首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Embryos and larvae of the Antarctic sea urchin, Sterechinus neumayeri, have received considerable experimental attention assessing impacts of low temperature on development; however, salinity effects are not well documented because heretofore, the Antarctic coastal marine environment has been remarkably stenohaline. In this study, subtle decreases of 2 and 4 parts per 1,000 in standard salinity were tested to see if the developmental rate of S. neumayeri embryos would be impacted by a potential hyposmotic stress. At 30 psu, significantly fewer embryos (2 individuals out of 198 tested) reached morula stage by 36 h post-fertilization in comparison embryos in control treatments at 34 psu. Antarctic sea urchins are an important component of marine environments due to their grazing activities. Reductions in larval recruitment success due to the influx of freshwater from melting ice shelves resulting from global climate change could have far-reaching impacts on benthic ecosystem structure in Antarctica.  相似文献   

2.
Sea ice seasonality during the Holocene, Adélie Land, East Antarctica   总被引:1,自引:0,他引:1  
Thin sections of laminated cores from different Antarctic coastal areas have demonstrated the potential of diatom species to document climate change at the seasonal scale. Here we present the relative abundances of four diatom species and species groups (Fragilariopsis curta group as a proxy for yearly sea ice cover, F. kerguelensis as a proxy for summer sea-surface temperature, Chaetoceros Hyalochaete resting spores as a proxy for spring sea ice melting and the Thalassiosira antarctica group as a proxy for autumn sea ice formation) in core MD03-2601 retrieved off Adélie Land on the Antarctic continental shelf. These abundances were compared to surface temperatures and sea ice cover modelled over the last 9000 years. Both the marine records and the simulated climate demonstrated a cooler Early Holocene (9000–7700 years BP), a warmer Mid-Holocene (7700–4000 years BP) and a colder Late Holocene (4000–1000 years BP). Yearly sea ice cover followed an inverse pattern to temperatures with less sea ice during the Mid-Holocene Hypsithermal than during the Late Holocene Neoglacial. However, diatom census counts and model output indicate that sea ice spring melting happened earlier in the season, as expected, but that autumn sea ice formation also occurred earlier in the season during the Hypsithermal than during the colder Neoglacial, thereby following seasonal changes in local insolation.  相似文献   

3.
The available ecological and palaeoecological information for two sea ice-related marine diatoms (Bacillariophyceae), Thalassiosira antarctica Comber and Porosira glacialis (Grunow) Jørgensen, suggests that these two species have similar sea surface temperature (SST), sea surface salinity (SSS) and sea ice proximity preferences. From phytoplankton observations, both are described as summer or autumn bloom species, commonly found in low SST waters associated with sea ice, although rarely within the ice. Both species form resting spores (RS) as irradiance decreases, SST falls and SSS increases in response to freezing ice in autumn. Recent work analysing late Quaternary seasonally laminated diatom ooze from coastal Antarctic sites has revealed that sub-laminae dominated either by T. antarctica RS, or by P. glacialis RS, are nearly always deposited as the last sediment increment of the year, interpreted as representing autumn flux. In this study, we focus on sites from the East Antarctic margin and show that there is a spatial and temporal separation in whether T. antarctica RS or P. glacialis RS form the autumnal sub-laminae. For instance, in deglacial sediments from the Mertz Ninnis Trough (George V Coast) P. glacialis RS form the sub-laminae whereas in similar age sediments from Iceberg Alley (Mac.Robertson Shelf) T. antarctica RS dominate the autumn sub-lamina. In the Dumont d'Urville Trough (Adélie Land), mid-Holocene (Hypsithermal warm period) autumnal sub-laminae are dominated by T. antarctica RS whereas late Holocene (Neoglacial cool period) sub-laminae are dominated by P. glacialis RS. These observations from late Quaternary seasonally laminated sediments would appear to indicate that P. glacialis prefers slightly cooler ocean–climate conditions than T. antarctica. We test this relationship against two down-core Holocene quantitative diatom abundance records from Dumont d'Urville Trough and Svenner Channel (Princess Elizabeth Land) and compare the results with SST and sea ice concentration results of an Antarctic and Southern Ocean Holocene climate simulation that used a coupled atmosphere–sea ice–vegation model forced with orbital parameters and greenhouse gas concentrations. We find that abundance of P. glacialis RS is favoured by higher winter and spring sea ice concentrations and that a climatically-sensitive threshold exists between the abundance of P. glacialis RS and T. antarctica RS in the sediments. An increase to > 0.1 for the ratio of P. glacialis RS:T. antarctica RS indicates a change to increased winter sea ice concentration (to >80% concentration), cooler spring seasons with increased sea ice, slightly warmer autumn seasons with less sea ice and a change from ~ 7.5 months annual sea ice cover at a site to much greater than 7.5 months. In the East Antarctic sediment record, an increase in the ratio from <0.1 to above 0.1 occurs at the transition from the warmer Hypsithermal climate into the cooler Neoglacial climate (~ 4 cal kyr) indicating that the ratio between these two diatoms has the potential to be used as a semi-quantitative climate proxy.  相似文献   

