首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the healthy adult brain microglia, the main immune-competent cells of the CNS, have a distinct (so-called resting or surveying) phenotype. Resting microglia can only be studied in vivo since any isolation of brain tissue inevitably triggers microglial activation. Here we used in vivo two-photon imaging to obtain a first insight into Ca2+ signaling in resting cortical microglia. The majority (80%) of microglial cells showed no spontaneous Ca2+ transients at rest and in conditions of strong neuronal activity. However, they reliably responded with large, generalized Ca2+ transients to damage of an individual neuron. These damage-induced responses had a short latency (0.4-4 s) and were localized to the immediate vicinity of the damaged neuron (< 50 μm cell body-to-cell body distance). They were occluded by the application of ATPγS as well as UDP and 2-MeSADP, the agonists of metabotropic P2Y receptors, and they required Ca2+ release from the intracellular Ca2+ stores. Thus, our in vivo data suggest that microglial Ca2+ signals occur mostly under pathological conditions and identify a Ca2+ store-operated signal, which represents a very sensitive, rapid, and highly localized response of microglial cells to brain damage. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.  相似文献   

2.
In vitro studies show that microglia, the resident immune cells of the brain, express neurotransmitter and neuropeptide receptors which are linked to Ca(2+) signaling. Here we describe an approach to obtain Ca(2+) recordings from microglia in situ. We injected a retrovirus encoding a calcium sensor into the cortex of mice 2 days after stimulation of microglial proliferation by a stab wound injury. Microglial cells were identified with tomato lectin in acute slices prepared 3, 6, 21 and 42 days after the injury. The membrane current profile and the ameboid morphology indicated that microglial cells were activated at day 6 while at day 42 they resembled resting microglia. We recorded transient Ca(2+) responses to application of ATP, endothelin-1, substance P, histamine and serotonin. The fluorescence amplitude of ATP was increased only at day 6 compared to other time points, while responses to all other ligands did not vary. Only half of the microglial cells that responded to ATP also responded to endothelin-1, serotonin and histamine. Substance P, in contrast, showed a complete overlap with the ATP responding microglial population at day 6, at day 42 this population was reduced to 55%. Cultured cells were less responsive to these ligands. This study shows that in situ microglia consist of heterogeneous populations with respect to their sensitivity to neuropeptides and -transmitters.  相似文献   

3.
The present study examined the expression of transient receptor potential vanilloid subtype 1 (TRPV1) in microglia, and its association with microglial cell death. In vitro cell cultures, RT-PCR, Western blot analysis, and immunocytochemical staining experiments revealed that rat microglia and a human microglia cell line (HMO6) showed TRPV1 expression. Furthermore, exposure of these cells to TRPV1 agonists, capsaicin (CAP) and resiniferatoxin (RTX), triggered cell death. This effect was ameliorated by the TRPV1 antagonists, capsazepine and iodo-resiniferatoxin (I-RTX), suggesting that TRPV1 is directly involved. Further examinations revealed that TRPV1-induced toxicity was accompanied by increases in intracellular Ca(2+), and mitochondrial damage; these effects were inhibited by capsazepine, I-RTX, and the intracellular Ca(2+) chelator BAPTA-AM. Treatment of cells with CAP or RTX led to increased mitochondrial cytochrome c release and enhanced immunoreactivity to cleaved caspase-3. In contrast, the caspase-3 inhibitor z-DEVD-fmk protected microglia from CAP- or RTX-induced toxicity. In vivo, we also found that intranigral injection of CAP or 12-hydroperoxyeicosatetraenoic acid, an endogenous agonist of TRPV1, into the rat brain produced microglial damage via TRPV1 in the substantia nigra, as visualized by immunocytochemistry. To our knowledge, this study is the first to demonstrate that microglia express TRPV1, and that activation of this receptor may contribute to microglial damage via Ca(2+) signaling and mitochondrial disruption.  相似文献   

4.
Increase of resting Ca(2+) levels and amplitude of vasopressin-induced Ca(2+) transients were observed when cells in serum-free medium were exposed to 5mM Ca(2+) for 2h. Small effect on cell viability was also observed. A rapid cytotoxic effect was developed in the presence of 10mM Ca(2+) and absence of serum. However, cells exposed to 10mM Ca(2+) in the presence of serum were protected from damage for at least 2days. Resting Ca(2+) levels and cytosolic Ca(2+) transients in serum-containing medium with 10mM Ca(2+) displayed lower increases and a tendency to recover control values. When serum was absent, cells preincubated with 10mM Ca(2+) were more sensitive to thapsigargin-induced damage than cells preincubated with lower Ca(2+). The sensitivity was similar when serum was present. Tolerance to high Ca(2+) in the presence of serum was linked to potentiation of the mitochondrial Ca(2+) entry to decrease the sarcoplasmic reticulum Ca(2+) overload.  相似文献   

