interphotosystem electron carriers by both respiration and cyclic electron flow around PSI. Kinetic analysis of the state 2 to state 1 transition shows that, in the absence of PSII activity, the relative contribution to the reduced state of the interphotosystem electron carriers by respiratory and cyclic electron transfer is about 72% and 28%, respectively. The state 2 to state 1 transition was prevented by the cytochrome b(6)f inhibitor 2,5-dibromo-3-methyl-6-isopropylbenzoquinone (DBMIB). On the other hand, the state 1 to state 2 transition was induced by DBMIB with half times of approximately 8 s in all strains. The externally added electron acceptor 2,5-dimethyl-benzoquinone (DMBQ) induced a state 2 to state 1 transition in the dark and this transition could be prevented by DBMIB. The light-induced oxidation of P700 showed that approximately 50% of PSI could be excited by 630-nm light absorbed by phycobilisomes (PBS) under state 2 conditions. P700 oxidation measurements with light absorbed by PBS also showed that the dark-induced state 1 to state 2 transition occurred in wild-type cells but not in the ndhF(-) cells. The possible mechanism for sensing an imbalanced light regime in cyanobacterial state transitions is discussed.  相似文献   

13.
S.C. Huber  G.E. Edwards   《BBA》1976,449(3):420-433
1. Cyclic photophosphorylation driven by white light, as followed by 14CO2 fixation by mesophyll chloroplast preparations of the C4 plant Digitaria sanguinalis, was specifically inhibited by disalicylidenepropanediamine (DSPD), antimycin A, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIb), 1-ethyl-3(3-dimethylaminopropyl)-carbodiimide (EDAC), and KCN suggesting that ferredoxin, cytochrome b563, plastoquinone, cytochrome f, and plastocyanin are obligatory intermediates of cyclic electron flow. It was found that 0.2 μM DCMU and 40 μM o-phenanthroline blocked noncyclic electron flow, stimulated cyclic photophosphorylation, and caused a partial reversal (40–100%) of the inhibition by DBMIB and antimycin A, but not DSPD.

2. Cyclic photophosphorylation could also be activated using only far-red illumination. Under this condition, however, cyclic photophosphorylation was much less sensitive to the inhibitors DBMIB, EDAC and antimycin A, but remained completely sensitive to DSPD and KCN. Inhibition in far-red light was not increased by preincubating the chloroplasts with the various inhibitors for several minutes in white light.

3. The striking correspondence between the effects of photosystem II inhibitors, DCMU and o-phenanthroline, on cyclic photophosphorylation under white light and cyclic photophosphorylation under far-red light (in the absence of photosystem II inhibitors) suggests that electrons flowing from photosystem II may regulate the pathway of cyclic electron flow.  相似文献   


14.
Perfused Chara cells were used to measure the rapid light-inducedpotential change (rapid LPC) caused by activation of a K+ channelin the plasma membrane through photosynthesis in the presenceof various photosynthetic inhibitors. The rapid LPC was inhibitedby DCMU but recovered on addition of phenazinemethosulfate (PMS)in the presence of DCMU. Carbonylcyanide m-chlorophenylhydrazone(CCCP) stimulated the rapid LPC. DCCD partially inhibited therapid LPC with a partial inhibition of oxygen evolution. Itis concluded that both cyclic and noncyclic electron flows arecoupled with the rapid LPC. To understand the mechanism of K+ channel activation by photosyntheticelectron flow, the rapid LPC was measured under continuous internalperfusion. It was suggested that a diffusible substance wasnot released from chloroplasts, since vigorous continuous perfusiondid not inhibit the rapid LPC. The suggestion that the rapid LPC is caused by changes in surfacecharge density of chloroplasts was supported by the fact thatthe rapid LPC was inhibited by increasing the ionic strengthof the perfusion medium. (Received February 28, 1986; Accepted April 30, 1986)  相似文献   

