共查询到20条相似文献,搜索用时 15 毫秒
1.
Ib Linde-Laursen Roland von Bothmer Niels Jacobsen 《Plant Systematics and Evolution》1990,172(1-4):141-150
The similar-looking basic genomes ofHordeum bulbosum (2x and 4x) have five rather similar metacentric, one submetacentric, and one satellited choromosome. C-banding patterns are characterized by one or two centromeric, or juxtacentromeric, small to larger bands in most chromosomes, by bands at the nucleolar organizers, by small or very small telomeric bands, and by the nearly complete lack of intercalary bands. Banding pattern polymorphism is widespread. Banding patterns supported by chromosome morphology enable identification of homologues, and discrimination between non-homologues inH. bulbosum (2x). The C-banded karyotype ofH. bulbosum (4x) supports an autopolyploid origin, but it was possible to identify only homologues of submetacentrics and SAT-chromosomes. 相似文献
2.
Claus Baden 《Nordic Journal of Botany》1998,18(1):89-94
The karyotypes of Hystrix coreana from eastern USSR and H. patula from USA were investigated by Giemsa C-banding. Both species are outbreeders and have 2n = 4x = 28. The karyotype of two plants of H. coreana has 10 metacentric, 6 submetacentric, 8 heterobrachial and 4 SAT chromosomes; two plants differed by having 12 metacentric, 4 submetacentric, 8 heterobrachial and 4 SAT-chromosomes, and 10 metacentric, 4 submetacentric, 9 heterobrachial and 5 SAT-chromosomes, respectively. The C-banding pattern had no or few inconspicuous intercalary bands, but conspicuous telomeric C-bands in one or both arms giving a high content of heterochromatin (16.3–18.2%). The chromosome complement of one plant of H. patula had 8 metacentric, 6 submetacentric, 8 heterobrachial and 6 SAT-chromosomes. The C-banding pattern had between 1 and 4 intercalary or centromeric bands and conspicuous telomeric bands on one or both arms giving a high content of constitutive heterochromatin (16.4%). 相似文献
3.
The karyotypes ofElymus dentatus from Kashmir andE. glaucescens from Tierra del Fuego, both carrying genomesS andH, were investigated by C- and N-banding. Both taxa had 2n = 4x = 28. The karyotype ofE. dentatus was symmetrical with large chromosomes. It had 18 metacentric, four submetacentric and six satellited chromosomes. The karyotype ofE. glaucescens resembled that ofE. dentatus, but a satellited chromosome pair was replaced by a morphologically similar, non-satellited pair. The C-banding patterns of both species had from one to five conspicuous and a few inconspicuous bands per chromosome. N-banding differentiated the chromosomes of the constituent genomes by producing bands in theH genome only. TheS genomes of both species were similar with five metacentric and two satellited chromosomes having most conspicuous C-bands at telomeric and distal positions. They resembled theS genome of the genusPseudoroegneria. TheH genomes had four similar metacentric and two submetacentric chromosomes. The seventhH genome chromosome ofE. dentatus was satellited, that ofE. glaucescens nonsatellited, but otherwise morphologically similar. The C-bands were distributed at no preferential positions. TheH genome ofE. dentatus resembles theH genomes of some diploidHordeum taxa. 相似文献
4.
Eduardo A. Moscone Maria Lambrou Armando T. Hunziker Friedrich Ehrendorfer 《Plant Systematics and Evolution》1993,186(3-4):213-229
Giemsa C-banding is applied for the first time inCapsicum, allowing preliminary karyotype differentiation of six diploid species. Comparison of interphase nuclei and heterochromatic C-bands reveals striking differences between taxa and contributes to their taxonomic grouping. Therefore, C-banding appears to be a powerful tool for the cytogenetics and karyosystematics of the genus. Banding patterns are characterized by the omnipresence of centromeric bands and a variable number of smaller to larger distal bands, with the addition of intercalary bands in some cases. Satellites are always C-positive. Relationships between species and possible trends of karyotype evolution are discussed, with special reference to the origin of x = 13 from x = 12 and the increase of heterochromatin, regarded as advanced features.Chromosome studies inCapsicum (Solanaceae), III. For the first and the second part seeMoscone (1990, 1993). 相似文献
5.