5.
Microglia, the resident immune cells of the central nervous system (CNS), monitor the brain for disturbances of tissue homeostasis by constantly moving their fine processes. Microglia respond to tissue damage through activation of ATP/ADP receptors followed by directional process extension to the damaged area. A common feature of several neurodegenerative diseases is the loss of norepinephrine, which might contribute to the associated neuroinflammation. We carried out a high resolution analysis of the effects of norepinephrine (NE) on microglial process dynamics in acute brain slices from mice that exhibit microglia-specific enhanced green fluorescent protein expression. Bath application of NE to the slices resulted in significant process retraction in microglia. Analysis of adrenergic receptor expression with quantitative PCR indicated that resting microglia primarily express β2 receptors but switch expression to α2A receptors under proinflammatory conditions modeled by LPS treatment. Despite the differential receptor expression, NE caused process retraction in both resting and LPS-activated microglia cultured in the gelatinous substrate Matrigel in vitro. The use of subtype-selective receptor agonists and antagonists confirmed the involvement of β2 receptors in mediating microglial process dynamics in resting cells and α2A receptors in activated cells. Co-application of NE with ATP to resting microglia blocked the ATP-induced process extension and migration in isolated microglia, and β2 receptor antagonists prolonged ATP effects in brain slice tissues, suggesting the presence of cross-talk between adrenergic and purinergic signaling in microglia. These data show that the neurotransmitter NE can modulate microglial motility, which could affect microglial functions in pathogenic situations of either elevated or reduced NE levels.  相似文献   

6.
It is not clear how different spatial compartments in the neuron are affected during epileptiform activity. In the present study we have examined the spatial and temporal profiles of depolarization induced changes in the intracellular Ca(2+) concentration in the dendrites of cultured autaptic hippocampal pyramidal neurons rendered epileptic experimentally by treatment with kynurenate (2 mM) and Mg(2+) (11.3 mM) in culture (treated neurons). This was examined with simultaneous somatic patch-pipette recording and Ca(2+) imaging experiments using the Ca(2+) indicator Oregon Green 488 BAPTA-1. Neurons stimulated by depolarization under whole-cell voltage clamp conditions revealed Ca(2+) entry at localized sites in the dendrites. Ca(2+) transients were observed even in the presence of NMDA and AMPA receptor antagonists suggesting that the opening of voltage gated calcium channels primarily triggered the local Ca(2+) changes. Peak Ca(2+) transients in the dendrites of treated neurons were larger compared to the signals recorded from the control neurons. Dendritic Ca(2+) transients in treated neurons showed a distance dependent scaling. Estimation of dendritic local Ca(2+) diffusion coefficients indicated higher values in the treated neurons and a higher availability of free Ca(2+). Simulation studies of Ca(2+) dynamics in these localized dendritic compartments indicate that local Ca(2+) buffering and removal mechanisms may be affected in treated neurons. Our studies indicate that small dendritic compartments are rendered more vulnerable to changes in intracellular Ca(2+) following induction of epileptiform activity. This can have important cellular consequences including local membrane excitability through mechanisms that remain to be elucidated.  相似文献   

7.
8.
Subedi KP  Kim JC  Kang M  Son MJ  Kim YS  Woo SH 《Cell calcium》2011,49(2):136-143
Voltage-dependent anion channels (VDACs) are pore forming proteins predominantly found in the outer mitochondrial membrane and are thought to transport Ca(2+). In this study, we have investigated the possible role of type 2 VDAC (VDAC2) in cardiac Ca(2+) signaling and Ca(2+) sparks using a lentiviral knock-down (KD) technique and two-dimensional confocal Ca(2+) imaging in immortalized autorhythmic adult atrial cells, HL-1. We confirmed high expression of VDAC2 protein in ventricular, atrial, and HL-1 cells using Western blot analysis. Infection of HL-1 cells with VDAC2-targeting lentivirus reduced the level of VDAC2 protein to ~10%. Comparisons of autorhythmic Ca(2+) transients between wild-type (WT) and VDAC2 KD cells showed no significant change in the magnitude, decay, and beating rate of the Ca(2+) transients. Caffeine (10mM)-induced Ca(2+) release, which indicates sarcoplasmic reticulum (SR) Ca(2+) content, was not altered by VDAC2 KD. Interestingly, however, the intensity, width, and duration of the individual Ca(2+) sparks were significantly increased by VDAC2 KD in resting conditions, with no change in the frequency of sparks. VDAC2 KD significantly delayed mitochondrial Ca(2+) uptake during artificial Ca(2+) pulses in permeabilized HL-1 cells. These results suggest that VDAC2 may facilitate mitochondrial Ca(2+) uptake and restrict Ca(2+) spark expansion without regulating activations of sparks under resting conditions, thereby providing evidence on the functional role of VDAC2 in cardiac local Ca(2+) signaling.  相似文献   

