首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 317 毫秒
1.
2.

Background and Aims

The cell cycle is controlled by cyclin-dependent kinases (CDKs), and CDK inhibitors are major regulators of their activities. The ICK/KRP family of CDK inhibitors has been reported in several plants, with seven members in arabidopsis; however, the phylogenetic relationship among members in different species is unknown. Also, there is a need to understand how these genes and proteins are regulated. Furthermore, little information is available on the functional differences among ICK/KRP family members.

Methods

We searched publicly available databases and identified over 120 unique ICK/KRP protein sequences from more than 60 plant species. Phylogenetic analysis was performed using 101 full-length sequences from 40 species and intron–exon organization of ICK/KRP genes in model species. Conserved sequences and motifs were analysed using ICK/KRP protein sequences from arabidopsis (Arabidopsis thaliana), rice (Orysa sativa) and poplar (Populus trichocarpa). In addition, gene expression was examined using microarray data from arabidopsis, rice and poplar, and further analysed by RT-PCR for arabidopsis.

Key Results and Conclusions

Phylogenetic analysis showed that plant ICK/KRP proteins can be grouped into three major classes. Whereas the C-class contains sequences from dicotyledons, monocotyledons and gymnosperms, the A- and B-classes contain only sequences from dicotyledons or monocotyledons, respectively, suggesting that the A- and B-classes might have evolved from the C-class. This classification is also supported by exon–intron organization. Genes in the A- and B- classes have four exons, whereas genes in the C-class have only three exons. Analysis of sequences from arabidopsis, rice and poplar identified conserved sequence motifs, some of which had not been described previously, and putative functional sites. The presence of conserved motifs in different family members is consistent with the classification. In addition, gene expression analysis showed preferential expression of ICK/KRP genes in certain tissues. A model has been proposed for the evolution of this gene family in plants.  相似文献   

3.
4.
SLR1 (SLENDER RICE 1) was thought to be the sole DELLA protein in rice considering the constitutive GA response phenotype of slr1 mutants. There were two other SLR1 homologous SLRL1 and SLRL2 (SLR1 like 1 and 2) which did not have DELLA domain but still shared high level similarity to the C-terminal region of SLR1 found after searching the whole rice genome. SLRL2 specially expressed in the embryo of immature rice seeds and the expression of SLRL2 was increased when treated with GA(3). The SLRL2 over-expressed transgenic Arabidopsis plants were semi-dwarfed, late flowering, and insensitive to GA. Moreover, the expression of AtGA20ox1 and AtGA3ox1 was increased and the expression of AtGA2ox1 decreased, indicating SLRL2 was a repressor of GA signaling. We suggested SLRL2 might function to overcome too strong GA responses and maintained a basic repression. Furthermore, a different form of DELLA family in monocots against dicots was discussed.  相似文献   

5.
赤霉素(gibberellin,GA)是一类非常重要的植物激素,在植物种子萌发、茎干伸长、叶片生长、腺毛发育、花粉成熟、开花诱导和果实成熟等生长发育过程中都发挥着重要的作用。GA在一年生草本植物中可以促进开花,而在大多数多年生木本植物中则抑制成花诱导。为了更好地研究赤霉素在木本油料能源植物小桐子(Jatropha curcas)开花调控方面的作用机理,我们对小桐子整个基因组中参与GA合成代谢和信号转导的全部基因进行了鉴定和序列分析。这些基因包括6个多基因家族编码的蛋白,即GA2氧化酶(GA2-oxidase,GA2ox)、GA3氧化酶(GA3-oxidase,GA3ox)、GA20氧化酶(GA20-oxidase,GA20ox)、GID1(GIBBERELLIN INSENSITIVE DWARF1)、DELLAs和F-box蛋白,以及2个单基因编码的蛋白,EL1(EARLY FLOWERING1)和SPY(SPINDLY)。采用拟南芥和水稻中已经鉴定的上述基因编码的蛋白序列在小桐子基因组序列数据库和本实验的小桐子转录组数据库中进行BLASTP分析,找到17个同源蛋白的全长序列,并将其与28个拟南芥的、16个水稻的、24个葡萄的和22个蓖麻的同源蛋白构建系统发育树进行比对分析。结果表明,小桐子中参与赤霉素合成代谢及信号转导的大多数基因与蓖麻和葡萄同源基因的相似度更高。  相似文献   