Background and Aims
Leptochloa (including Diplachne) sensu lato (s.l.) comprises a diverse assemblage of C4 (NAD-ME and PCK) grasses with approx. 32 annual or perennial species. Evolutionary relationships and a modern classification of Leptochloa spp. based on the study of molecular characters have only been superficially investigated in four species. The goals of this study were to reconstruct the evolutionary history of Leptochloa s.l. with molecular data and broad taxon sampling.Methods
A phylogenetic analysis was conducted of 130 species (mostly Chloridoideae), of which 22 are placed in Leptochloa, using five plastid (rpL32-trn-L, ndhA intron, rps16 intron, rps16-trnK and ccsA) and the nuclear ITS 1 and 2 (ribosomal internal transcribed spacer regions) to infer evolutionary relationships and revise the classification.Key results
Leptochloa s.l. is polyphyletic and strong support was found for five lineages. Embedded within the Leptochloa sensu stricto (s.s.) clade are two Trichloris spp. and embedded in Dinebra are Drake-brockmania and 19 Leptochloa spp.Conclusions
The molecular results support the dissolution of Leptochloa s.l. into the following five genera: Dinebra with 23 species, Diplachne with two species, Disakisperma with three species, Leptochloa s.s. with five species and a new genus, Trigonochloa, with two species. 相似文献6.
Wolfang Wetschnig 《Plant Systematics and Evolution》1995,195(1-2):45-59
The widely distributedAllium ericetorum and the local endemic of the Steiner Alps (Slovenia),A. kermesinum, are two closely related species of sect.Rhizirideum, whose main distinguishing character is perianth colour. To obtain further evidence for species separation, karyotype morphology and C-banding patterns were examined in 10 populations. The chromosome number was 2n = 16. In some populations ofA. ericetorum a B-chromosome occurred. Arm and satellite lengths and C-banding patterns were subjected to cluster analysis. Three different karyotype classes were observed and described. Karyotypes did not clearly discriminate between plants with different colours of perianth segments and therefore did not provide evidence for a taxonomic separation ofA. ericetorum and A. kermesinum. There is polymorphism in number and patterns of C-bands within the populations. No correlation between B-chromosomes and particular banding patterns was observed. 相似文献
7.
C-banding patterns ofH. brevisubulatum subsp.brevisubulatum (2x) and subsp.turkestanicum (4x) had conspicuous telomeric C-bands in at least one chromosome arm with a minor difference in average band size between subspecies. Other conspicuous bands were few in number as in other taxa of the species complex. The C-banded area of the chromosomes was estimated to be 7 to 8 and 6 per cent, respectively. C-banding- and SAT-chromosome polymorphisms were observed in both subspecies. The latter and previous observations indicate that the number of SAT-chromosomes is a less reliable diagnostic character. Nucleolar organizer region polymorphisms were demonstrated through silver nitrate staining of nucleoli. C-banding patterns corroborated that tetra- and hexaploid cytotypes of subsp.turkestanicum form an autopolyploid series. Reliable identification ofH. brevisubulatum taxa based on cytological criteria should include the simultaneous use of C-banding patterns, and number and morphology of marker chromosomes. 相似文献
8.
Roegneria grandis was hybridized withR. ciliaris var.japonensis (2n = 28, SSYY),Elymus caninus (2n = 28, SSHH), andPseudoroegneria spicata (2n = 28, SSSS). Chromosome pairing was studied in parents and hybrids. It is concluded from this study that: (i)R. grandis is an allotetraploid species and contains the basic genomes S and Y: (ii) a certain degree of homoeology exists between the S and Y genomes of the species studied. 相似文献
9.
Interspecific and intergeneric hybridizations were carried out to evaluate the genomic relationships among species of Hystrix Moench and to study the relationships between Hystrix species and Psathyrostachys huashanica Keng (2n=2x=14, Nsh). Meiotic pairing in hybrids of Hystrix duthiei ssp. duthiei × P. huashanica (2n=3x=21), Hystrix duthiei ssp. longearistata × P. huashanica (2n=3x=21) and H. patula × P. huashanica (2n=3x=21) averaged 5.18, 5.11 and 0.29 bivalents per cell, while H. patula × H. duthiei ssp. longearistata (2n=4x=28) averaged 25.36 univalents and 1.32 bivalents per cell, respectively. The results indicate that (i) H. duthiei ssp. duthiei and H. duthiei ssp. longearistata have one set of Ns genome from Psathyrostachys; (ii) H. patula has no Ns genome; (iii) genomes of H. duthiei ssp. duthiei and H. duthiei ssp. longearistata are non-homologous to those of H. patula. The genomic relationships between H. patula and other Hystrix species are also discussed. 相似文献
10.