9.
The P2X7 receptor (P2X7R) is an ATP-gated ion channel highly expressed in microglia. P2X7R plays important roles in inflammatory responses in the brain. However, little is known about the mechanisms regulating its functions in microglia. Lysophosphatidylcholine (LPC), an inflammatory phospholipid that promotes microglial activation, may have some relevance to P2X7R signaling in terms of microglial function. In this study, we examined its effects on P2X7R signaling in a mouse microglial cell line (MG6) and primary microglia. LPC facilitated the sustained increase in the intracellular Ca(2+) concentration ([Ca(2+)](i)) through P2X7R channels activated by ATP or BzATP. The potentiated increase in [Ca(2+)](i) was actually inhibited by P2X7R antagonists, brilliant blue G and oxidized ATP. The potentiating effect of LPC was not observed with P2Y receptor systems, which are also expressed in MG6 cells. G2A, a receptor for LPC, was expressed in MG6 cells, but not involved in the facilitating effect of LPC on the P2X7R-mediated change in [Ca(2+)](i). Furthermore, LPC enhanced the P2X7R-associated formation of membrane pores and the activation of p44/42 mitogen-activated protein kinase. These results suggest that LPC may regulate microglial functions in the brain by enhancing the sensitivity of P2X7R.  相似文献   

10.
During the early blastula period of zebrafish embryos, the outermost blastomeres begin to undergo a significant thinning in the apical/basolateral dimension to form the first distinct cellular domain of the embryo, the enveloping layer (EVL). During this shape transformation, only the EVL-precursor cells generate a coincidental series of highly restricted Ca(2+) transients. To investigate the role of these localized Ca(2+) transients in this shape-change process, embryos were treated with a Ca(2+) chelator (5,5'-difluoro BAPTA AM; DFB), or the Ca(2+) ionophore (A23187), to downregulate and upregulate the transients, respectively, while the shape-change of the forming EVL cells was measured. DFB was shown to significantly slow, and A23187 to significantly facilitate the shape change of the forming EVL cells. In addition, to investigate the possible involvement of the phosphoinositide and Wnt/Ca(2+) signaling pathways in the Ca(2+) transient generation and/or shape-change processes, embryos were treated with antagonists (thapsigargin, 2-APB and U73122) or an agonist (Wnt-5A) of these pathways. Wnt-5A upregulated the EVL-restricted Ca(2+) transients and facilitated the change in shape of the EVL cells, while 2-APB downregulated the Ca(2+) transients and significantly slowed the cell shape-change process. Furthermore, thapsigargin and U73122 also both inhibited the EVL cell shape-change. We hypothesize, therefore, that the highly localized and coincidental Ca(2+) transients play a necessary role in initiating the shape-change of the EVL cells.  相似文献   

11.
Reduction of brain amyloid-β (Aβ) has been proposed as a therapeutic target for Alzheimer disease (AD), and microglial Aβ phagocytosis is noted as an Aβ clearance system in brains. Galantamine is an acetylcholinesterase inhibitor approved for symptomatic treatment of AD. Galantamine also acts as an allosterically potentiating ligand (APL) for nicotinic acetylcholine receptors (nAChRs). APL-binding site is located close to but distinct from that for acetylcholine on nAChRs, and FK1 antibody specifically binds to the APL-binding site without interfering with the acetylcholine-binding site. We found that in human AD brain, microglia accumulated on Aβ deposits and expressed α7 nAChRs including the APL-binding site recognized with FK1 antibody. Treatment of rat microglia with galantamine significantly enhanced microglial Aβ phagocytosis, and acetylcholine competitive antagonists as well as FK1 antibody inhibited the enhancement. Thus, the galantamine-enhanced microglial Aβ phagocytosis required the combined actions of an acetylcholine competitive agonist and the APL for nAChRs. Indeed, depletion of choline, an acetylcholine-competitive α7 nAChR agonist, from the culture medium impeded the enhancement. Similarly, Ca(2+) depletion or inhibition of the calmodulin-dependent pathways for the actin reorganization abolished the enhancement. These results suggest that galantamine sensitizes microglial α7 nAChRs to choline and induces Ca(2+) influx into microglia. The Ca(2+)-induced intracellular signaling cascades may then stimulate Aβ phagocytosis through the actin reorganization. We further demonstrated that galantamine treatment facilitated Aβ clearance in brains of rodent AD models. In conclusion, we propose a further advantage of galantamine in clinical AD treatment and microglial nAChRs as a new therapeutic target.  相似文献   