6.
7.
Gibberellins (GAs) are involved in many aspects of plant development, including shoot growth, flowering and wood formation. Increased levels of bioactive GAs are known to induce xylogenesis and xylem fiber elongation in aspen. However, there is currently little information on the response pathway(s) that mediate GA effects on wood formation. Here we characterize an important element of the GA pathway in hybrid aspen: the GA receptor, GID1. Four orthologs of GID1 were identified in Populus tremula  ×  P. tremuloides ( PttGID1.1–1.4 ). These were functional when expressed in Arabidopsis thaliana , and appear to present a degree of sub-functionalization in hybrid aspen. PttGID1.1 and PttGID1.3 were over-expressed in independent lines of hybrid aspen using either the 35S promoter or a xylem-specific promoter ( LMX5 ). The 35S : PttGID1 over-expressors shared several phenotypic traits previously described in 35S:AtGA20ox1 over-expressors, including rapid growth, increased elongation, and increased xylogenesis. However, their xylem fibers were not elongated, unlike those of 35S:AtGA20ox1 plants. Similar differences in the xylem fiber phenotype were observed when PttGID1.1 , PttGID1.3 or AtGA20ox1 were expressed under the control of the LMX5 promoter, suggesting either that PttGID1.1 and PttGID1.3 play no role in fiber elongation or that GA homeostasis is strongly controlled when GA signaling is altered. Our data suggest that GAs are required in two distinct wood-formation processes that have tissue-specific signaling pathways: xylogenesis, as mediated by GA signaling in the cambium, and fiber elongation in the developing xylem.  相似文献   

8.
Gibberellin 2-oxidases (GA2ox) are important enzymes that maintain the balance of bioactive GAs in plants. GA2ox genes have been identified and characterized in many plants, but these genes were not investigated in Brassica napus. Here, we identified 31 GA2ox genes in B. napus and 15 of these BnaGA2ox genes were distributed in the A and C subgenomes. Subcellular localization predictions suggested that all BnaGA2ox proteins were localized in the cytoplasm, and gene structure analysis showed that the BnaGA2ox genes contained 2–4 exons. Phylogenetic analysis indicated that BnGA2ox family proteins in monocotyledons and dicotyledons can be divided into four groups, including two C19-GA2ox and two C20-GA2ox clades. Group 4 is a C20-GA2ox Class discovered recently. Most BnaGA2ox genes had a syntenic relationship with AtGA2ox genes. BnaGA2ox genes in the C subgenome had experienced stronger selection pressure than genes in the A subgenome. BnaGA2ox genes were highly expressed in specific tissues such as those involved in growth and development, and most of them were mainly involved in abiotic responses, regulation of phytohormones and growth and development. Our study provided a valuable evolutionary analysis of GA2ox genes in monocotyledons and dicotyledons, as well as an insight into the biological functions of GA2ox family genes in B. napus.  相似文献   

9.
To enhance our understanding of GA metabolism in rice (Oryza sativa), we intensively screened and identified 29 candidate genes encoding the following GA metabolic enzymes using all available rice DNA databases: ent-copalyl diphosphate synthase (CPS), ent-kaurene synthase (KS), ent-kaurene oxidase (KO), ent-kaurenoic acid oxidase (KAO), GA 20-oxidase (GA20ox), GA 3-oxidase (GA3ox), and GA 2-oxidase (GA2ox). In contrast to the Arabidopsis genome, multiple CPS-like, KS-like, and KO-like genes were identified in the rice genome, most of which are contiguously arranged. We also identified 18 GA-deficient rice mutants at six different loci from rice mutant collections. Based on the mutant and expression analyses, we demonstrated that the enzymes catalyzing the early steps in the GA biosynthetic pathway (i.e. CPS, KS, KO, and KAO) are mainly encoded by single genes, while those for later steps (i.e. GA20ox, GA3ox, and GA2ox) are encoded by gene families. The remaining CPS-like, KS-like, and KO-like genes were likely to be involved in the biosynthesis of diterpene phytoalexins rather than GAs because the expression of two CPS-like and three KS-like genes (OsCPS2, OsCPS4, OsKS4, OsKS7, and OsKS8) were increased by UV irradiation, and four of these genes (OsCPS2, OsCPS4, OsKS4, and OsKS7) were also induced by an elicitor treatment.  相似文献   

10.
Mitogen-Activated Protein Kinase (MAPK) genes encode proteins that mediate various signaling pathways associated with biotic and abiotic stress responses in eukaryotes. The MAPK genes form a 3-tier signal transduction cascade between cellular stimuli and physiological responses. Recent identification of soybean MAPKs and availability of genome sequences from other legume species allowed us to identify their MAPK genes. The main objectives of this study were to identify MAPKs in 3 legume species, Lotus japonicus, Medicago truncatula, and Phaseolus vulgaris, and to assess their phylogenetic relationships. We used approaches in comparative genomics for MAPK gene identification and named the newly identified genes following Arabidopsis MAPK nomenclature model. We identified 19, 18, and 15 MAPKs and 7, 4, and 9 MAPKKs in the genome of Lotus japonicus, Medicago truncatula, and Phaseolus vulgaris, respectively. Within clade placement of MAPKs and MAPKKs in the 3 legume species were consistent with those in soybean and Arabidopsis. Among 5 clades of MAPKs, 4 founder clades were consistent to MAPKs of other plant species and orthologs of MAPK genes in the fifth clade-"Clade E" were consistent with those in soybean. Our results also indicated that some gene duplication events might have occurred prior to eudicot-monocot divergence. Highly diversified MAPKs in soybean relative to those in 3 other legume species are attributable to the polyploidization events in soybean. The identification of the MAPK genes in the legume species is important for the legume crop improvement; and evolutionary relationships and functional divergence of these gene members provide insights into plant genome evolution.  相似文献   