Roland von Bothmer Bao-Rong Lu Ib Linde-Laursen 《Plant Systematics and Evolution》1994,189(3-4):259-266
Crosses ofHordelymus europaeus (2n = 4x = 28) with four genera in theTriticeae were attempted. Adult hybrids were obtained in combinations withHordeum bogdanii (2x),Hordeum depressum (4x), andSecale cereale (2x). The meiotic pairing was very low in the hybrids withH. bogdanii andSecale cereale (0.12 and 0.30 chiasmata/cell, respectively), whereas high pairing (9.90 chiasmata/cell) was found in hybrids withH. depressum due to autosyndetic pairing ofH. depressum chromosomes. The chromosome complement ofHordelymus europaeus comprised 16 metacentrics, 8 submetacentrics, and 4 SAT-chromosomes. The Giemsa C-banding patterns of the chromosomes were characterized by small to minute bands at no preferential positions. It is hypothesized thatHordelymus europaeus may genomically be closest related toTaeniatherum andPsathyrostachys spp. 相似文献
11.
In order to investigate genomic relationships of tetraploidElymus species (all containing the SY genomes) among three morphological groups, i.e. theE. parviglumis, E. semicostatus, andE. tibeticus groups, interspecific hybridizations were carried out among representative species from the three groups. Chromosome associations at metaphase I were analysed in the interspecific hybrids, and genomic relationships of the species within and among the three groups were estimated. Hybridizations among species of the three groups were fairly easy to perform, but no general pattern for crossabilities among certain species or groups was obtained. All the hybrids were completely sterile. Meiotic pairing was moderately high, but ranges of chiasmata were observed in different hybrid combinations. There is no tendency for genomic affinities to be higher within groups than between the groups. Therefore, the meiotic data do not support the division of the SY-genome species into the three groups. However, there is a clear tendency that the differentiation of the SY genomes in the tetraploids is associated with the geographic distribution of the species. 相似文献
12.
Zhang HQ Fan X Sha LN Zhang C Yang RW Zhou YH 《Plant biology (Stuttgart, Germany)》2008,10(5):635-642
The taxonomic status of Hystrix and phylogenetic relationships among Hystrix and its related genera of Pseudoroegneria (St), Hordeum (H), Psathyrostachys (Ns), Elymus (StH), Leymus (NsXm), Thinopyrum bessarabicum (E(b)) and Lophopyrum elongatum (E(e)) were estimated from sequences of the internal transcribed spacer (ITS) region of nuclear ribosomal DNA. The type species of Hystrix, H. patula, clustered with species of Pseudoroegneria, Hordeum, Elymus, Th. bessarabicum and Lo. elongatum, while H. duthiei ssp. duthiei, H. duthiei ssp. longearistata, H. coreana and H. komarovii were grouped with Psathyrostachys and Leymus species. The results indicate that: (i) H. patula is distantly related to other species of Hystrix, but is closely related to Elymus species; (ii) H. duthiei ssp. duthiei, H. duthiei ssp. longearistata, H. coreana and H. komarovii have a close affinity with Psathyrostachys and Leymus species, and H. komarovii might contain the NsXm genome of Leymus; and (iii) the St, H and Ns genomes in Hystrix originate from Pseudoroegneria, Hordeum and Psathyrostachys, respectively, while the Xm in Hystrix and Leymus has a complex relationship with the E or St genomes. According to the genomic system of classification in Tiritceae, it is reasonable to treat Hystrix patula as Elymus hystrix L, and the other species of Hystrix as species of a section of Leymus, Leymus Sect. Hystrix. 相似文献
13.