12.
Thrombin-induced activation of cultured rodent microglia   总被引:17,自引:0,他引:17  
Microglia are the resident immune cells of the CNS. Upon brain damage, these cells are rapidly activated and function as tissue macrophages. The first steps in this activation still remain unclear, but it is widely believed that substances released from damaged brain tissue trigger this process. In this article, we describe the effects of the blood coagulation factor thrombin on cultured rodent microglial cells. Thrombin induced a transient Ca(2+) increase in microglial cells, which persisted in Ca(2+)-free media. It was blocked by thapsigargin, indicating that thrombin caused a Ca(2+) release from internal stores. Preincubation with pertussis toxin did not alter the thrombin-induced [Ca(2+)](i) signal, whereas it was blocked by hirudin, a blocker of thrombin's proteolytic activity. Incubation with thrombin led to the production of nitric oxide and the release of the cytokines tumor necrosis factor-alpha, interleukin-6, interleukin-12, the chemokine KC, and the soluble tumor necrosis factor-alpha receptor II and had a significant proliferative effect. Our findings indicate that thrombin, a molecule that enters the brain at sites of injury, rapidly triggered microglial activation.  相似文献   

13.
Galanin (GAL) is a neuropeptide which is up-regulated following neuronal axotomy or inflammation. One subtype of GAL receptor (GalR2) is reported to be expressed in the brain's immune cell population, microglia. In the present study, we investigated the effect of GAL on microglial migration and compared the mechanism with that of bradykinin (BK). GAL significantly increased the migration of rat cultured microglia at 0.1 pM. The GAL-induced signal cascade was partly similar to that induced by BK. It was not dependent on G(i/o) protein but involved activation of protein kinase C, phosphoinositide 3-kinase and Ca(2+)-dependent K(+) channels. However, reverse-mode activation of the Na(+) /Ca(2+) -exchanger 1 was not involved in GAL-induced microglial migration, unlike BK-induced migration. Likewise, nominally-free extracellular Ca(2+) inhibited BK-induced migration but not GAL-induced migration. An inositol-1,4,5-triphosphate receptor antagonist significantly inhibited GAL-induced migration. GAL-induced Ca(2+) signaling did not induce nitric oxide synthase expression, but up-regulated class II major histocompatibility complex expression. These results indicate that activation of inositol-1,4,5-triphosphate receptor and increase in intracellular Ca(2+) are important for GAL-induced migration and immunoreactivity in microglia. The differences in down-stream signal transduction induced by GAL and BK suggest that GAL and BK may control distinct microglial functions under pathological conditions.  相似文献   

14.
In smooth muscle cells, various transient, localized [Ca(2+)] changes have been observed that are thought to regulate cell function without necessarily inducing contraction. Although a great deal of effort has been put into detecting these transients and elucidating the mechanisms involved in their generation, the extent to which these transient Ca(2+) signals interact with intracellular Ca(2+)-binding molecules remains relatively unknown. To understand how the spatial and temporal characteristics of an intracellular Ca(2+) signal influence its interaction with Ca(2+)-binding proteins, mathematical models of Ca(2+) diffusion and regulation in smooth muscle cells were used to study Ca(2+) binding to prototypical proteins with one or two Ca(2+)-binding sites. Simulations with the models: (1) demonstrate the extent to which the rate constants for Ca(2+)-binding to proteins and the spatial and temporal characteristics of different Ca(2+) transients influence the magnitude and time course of the responses of these proteins to the transients; (2) predict significant differences in the responses of proteins with one or two Ca(2+)-binding sites to individual Ca(2+) transients and to trains of transients; (3) demonstrate how the kinetic characteristics determine the fidelity with which the responses of Ca(2+)-sensitive molecules reflect the magnitude and time course of transient Ca(2+) signals. Overall, this work demonstrates the clear need for complete information about the kinetics of Ca(2+) binding for determining how well Ca(2+)-binding molecules respond to different types of Ca(2+) signals. These results have important implications when considering the possible modulation of Ca(2+)- and Ca(2+)/calmodulin-dependent proteins by localized intracellular Ca(2+) transients in smooth muscle cells and, more generally, in other cell types.  相似文献   