4.
We investigated the life history consequences of changes in diet between larval and adult life stages in the polyphagous lady beetle Coleomegilla maculata DeGeer (Coleoptera: Coccinellidae). Beetles were reared on three larval diets: greenbug, Schizaphis graminum Rondani (Homoptera: Aphididae), eggs of the flour moth, Ephestia kuehniella Zeller (Lepidoptera: Pyralidae), and bee pollen. The reproductive performance of females was then evaluated on an adult diet of either greenbug or moth eggs. Moth eggs appeared to be the most suitable diet for larvae, yielding the largest adults, and pollen the least suitable, resulting in the smallest adults and greatly extended developmental time. Pollen‐reared beetles tended to have lower fecundity and fertility than those reared on animal protein, regardless of adult diet. Female fitness was generally increased by a change in diet upon emergence to the alternative source of animal protein, suggesting that dietary complementation occurred across life stages. Among females reared on greenbug, a change of diet to moth eggs reduced the period required for production of 12 clutches and increased egg fertility compared to continued feeding on greenbug. Among females reared on moth eggs, a change of diet to greenbug increased fecundity compared to continued feeding on moth eggs. Among females fed an adult diet of greenbug, those fed moth eggs as larvae had faster production of 12 clutches and higher fecundity. We discuss these novel results in the context of coccinellid life history and ecology and their potential implications for other insects that are predatory as both larvae and adults.  相似文献   

5.
Reproductive biology of caridean decapods from the Weddell Sea   总被引:2,自引:2,他引:0  
Summary Data on reproductive biology are presented for five benthic caridean shrimps from the high Antarctic (Chorismus antarcticus, Notocrangon antarcticus, Nematocarcinus lanceopes, Lebbeus antarcticus and Eualus kinzeri). The first three species were very common on the Weddell Sea shelf and upper slope, whereas only a few individuals of the other two species were caught-but these did include some ovigerous females. Our measurements include size at first maturity, fecundity (total number and mass of eggs), individual egg mass, egg length, ovary indices, maximum size encountered and documentation of the reproductive cycle in spring and summer. Egg number generally increases with female size, and the largest species (N. lanceopes) also carries the highest number of eggs. The eggs of all high Antarctic species are large, the extreme being L. antarcticus with an egg length of up to 3.3 mm. For C. antarcticus and N. antarcticus, which have wide geographic distributions, a comparison is made with older published and unpublished data from the Subantarctic (South Georgia). High Antarctic representatives of these two species grow to a larger maximum size, attain sexual maturity later in their life cycle, and produce fewer and larger eggs in relation to both carapace length and female mass, than their Subantarctic counterparts.Data presented here were collected during the European Polarstern Study (EPOS) sponsored by the European Science Foundation  相似文献   