P. Ellneskog-Staam R. von Bothmer K. Anamthawat-Jónsson B. Salomon 《Plant Systematics and Evolution》2007,265(3-4):241-249
Genomic in situ hybridisation (GISH) and Southern genomic hybridisation were applied in order to gain further knowledge regarding generic
delimitation of the genus Hystrix as well as to clarify the genomes of the Hystrix species H. patula, H. longearistata, H. coreana, H. duthiei and H. komarovii. The hybridisation intensity of different genomic probes was compared among the Hystrix species and with other Triticeae species. The Southern- and GISH results confirm that H. patula contains the StH genome and show that H. komarovii most likely has a variant of this StH genome. The other Hystrix species under study, i.e. H. longearistata, H. coreana and H. duthiei, contain an Ns basic genome, and most probably two variants of this basic genome, Ns
1
Ns
2
. The genus Hystrix is thus not a monophyletic group of species. 相似文献
14.
Genetic relationships among eight populations of domesticated carp (Cyprinus carpio L.), a species with a partially duplicated genome, were studied using 12 microsatellites and 505 AFLP bands. The populations included three aquacultured carp strains and five ornamental carp (koi) variants. Grass carp (Ctenopharyngodon idella) was used as an outgroup. AFLP-based gene diversity varied from 5% (grass carp) to 32% (koi) and reflected the reasonably well understood histories and breeding practices of the populations. A large fraction of the molecular variance was due to differences between aquacultured and ornamental carps. Further analyses based on microsatellite data, including cluster analysis and neighbor-joining trees, supported the genetic distinctiveness of aquacultured and ornamental carps, despite the recent divergence of the two groups. In contrast to what was observed for AFLP-based diversity, the frequency of heterozygotes based on microsatellites was comparable among all populations. This discrepancy can potentially be explained by duplication of some loci in Cyprinus carpio L., and a model that shows how duplication can increase heterozygosity estimates for microsatellites but not for AFLP loci is discussed. Our analyses in carp can help in understanding the consequences of genotyping duplicated loci and in interpreting discrepancies between dominant and co-dominant markers in species with recent genome duplication. 相似文献
15.
赖草属植物的分类现状及主要存在的问题 总被引:1,自引:0,他引:1
赖草属(Leymus Hochst.)为禾本科(Poaceae)小麦族(Triticeae)中的一个有重要经济价值的属,属内多数种类是优良牧草,有些种类具有耐寒、耐旱、耐碱等特性,是农业良种繁育、畜牧业牧草改良利用的重要基因资源。该属在分类学上是一个疑难属,在属的界限、属下组系的划分,以及类群间演化关系上问题较多。对赖草属分类学问题进行了综述,为赖草属植物资源的开发利用和保护提供资料。 相似文献
16.
Bao-Rong Lu 《Plant Systematics and Evolution》1993,187(1-4):191-211
Genomic relationships of 13 tetraploid species within the AsiaticElymus parviglumis group containing the SY genomes were assessed by analysing chromosome pairing at metaphase I of the parental species and their interspecific hybrids. Two major genomic subgroups among the tetraploids were identified from the cluster analysis of the averaged c-values, namely, theE. caucasicus subgroup (two species) and theE. parviglumis subgroup (11 species). The genomic affinity of theElymus species is associated with the interspecific geographic distance.After October 1, 1993 相似文献
17.
The species of the subfamily Opiinae (Hymenoptera: Braconidae) from Hunan (Oriental China) are revised and illustrated. Thirty-six new species are described: Apodesmia bruniclypealis Li & van Achterberg, sp. n., Apodesmia melliclypealis Li & van Achterberg, sp. n., Areotetes albiferus Li & van Achterberg, sp. n., Areotetes carinuliferus Li & van Achterberg, sp. n., Areotetes striatiferus Li & van Achterberg, sp. n., Coleopioides diversinotum Li & van Achterberg, sp. n., Coleopioides postpectalis Li & van Achterberg, sp. n., Fopius dorsopiferus Li, van Achterberg & Tan, sp. n., Indiopius chenae Li & van Achterberg, sp. n., Opiognathus aulaciferus Li & van Achterberg, sp. n., Opiognathus brevibasalis Li & van Achterberg, sp. n., Opius crenuliferus Li & van Achterberg, sp. n., Opius malarator Li, van Achterberg & Tan, sp. n., Opius monilipalpis Li & van Achterberg, sp. n., Opius pachymerus Li & van Achterberg, sp. n., Opius songi Li & van Achterberg, sp. n., Opius youi Li & van Achterberg, sp. n., Opius zengi Li & van Achterberg, sp. n., Phaedrotoma acuticlypeata Li & van Achterberg, sp. n., Phaedrotoma angiclypeata Li & van Achterberg, sp. n., Phaedrotoma antenervalis Li & van Achterberg, sp. n., Phaedrotoma depressiclypealis
Li & van Achterberg, sp. n., Phaedrotoma flavisoma Li & van Achterberg, sp. n., Phaedrotoma nigrisoma Li & van Achterberg, sp. n., Phaedrotoma protuberator Li & van Achterberg, sp. n., Phaedrotoma rugulifera Li & van Achterberg, sp. n., Li & van Achterberg,Phaedrotoma striatinota Li & van Achterberg, sp. n., Phaedrotoma vermiculifera Li & van Achterberg, sp. n., Rhogadopsis latipennis Li & van Achterberg, sp. n.,
Rhogadopsis longicaudifera Li & van Achterberg, sp. n., Rhogadopsis maculosa Li, van Achterberg & Tan, sp. n., Rhogadopsis obliqua Li & van Achterberg, sp. n., Rhogadopsis sculpturator Li & van Achterberg, sp. n., Utetes longicarinatus Li & van Achterberg, sp. n. and Xynobius notauliferus Li & van Achterberg, sp. n.