15.
Microglia are resident macrophage-like APCs of the CNS. To avoid escalation of inflammatory processes and bystander damage within the CNS, microglia-driven inflammatory responses need to be tightly regulated and both spatially and temporally restricted. Following traumatic, infectious, and autoimmune-mediated brain injury, NK cells have been found in the CNS, but the functional significance of NK cell recruitment and their mechanisms of action during brain inflammation are not well understood. In this study, we investigated whether and by which mechanisms human NK cells might edit resting and activated human microglial cells via killing in vitro. IL-2-activated NK cells efficiently killed both resting allogeneic and autologous microglia in a cell-contact-dependent manner. Activated NK cells rapidly formed synapses with human microglial cells in which perforin had been polarized to the cellular interface. Ab-mediated NKG2D and NKp46 blockade completely prevented the killing of human microglia by activated NK cells. Up-regulation of MHC class I surface expression by TLR4 stimulation protected microglia from NK cell-mediated killing, whereas MHC class I blockade enhanced cytotoxic NK cell activity. These data suggest that brain-infiltrating NK cells might restrict innate and adaptive immune responses within the human CNS via elimination of resting microglia.  相似文献   

16.
Embryonic Xenopus myocytes generate spontaneous calcium (Ca(2+)) transients during differentiation in culture. Suppression of these transients disrupts myofibril organization and the formation of sarcomeres through an identified signal transduction cascade. Since transients often occur during myocyte polarization and migration in culture, we hypothesized they might play additional roles in vivo during tissue formation. We have tested this hypothesis by examining Ca(2+) dynamics in the intact Xenopus paraxial mesoderm as it differentiates into the mature myotome. We find that Ca(2+) transients occur in cells of the developing myotome with characteristics remarkably similar to those in cultured myocytes. Transients produced within the myotome are correlated with somitogenesis as well as myocyte maturation. Since transients arise from intracellular stores in cultured myocytes, we examined the functional distribution of both IP(3) and ryanodine receptors in the intact myotome by eliciting Ca(2+) elevations in response to photorelease of caged IP(3) and superfusion of caffeine, respectively. As in culture, transients in vivo depend on Ca(2+) release from ryanodine receptor (RyR) stores, and blocking RyR during development interferes with somite maturation.  相似文献   

17.
It has been widely accepted that microglia, the innate immune cells in the brain, can be chronically activated in response to neuron death, fuelling a self-renewing cycle of microglial activation followed by further neuron damage (reactive microgliosis), which has been considered as the main reason responsible for the progressive nature of neurodegenerative diseases. In the present study, it was found that LPS (lipopolysaccharide) significantly induced the activation of N9 microglia, and the increase of NO level induced by pretreatment of LPS could last after the removal of LPS. The culture medium of activated microglia significantly decreased the viability of rat primary cortical neuron. These results can be blocked by the antioxidant N-acetylcysteine (NAC) and nicotinamide adenine dinucleotide phosphate reduced (NADPH) oxidase inhibitor diphenyleneiodonium sulfate (DPI), suggesting that intracellular reactive oxide species (iROS) released from the activated microglial cells may continue to further activate microglia. Next, it was shown that the iROS level increased rapidly after the LPS treatment in microglia cells followed by the NO production through the regulation of iNOS (inducible nitric oxide synthase) expression. The increase of iROS could be reversed by gp91phox (the critical and catalytic subunit of NADPH oxidase) siRNA. Moreover, NO released from sodium nitroprusside (SNP) was able to increase the iROS production of N9 microglia by regulating of the activity and the expression of NADPH oxidase. In conclusion, our research suggests for the first time that there may exist a self-propelling cycle in microglial cells possibly mediated by iROS and NO when they become activated by LPS. It may be responsible partially for the ongoing microglial activation and the progressive nature of neurodegenerative diseases.  相似文献   