15.
Laminar pulvini of bean (Phaseolus vulgaris L.) contain numerouschloroplasts in cells of their motor tissue. The quantitativerelationships of the chloroplast pigments, chlorophyll a andb, ß-carotene, lutein, neoxanthin as well as the xanthophyllcycle carotenoids (violaxanthin, antheraxanthin and zeaxanthin)were similar to those of mesophyll chloroplasts from leafletlaminae. Exposure of pulvinules to light caused deepoxidationof violaxanthin to zeaxanthin, showing that the xanthophyllcycle is functioning. Chlorophyll fluorescence analysis of pulvinulesconfirmed that their chloroplasts are capable of both photosyntheticelectron transport and non-photochemical fluorescence quenching,showing that they build up a considerable transthylakoid protongradient in the light. Application of DCMU to excised pulvinulesand laminar discs, as well as to pulvinules of intact, attachedterminal leaflets blocked electron transport and fluorescencequenching. Application of the uncoupler CCCP to intact pulvinulesalso prevented non-photochemical fluorescence quenching. Therate of movement of the low-light-adapted terminal leaflet inresponse to exposure of its pulvinule to overhead red light(500 µmol m–2 s–1) was reduced when the pulvinulewas pretreated with DCMU. The pulvinar response to overheadblue light (50 µmol –2 s–1), which is morepronounced than to red light, was not affected by similar pretreatmentwith DCMU. Pretreatment with CCCP caused a short lag in theresponse to red light, but did not affect its subsequent rate.The results suggest that the pulvinar response to red, but notto blue light, requires non-cyclic electron transport and theresulting generation of ATP Key words: Leaf movements, light, non-cyclic electron transport, Phaseolus, pulvinar chloroplasts  相似文献   

16.
The xanthophyll cycle (Xc), which involves violaxanthin de-epoxidase (VDE) and the zeaxanthin epoxidase (ZEP), is one of the most rapid and efficient responses of plant and algae to high irradiance. High light intensity can activate VDE to convert violaxanthin (Vx) to zeaxanthin (Zx) via antheraxanthin (Ax). However, it remains unclear whether VDE remains active under low light or dark conditions when there is no significant accumulation of Ax and Zx, and if so, how the ΔpH required for activation of VDE is built. In this study, we used salicylaldoxime (SA) to inhibit ZEP activity in the intertidal macro-algae Ulva sp. (Ulvales, Chlorophyta) and then characterized VDE under low light and dark conditions with various metabolic inhibitors. With inhibition of ZEP by SA, VDE remained active under low light and dark conditions, as indicated by large accumulations of Ax and Zx at the expense of Vx. When PSII-mediated linear electron transport systems were completely inhibited by SA and DCMU, alternative electron transport systems (i.e., cyclic electron transport and chlororespiration) could maintain VDE activity. Furthermore, accumulations of Ax and Zx decreased significantly when SA, DCMU, or DBMIB together with an inhibitor of chlororespiration (i.e., propyl gallate (PG)) were applied to Ulva sp. This result suggests that chlororespiration not only participates in the build-up of the necessary ΔpH, but that it also possibly influences VDE activity indirectly by diminishing the oxygen level in the chloroplast.  相似文献   

17.
Transfer of algal cells of Chlorella regularis from 3% CO2 inair into ordinary air in the light increased external carbonicanhydrase (CA) activity as well as photosynthetic affinity forCO2 by several-fold within 2 h. Since no noticeable differencewas observed in CA activity between intact cells and cell homogenates,CA seemed to be mainly localized on the cell surface. Changesin CA activity and K?(CO2) of photosynthesis were not observedin the dark. CA induction was 50%-inhibited by incubation with10 µM DCMU during adaptation of high-CO2 cells to air,whereas it was considerably suppressed when high-CO2 cells preincubatedwith DCMU in the light for 6 h or without DCMU in the dark for24 h were used. The change in K?(CO2) of photosynthesis wasonly slightly affected by DCMU. Uncoupler like carbonylcyanide-m-chlorophenyl-hydrazone(CCCP) and inhibitors of mitochondrial respiration (KCN plussalicylhydroxamic acid) suppressed CA induction during adaptationof high-CO2 cells to low CO2 conditions. These results suggest that photosynthesis is not essential forCA induction in Chlorella regularis when some amounts of photosyntheticproducts are previously stored in the cells and respirationis active. A decrease in K?(CO2) of photosynthesis during adaptationfrom high to low CO2 was mostly independent on photosynthesis.However, light is essential for both phenomena. (Received July 16, 1990; Accepted January 21, 1991)  相似文献   