Areotetes van Achterberg & Li, gen. n. (type species: Areotetes carinuliferus
sp. n.) and Coleopioides van Achterberg & Li, gen. n. (type species: Coleopioides postpectalis
sp. n. are described. All species are illustrated and keyed. In total 30 species of Opiinae are sequenced and the cladograms are presented. Neopius Gahan, 1917, Opiognathus Fischer, 1972, Opiostomus Fischer, 1972, and Rhogadopsis Brèthes, 1913, are treated as a valid genera based on molecular and morphological differences. Opius vittata Chen & Weng, 2005 (not Opius vittatus Ruschka, 1915), Opius ambiguus Weng & Chen, 2005 (not Wesmael, 1835) and Opius mitis Chen & Weng, 2005 (not Fischer, 1963) are primary homonymsandarerenamed into Phaedrotoma depressa Li & van Achterberg, nom. n., Opius cheni Li & van Achterberg, nom. n. andOpius wengi Li & van Achterberg, nom. n., respectively. Phaedrotoma terga (Chen & Weng, 2005) comb. n.,Diachasmimorpha longicaudata (Ashmead, 1905) and Biosteres pavitita Chen & Weng, 2005, are reported new for Hunan, Opiostomus aureliae (Fischer, 1957) comb. n. is new for China and Hunan; Xynobius maculipennis(Enderlein, 1912) comb. n. is new for Hunan and continental China and Rhogadopsis longuria (Chen & Weng, 2005) comb. n. is new for Hunan. The following new combinations are given: Apodesmia puncta (Weng & Chen, 2005) comb. n., Apodesmia tracta (Weng & Chen, 2005) comb. n., Areotetes laevigatus (Weng & Chen, 2005) comb. n., Phaedrotoma dimidia (Chen & Weng, 2005) comb. n., Phaedrotoma improcera (Weng & Chen, 2005) comb. n., Phaedrotoma amputata (Weng & Chen, 2005) comb. n., Phaedrotoma larga (Weng & Chen, 2005) comb. n., Phaedrotoma osculas (Weng & Chen, 2005) comb. n., Phaedrotoma postuma (Chen & Weng, 2005) comb. n., Phaedrotoma rugulosa (Chen & Weng, 2005) comb. n., Phaedrotoma tabularis (Weng & Chen, 2005) comb. n., Rhogadopsis apii (Chen & Weng, 2005) comb. n., Rhogadopsis dimidia (Chen & Weng, 2005) comb. n.,
Rhogadopsis diutia (Chen & Weng, 2005) comb. n., Rhogadopsis longuria (Chen & Weng, 2005) comb. n., Rhogadopsis pratellae(Weng & Chen, 2005) comb. n., Rhogadopsis pratensis (Weng & Chen, 2005) comb. n., Rhogadopsis sculpta (Chen & Weng, 2005) comb. n., Rhogadopsis sulcifer (Fischer, 1975) comb. n.,
Rhogadopsis tabidula(Weng & Chen, 2005) comb. n.,
Xynobius complexus (Weng & Chen, 2005) comb. n., Xynobius indagatrix (Weng & Chen, 2005) comb. n.,
Xynobius multiarculatus (Chen & Weng, 2005) comb. n.The following (sub)genera are synonymised: Snoflakopius Fischer, 1972, Jucundopius Fischer, 1984, Opiotenes Fischer, 1998, and Oetztalotenes Fischer, 1998, with Opiostomus Fischer, 1971; Xynobiotenes Fischer, 1998, with Xynobius Foerster, 1862; Allotypus Foerster, 1862, Lemnaphilopius Fischer, 1972, Agnopius Fischer, 1982, and Cryptognathopius Fischer, 1984, with Apodesmia Foerster, 1862; Nosopoea Foerster, 1862, Tolbia Cameron, 1907, Brachycentrus Szépligeti, 1907, Baeocentrum Schulz, 1911, Hexaulax Cameron, 1910, Coeloreuteus Roman, 1910, Neodiospilus Szépligeti, 1911, Euopius Fischer, 1967, Gerius Fischer, 1972, Grimnirus Fischer, 1972, Hoenirus Fischer, 1972, Mimirus Fischer, 1972, Gastrosema Fischer, 1972, Merotrachys Fischer, 1972, Phlebosema Fischer, 1972, Neoephedrus Samanta, Tamili, Saha & Raychaudhuri, 1983, Adontopius Fischer, 1984, Kainopaeopius Fischer, 1986, Millenniopius Fischer, 1996, and Neotropopius Fischer, 1999, with Phaedrotoma Foerster, 1862. 相似文献