18.
Rui Y  Li R  Liu Y  Zhu S  Yu X  Sheng Z  Xie Z 《Cell biology international》2006,30(9):733-740
The effects of beta amyloid (Abeta) on cytoplasmic Ca(2+) ([Ca(2+)](c)) have been studied extensively, but the current literature on this aspect is confusing. We reported that 20 microM Abeta(25-35) significantly inhibited the synchronized spontaneous cytoplasmic Ca(2+) transients immediately after application, whereas it had little effect on the baseline [Ca(2+)](c) concentration in neurons. Abeta(1-42) had a similar effect on the Ca(2+) transients as Abeta(25-35), while it increased baseline [Ca(2+)](c) concentration gradually. However, Abeta(1-40) had little effect on either Ca(2+) transients or baseline [Ca(2+)](c). Such differential effects of Abeta on Ca(2+) signals might explain, at least partially, the confusing observations from the previous studies and provide important therapeutic implications for preventing or reversing early neuron damage in Alzheimer's disease.  相似文献   

19.
Phagocytosis and the ensuing NADPH-mediated respiratory burst are important aspects of microglial activation that require calcium ion (Ca(2+)) influx. However, the specific Ca(2+) entry pathway(s) that regulates this mechanism remains unclear, with the best candidates being surface membrane Ca(2+)-permeable ion channels or Na(+)/Ca(2+) exchangers. In order to address this issue, we used quantitative real-time RT-PCR to assess mRNA expression of the Na(+)/Ca(2+) exchangers, Slc8a1-3/NCX1-3, before and after phagocytosis by rat microglia. All three Na(+)/Ca(2+) exchangers were expressed, with mRNA levels of NCX1 > NCX3 > NCX2, and were unaltered during the one hour phagocytosis period. We then carried out a biophysical characterization of Na(+)/Ca(2+) exchanger activity in these cells. To investigate conditions under which Na(+)/Ca(2+) exchange was functional, we used a combination of perforated patch-clamp analysis, fluorescence imaging of a Ca(2+) indicator (Fura-2) and a Na(+) indicator (SBFI), and manipulations of membrane potential and intracellular and extracellular ions. Then, we used a pharmacological toolbox to compare the contribution of Na(+)/Ca(2+) exchange with candidate Ca(2+)-permeable channels, to the NADPH-mediated respiratory burst that was triggered by phagocytosis. We find that inhibiting the reversed mode of the Na(+)/Ca(2+) exchanger with KB-R7943, dose dependently reduced the phagocytosis-stimulated respiratory burst; whereas, blockers of store-operated Ca(2+) channels or L-type voltage-gated Ca(2+) channels had no effect. These results provide evidence that Na(+)/Ca(2+) exchangers are potential therapeutic targets for reducing the bystander damage that often results from microglia activation in the damaged CNS.  相似文献   

20.
Discrete localized fluorescence transients due to openings of a single plasma membrane Ca(2+) permeable cation channel were recorded using wide-field digital imaging microscopy with fluo-3 as the Ca(2+) indicator. These transients were obtained while simultaneously recording the unitary channel currents using the whole-cell current-recording configuration of the patch-clamp technique. This cation channel in smooth muscle cells is opened by caffeine (Guerrero, A., F.S. Fay, and J.J. Singer. 1994. J. Gen. Physiol. 104:375-394). The localized fluorescence transients appeared to occur at random locations on the cell membrane, with the duration of the rising phase matching the duration of the channel opening. Moreover, these transients were only observed in the presence of sufficient extracellular Ca(2+), suggesting that they are due to Ca(2+) influx from the bathing solution. The fluorescence transient is characterized by an initial fast rising phase when the channel opens, followed by a slower rising phase during prolonged openings. When the channel closes there is an immediate fast falling phase followed by a slower falling phase. Computer simulations of the underlying events were used to interpret the time course of the transients. The rapid phases are mainly due to the establishment or removal of Ca(2+) and Ca(2+)-bound fluo-3 gradients near the channel when the channel opens or closes, while the slow phases are due to the diffusion of Ca(2+) and Ca(2+)-bound fluo-3 into the cytoplasm. Transients due to short channel openings have a "Ca(2+) spark-like" appearance, suggesting that the rising and early falling components of sparks (due to openings of ryanodine receptors) reflect the fast phases of the fluorescence change. The results presented here suggest methods to determine the relationship between the fluorescence transient and the underlying Ca(2+) current, to study intracellular localized Ca(2+) handling as might occur from single Ca(2+) channel openings, and to localize Ca(2+) permeable ion channels on the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号