6.
Summary The Antarctic copepod Drescheriella glacialis, an inhabitant of sea ice, is the first polar invertebrate metazoan to have been cultured throughout its life cycle. We describe its demographic characteristics on the basis of a laboratory cohort study and correlative field data. When compared to its closest temperate-zone relatives, D. glacialis shows temperature compensation of developmental and reproductive rates. A genuine r-strategist in every respect, it does not fit established trends for Antarctic invertebrates but appears well adapted to the peculiar spatio-temporal variability of the sea ice habitat.  相似文献   

7.
The aim of this paper is to contribute to the knowledge on the feeding habits of larvae and juvenile Pleuragramma antarcticum in the western Ross Sea. In summer, the diet of P. antarcticum postlarvae (8–17 mm) was dominated by calanoid eggs (35.5%), Limacina (32.1%) and tintinnids (17.6%), while the principal food of juveniles consisted mainly of copepods (98.2%), with Oncaea curvata being the most abundant (85.1%) and the most frequently consumed prey. The food composition of P. antarcticum postlarvae (24–29 mm), collected in spring, suggest that they fed actively under the sea ice. Stephos longipes, Harpacticus furcifer and Paralabidocera antarctica sea ice copepods represent, in all their different developmental stages, the most abundant biomass food in Terra Nova Bay in this period. Our results therefore suggest that the diet of younger Pleuragramma specimens shifted in prey composition from the first summer to the following spring. This study draws attention to the key role of the copepod, P. antarctica, in the food web of Terra Nova Bay. This article belongs to a special topic: Five articles coordinated by L. Guglielmo and V. Saggiomo appear in this issue of Polar Biology and are a result of a workshop on Sea-ice communities in Terra Nova Bay (Ross Sea) held in August 2007 in Capo Calavà, Messina, Italy.  相似文献   

8.
Damaging effects of UVB in conjunction with other stressors associated with global change are well‐established, with many studies focused on vulnerable early life stages and immediate effects (e.g., mortality, developmental abnormalities). However, for organisms with complex life cycles, experiences at one life stage can have carry‐over effects on later life stages, such that sublethal effects may mediate later vulnerability to further stress. Here, we exposed embryos in benthic egg masses of the New Zealand intertidal gastropod Siphonaria australis to treatments of either periodic stress (e.g., elevated UVB, salinity, and water temperature mimicking tidepool conditions in which egg masses are commonly found during summer) or control conditions (low UVB, ambient salinity, and water temperatures). Although there was high mortality from stressed egg masses, 24% of larvae hatched successfully. We then exposed the hatching larvae from both egg mass treatments to different combinations of water temperature (15 or 20 °C) and light (high UVB or shade) 12 h per day for 10 days. The most stressful larval conditions of 20 °C/high UVB resulted in low survival and stunted growth. Carry‐over effects on survival were apparent for shaded larvae exposed to elevated temperature, where those from stressed egg masses had 1.8× higher mortality than those from control egg masses. Shaded larvae were also larger and had longer velar cilia if they were from control egg masses, independent of larval temperature. These results demonstrate that previous experience of environmental stress can influence vulnerability of later life stages to further stress, and that focus on a single life stage will underestimate cumulative effects of agents of global change.  相似文献   

9.
Feeding habits of early life stages of the channichthyid Chionodraco hamatus were investigated on samples collected in the western Ross Sea in early summer of 1996 and 2004. The stomach content analysis was carried out on larval and postlarval specimens ranging from 14 to 39 mm SL. Unlike larvae and juveniles of other channichthyids, which elsewhere largely rely on early life stages of Antarctic krill or ice krill, no euphausiids were found in the stomach contents of C. hamatus, except for a single large individual of Thysanoessa macrura. In both years, dietary composition consisted almost exclusively of notothenioid fish larvae. Early larvae of Pleuragramma antarcticum overwhelmingly dominated the diet in terms of abundance, biomass and frequency of occurrence, accounting for 98.4% of the index of relative importance (IRI). Other fish larvae consumed occasionally in small amount were Trematomus lepidorhinus, T. scotti and C. hamatus itself. As a result, the feeding strategy of C. hamatus was considerably shifted toward specialization, relying on relatively few taxa of prey, each of them showing a high prey-specific abundance. Comparing both dietary composition and feeding strategy of C. hamatus in the two different sampling years, several differences were observed, probably due to different environmental conditions, mainly linked to a significant delay of ice retreat and formation of the Ross Sea polynya verified in the 2003–2004 summer season.  相似文献   