18.
We have used total genomic DNA as a probe to size-fractionated restriction enzyme digests of genomic DNA from a range ofTriticeae species from the generaLeymus
Hochst.,Psathyrostachys
Nevski, andHordeum L., and hybrids betweenHordeum andLeymus to investigate their taxonomic relationships. Genomic Southern hybridization was found to be an effective and simple way to assess the distribution and diversity of essentially species-specific and common, repetitive DNA sequences, and is hence especially useful in evolutionary studies. The DNA sequences ofH. vulgare seem to diverge substantially from those ofH. brachyantherum, H. lechleri, H. procerum, andH. depressum. The genome ofThinopyron bessarabicum shows little homology to those of theLeymus species investigated, confirming thatT. bessarabicum is not an ancestral genome inLeymus. Although the genomes ofLeymus andPsathyrostachys share substantial proportions of DNA sequences, they include divergent repeated sequences as well. Hybridization with a ribosomal DNA probe (pTa 71) showed that the coding regions containing structural genes encoding the 18 S, 5.8 S, and 26 S ribosomal RNA were conserved among the species investigated, whereas the intergenic spacer region was more variable, presenting different sizes of restriction fragments and enabling a classification of the species. The rye heterochromatin probe pSc 119.2 hybridized to DNA fromH. lechleri andT. bessarabicum, but not to DNA from the other species investigated. 相似文献
19.
Seven tetraploid species ofElymus, viz.E. sibiricus, E. caninus, E. gmelinii, E. semicostatus, E. caucasicus, E. parviglume, andE. longearistatus subsp.canaliculatus, representing five sections were studied morphologically and used in interspecific hybridizations. The aim was to investigate whether the present sectional delimitation of the genus was in agreement with genomic data and if there was a correlation between genome constitution and morphology. The study revealed: (i) further information on the genomic affinities between the different species, (ii) that there is no congruence between genome constitution of the species and current sectional delimitation, and (iii) that there is a correlation between genome constitution and morphology in the palea apex shape and in the size of cilia of the palea. 相似文献
20.
利用RAPD特异标记分析东北猬草染色体组成 总被引:1,自引:0,他引:1
选用5个染色体组特异的RAPD引物(St、H、Ns、Ee、Eb),对东北猬草[Hystrix komarovii (Roshev.) Ohwi]等5个猬草属及其8个近缘属物种进行PCR扩增,以探讨东北猬草的染色体组组成.结果显示:Hy.komarovii具有Ns染色体组特异的RAPD标记,而没有St、H、Ee和Eb特异的RAPD标记.表明Hy.komarovii含有Ns染色体组,而不含St和H染色体组,认为其染色体组组成可能与Hy.duthiei、Hy.coreana和Leymus arenarius一样,具有NsXm染色体组.根据染色体组分类原理,支持将东北猬草归于赖草属中. 相似文献