18.
Electron donation to P700+ through plastoquinone in the intersystemchain from both respiratory substrates and the photoreductantsin PSI has been shown to be mediated by the NAD(P)H-dehydrogenasecomplex (NDH) in Synechocystis PCC 6803 cells [Mi et al. (1992)Plant Cell Physiol. 33: 1233]. To confirm the participationof NDH in the cyclic electron flow around PSI, the redox kineticsof P700 and Chi fluorescence were analyzed in cells rendereddeficient in respiratory substrates by dark starvation and inspheroplasts. Dark-starved cells showed a high steady-state level of P700+under far-red (FR) illumination and the plastoquinone pool wasin a highly oxidized state. An NDH-defective mutant consistentlyshowed a high level of P700 oxidation under FR before and afterthe dark starvation. Donation of electrons either from exogenousNADPH or from photoreduced NADPH+ to the intersystem chain viaplastoquinone was demonstrated using spheroplasts from wild-typecells, but not those from the NDH-defective mutant, as monitoredby following changes in the kinetics of Chi fluorescence andthe redox state of P700. The electron flow to PSI via plastoquinone,mediated by NADPH, was sensitive to rotenone, Hg2+ ions and2-thenoyltrifluoroacetone, inhibitors of mitochondrial NDH andsuccinate dehydrogenase, but not to antimycin A. The pool sizeof electrons that can be donated to P700+ from the cytosol throughthe intersystem chain increased with increasing duration ofillumination time by actinic light and was sensitive to rotenonein both wild-type cells and spheroplasts, but no such resultswere obtained in the NDH-defective mutant of Synechocystis 6803.The results support our previous conclusion that NDH is a mediatorof both respiratory electron flow and cyclic electron flow aroundPSI to the intersystem chain in the cyanobacterium Synechocystis. (Received August 20, 1993; Accepted November 22, 1993)  相似文献   

19.
he fluorescence yield of chlorophyll a in dark adapted Anacystis nidulans undergoes a slow change with continuous illumination. After the completion of the initial fast transient, the fluorescence yield rises from the level S to a plateau M within a minute, declining only after prolonged illumination. Both normal and 1,1-dimethyl-3(3'4'-dichloro)-phenylurea (DCMU)-poisoned Anacystis are capable of these changes. In normal Anacystis, the slow increase in the fluorescence yield (S --> M) requires light absorbed in system II while light absorbed in system I is ineffective. In DCMU-poisoned Anacystis, however, these changes are also promoted by light absorbed in system I. Addition of carbonyl cyanide p-trifluoromethoxy phenylhydrazone (FCCP), a photophosphorylation uncoupler acting near the photosynthetic electron transport chain, abolishes the rise from S to M in normal but has no effect in the DCMU-poisoned system. Phlorizin, a phosphorylase inhibitor, has very little effect. These results suggest that the light-induced variation in the fluorescence yield is related to the conformational changes which accompany photophosphorylation. The fluorescence yield of the auxiliary pigment phycocyanin remains constant throughout the interval of the light-induced changes in the fluorescence yield of chlorophyll a. Consequently, the fluorescence spectrum of the alga is variable on continuous illumination.  相似文献   

20.
The potassium uptake rhythm in a flow medium culture of Lemnagibba G3 persisted in darkness for 3 days, when the flow mediumcontained sucrose (1%). The rhythm was damped out after thatin darkness but it persisted longer when the plants were keptunder continuous weak light (80 lux). The rhythm was not dampedout when a daily light pulse (4,200 lux for 15 min) was applied.A single light pulse (4,200 lux for 15 min) at hour 48 of theprolonged dark period caused the rhythm to start again. DCMU(1 µM) slightly reduced the amplitude of the rhythm butdid not nullify the effect of the inserted light pulse. (Received September 16, 1981; Accepted February 2, 1982)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号