10.
Marine invertebrates inhabiting the high Antarctic continental shelves are challenged by disturbance of the seafloor by grounded ice, low but stable water temperatures and variable food availability in response to seasonal sea-ice cover. Though a high diversity of life has successfully adapted to such conditions, it is generally agreed that during the Last Glacial Maximum (LGM) the large-scale cover of the Southern Ocean by multi-annual sea ice and the advance of the continental ice sheets across the shelf faced life with conditions, exceeding those seen today by an order of magnitude. Conditions prevailing at the LGM may have therefore acted as a bottleneck event to both the ecology as well as genetic diversity of today''s fauna. Here, we use for the first time specific Species Distribution Models (SDMs) for marine arthropods of the Southern Ocean to assess effects of habitat contraction during the LGM on the three most common benthic caridean shrimp species that exhibit a strong depth zonation on the Antarctic continental shelf. While the shallow-water species Chorismus antarcticus and Notocrangon antarcticus were limited to a drastically reduced habitat during the LGM, the deep-water shrimp Nematocarcinus lanceopes found refuge in the Southern Ocean deep sea. The modeling results are in accordance with genetic diversity patterns available for C. antarcticus and N. lanceopes and support the hypothesis that habitat contraction at the LGM resulted in a loss of genetic diversity in shallow water benthos.  相似文献   

11.
The Antarctic silverfish Pleuragramma antarcticum is a keystone species in the Ross Sea ecosystem, providing one of the major links between lower and higher trophic levels. Despite the importance of this species, surprisingly little is known of its early development and behaviour. Here, we determine the metabolic capacity of Pleuragramma embryonated eggs and larvae and make comparisons with developing stages of another notothenioid, the naked dragonfish Gymnodraco acuticeps. We also show that although large numbers of embryonated eggs of Pleuragramma are found floating among the platelet ice of Terra Nova Bay, they are able to sink prior to hatching in late spring, likely reducing the risk of exposure to the potentially lethal, ice-laden surface environment. Applying Stoke’s law, we determine the change in density required for embryonated eggs to sink at the measured rate and then consider possible mechanisms by which this might occur. Significantly, newly hatched larvae are positively gravitactic and negatively phototactic, such that their swimming behaviour also directs them away from the risk of freezing in the icy surface waters. Measurement of the acute thermal tolerance shows that Pleuragramma larvae have, on average, a sustainable swimming performance breadth of about 17°C, which is significantly greater than that of other adult notothenioids. Although it lacks significant antifreeze capacity in its early developmental stages, Pleuragramma has other attributes that may ensure survival over a wider range of environmental temperatures than other more stenothermal Antarctic notothenioids. How it might adapt to prolonged environmental change arising from phenomena such as global warming, however, requires further investigation.  相似文献   

12.
A clear shift from vegetative cells to auxospores and resting spores in Thalassiosira australis was observed in the water column and sinking fluxes under the fast ice near Syowa Station in the austral summer of 2005/2006. This is the first report of the auxosporulation by T. australis in situ. Resting spores were also observed in the sediment even before new spore formation, suggesting that T. australis can overwinter in the sediment. Heterotrophic dinoflagellates ingested and digested vegetative cells and auxospores but did not digest resting spores, suggesting a high tolerance of resting spores to grazing by heterotrophic dinoflagellates. We discuss the possible life history and overwintering strategy that T. australis uses in an Antarctic coastal area to cope with the unpredictable timing of sea ice growth and decay.  相似文献   

13.
The Antarctic silverfish Pleuragramma antarcticum is a keystone species in the Southern Ocean ecosystem, providing one of the major links between lower and higher trophic levels. Despite the importance of this species, surprisingly little is known of its early development. The first spawning area for the silverfish has been recently identified in the near-shore of Terra Nova Bay (Ross Sea). Evidence indicates that spawning and embryo development occurs in the cryopelagic environment, below the seasonal pack-ice. In order to contribute to the knowledge of the life cycle of this very important Antarctic species, we carried out the first histological characterization on pre-hatching embryos and newly hatched larvae. Embryonated eggs and larvae of P. antarcticum were collected between late October and November 2005 at TNB through holes drilled into the sea ice. Embryonic stage just before hatching and the first post-hatching stage were the most abundant within our samples and thus were analysed using both macroscopic and histological approaches. Early life stages of the Antarctic silverfish revealed interesting features: the sensory system, foraging apparatus and heart appeared well developed, whereas the liver and gills were underdeveloped. Morphological details of the organogenesis were performed, providing the first substantial information on the development of P. antarcticum and representing a further steps towards the knowledge of the life cycle of this important Antarctic key species. An erratum to this article can be found at  相似文献   

14.
Antarctic springtails are exemplars of extreme low temperature adaptation in terrestrial arthropods. This paper represents the first examination of such adaptation in the springtail, Gressittacantha terranova. Acclimatization state was measured in field-fresh samples over a 22-day period at the beginning of the austral summer. No evidence of temperature tracking was observed. Mean temperature of crystallization (T c) for all samples was −20.67 ± 0.32°C and the lowest T c recorded was −32.62°C. Ice affinity purification was used to collect antifreeze proteins (AFPs) from springtail homogenate. The purified ice fraction demonstrated both thermal hysteresis activity and recrystallisation inhibition. Growth-melt observations revealed that ice crystals grow normal to the c-axis (basal plane). Reverse-phased HPLC produce one clearly resolved peak (P1) and one compound peak (P2). Mass spectrometry identified the molecular mass of P1 as 8,599 Da. The P1 protein was also the most prominent in P2, although additional peptides of 6–7 KDa were also prominent. The main AFP of the Antarctic springtail, G. terranova has been isolated, although like other AFP-expressing arthropods, it shows evidence of expressing a family of AFPs.  相似文献   

15.
The relationship between temperature and the development of the West Indian sweet potato weevil, Euscepes postfasciatus, on an artificial larval diet containing powdered sweet potato root, was examined at different fixed temperatures from 22 to 31°C. The developmental periods for egg, larvae, and pupae stages shortened in correlation with increased temperature. The thermal constant was 769.2 degree-days and the developmental zero for female and male was 11.1 and 11.7°C, respectively. Although we can rear this weevil at temperatures ranging from 22 to 31°C, rearing temperatures should be kept between 25 and 28°C because the developmental stages were too long at 22°C and the larval period was delayed at 31°C. The basis for these developmental data will be a useful key factor in designing a plan to eradicate the weevil by using a mass-rearing system and SIT.  相似文献   

16.
17.
The effect of consuming terrestrial algae on the cold tolerance of two Antarctic micro-arthropods was examined. From the results of preferential feeding experiments, seven species of Antarctic terrestrial micro-algae were chosen and fed to two common, freeze-avoiding Antarctic micro-arthropods: the springtail Cryptopygus antarcticus (Collembola: Isotomidae), and the mite Alaskozetes antarcticus (Acari: Oribatida). Mites were very selective in their choice of food whereas the springtails were less discriminating. The ice nucleating activity of each species of alga was measured using an ice nucleator spectrometer and a differential scanning calorimeter. Pure cultures of individual species of algae had characteristic supercooling points ranging from ca. −5 to −18 °C. The effect of eating a particular alga on the supercooling point of individual micro-arthropods cultured at two different temperatures (0 and 10 °C) was examined. Neither species showed a preference for algae with low ice-nucleating activity and there was no clear correlation between the supercooling point of food material and that of the whole animal. However, feeding on certain algae such as Prasiola crispa, which contained the most active ice nucleators, decreased the cold tolerance of both species of arthropods. Accepted: 6 May 2000  相似文献   

18.
We investigated the effect of temperature on development and demographic parameters such as the intrinsic rate of natural increase (r m) of the two spider mite species Tetranychus merganser Boudreaux and T. kanzawai Kishida at eleven constant temperatures ranging from 15 to 40°C at intervals of 2.5°C. Both male and female T. merganser and T. kanzawai completed development from egg to adult at temperatures ranging from 15 to 37.5°C. The longest developmental duration of immature stages was found at 15°C and the shortest developmental duration was found at 35°C for both species. Using linear and non-linear developmental rate models, the lower thermal thresholds for egg-to-adult (female and male) and egg-to-egg development were estimated as 12.2–12.3°C for T. merganser and as 10.8°C for T. kanzawai. The highest developmental rates were observed at around 35°C, whereas the upper developmental thresholds were around 40°C for both species. In fact, at 40°C, a few eggs of either species hatched, but no larvae reached the next stage. The r m-values of T. merganser ranged from 0.072 (15°C) to 0.411 day−1 (35°C), whereas those of T. kanzawai ranged from 0.104 (15°C) to 0.399 (30°C). The r m-values were higher for T. kanzawai than for T. merganser at temperatures from 15 to 30°C, but not at 35°C (0.348 day−1). Total fecundity of T. merganser was also higher than that of T. kanzawai at 35°C. These results indicate that higher temperatures favor T. merganser more than T. kanzawai.  相似文献   

19.
The sex and age structure of the population, developmental biology, and parental care were studied in Pterostichus anthracinus from the floodland plain of the Desna River. Analysis of the data demonstrated that the life cycle of P. anthracinus can be characterized as a spring-summer one with the summer development of larvae and wintering at the adult stage. Reproduction ends in the first ten days of August. Development from eggs to adults lasts for 29–33 days. P. anthracinus possesses the advanced type of parental care that is characterized by active guarding of egg clutches till emergence of larvae. Original Russian Text ? F.N. Kolesnikov, 2008, published in Zoologicheskii Zhurnal, 2008, Vol. 87, No. 10, pp. 1205–1210.  相似文献   

20.
Okhotsk Sea pack ice from Shiretoko in northern Hokkaido, sampled in March 2007, contained microalgal communities dominated by the centric diatoms Thalassiosira nordenskioeldi and T. punctigera. Domination by this genus is very unusual in sea ice. Communities from nearby fast ice at Saroma-ko lagoon were dominated by Detonula conferavea and Odontella aurita. Average microalgal biomass of the Okhotsk Sea pack ice (surface and bottom) was 1.59 ± 1.09 μg chla l−1 and for fast ice (bottom only) at nearby Saroma-ko lagoon, 16.5 ± 3.2 μg l−1 (=31.1 ± 5.0 mg chla m−2). Maximum quantum yield of the Shiretoko pack ice algal communities was 0.618 ± 0.056 with species-specific data ranging between 0.211 and 0.653. These community values are amongst the highest recorded for sea ice algae. Rapid light curves (RLC) on individual cells indicated maximum relative electron transfer rates (relETR) between 20.8 and 60.6, photosynthetic efficiency values (α) between 0.31 and 0.93 and onset of saturation values (E k) between 33 and 91 μmol photons m−2 s−1. These data imply that the pack ice algal community at Shiretoko was healthy and actively photosynthesising. Maximum quantum yield of the Saroma-ko fast ice community was 0.401 ± 0.086, with values for different species between 0.361 and 0.560. RLC data from individual Saroma-ko fast ice algal cells indicated relETR between 55.3 and 60.6, α values between 0.609 and 0.816 and E k values between 74 and 91 μmol photons m−2 s−1 which are consistent with measurements in previous years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号