11.
Glandular chemical defence relying on the action of salicylaldehyde is characteristic for Chrysomela leaf beetle larvae. The salicylaldehyde precursor salicin, sequestered from salicaceous host plants, is deglucosylated and the aglycon further oxidized by a salicyl alcohol oxidase (SAO) to the respective aldehyde. SAOs, key enzymes in salicin-based glandular chemical defence, were previously identified and shown to be of a single evolutionary origin in Chrysomela species. We here identified and characterized SAO of Phratora vitellinae, the only species outside the genus Chrysomela that produce salicylaldehyde as a defensive compound. Although Chrysomela and Phratora are not closest relatives, their SAOs share glucose-methanol-choline oxidoreductase (GMC) affiliation, a specific GMCi subfamily ancestor, glandular tissue-specific expression and almost identical gene architectures. Together, this strongly supports a single origin of SAOs of both Chrysomela and Phratora. Closely related species of Chrysomela and P. vitellinae use iridoids as defensive compounds, which are like salicylaldehyde synthesized by the consecutive action of glucosidase and oxidase. However, we elucidated SAO-like sequences but no SAO proteins in the glandular secretion of iridoid producers. These findings support a different evolutionary history of SAO, related genes and other oxidases involved in chemical defence in the glandular system of salicylaldehyde and iridoid-producing leaf beetle larvae.  相似文献   

12.
Woody biomass has gained popularity as an environmentally friendly, renewable and sustainable resource for liquid fuel production. Here, we demonstrate biotechnological improvement of the quantity and quality of woody biomass by employing developing xylem (DX)‐preferential production of gibberellin (GA), a phytohormone that positively regulates stem growth. First, for the proof of concept experiment, we produced transgenic Arabidopsis plants expressing GA20‐oxidase, a key enzyme in the production of bioactive GAs, from Pinus densiflora (PdGA20ox1) under the control of either a constitutive 35S promoter, designated 35S::PdGA20ox1, or a DX‐specific promoter (originated from poplar), designated DX15::PdGA20ox1. As we hypothesized, both transgenic Arabidopsis plants (35S::PdGA20ox1 and DX15::PdGA20ox1) exhibited an accelerated stem growth that resulted in a large increase of biomass, up to 300% compared to wild‐type control plants, together with increased secondary wall thickening and elongation of fibre cells. Next, we applied our concept to the production of transgenic poplar trees. Both transgenic poplar trees (35S::PdGA20ox1 and DX15::PdGA20ox1) showed dramatic increases in biomass, up to 300%, with accelerated stem growth and xylem differentiation. Cell wall monosaccharide composition analysis revealed that in both Arabidopsis and poplar, glucose and xylose contents were significantly increased. However, undesirable phenotypes of 35S::PdGA20ox1 poplar, including poor root growth and leaf development, were found. Interestingly, DX15::PdGA20ox1 poplar resulted in a reduction of undesirable phenotypes. Our results indicate that the controlled production of GAs through a tissue‐specific promoter can be utilized as an efficient biotechnological tool for producing enhanced plant biomass, minimizing unwanted effects.  相似文献   

13.
14.
The Arabidopsis thaliana genome has over 550 protease sequences representing all five catalytic types: serine, cysteine, aspartic acid, metallo and threonine (MEROPS peptidase database, http://merops.sanger.ac.uk/), which probably reflect a wide variety of as yet unidentified functions performed by plant proteases. Recent indications that the 26S proteasome, a T1 family-threonine protease, is a regulator of light and hormone responsive signal transduction highlight the potential of proteases to participate in many aspects of plant growth and development. Recent discoveries that proteases are required for stomatal distribution, embryo development and disease resistance point to wider roles for four additional multigene families that include some of the most frequently studied (yet poorly understood) plant proteases: the subtilisin-like, serine proteases (family S8), the papain-like, cysteine proteases (family C1A), the pepsin-like, aspartic proteases (family A1) and the plant matrixin, metalloproteases (family M10A). In this report, 54 subtilisin-like, 30 papain-like and 59 pepsin-like proteases from Arabidopsis, are compared with S8, C1A and A1 proteases known from other plant species at the functional, phylogenetic and gene structure levels. Examples of structural conservation between S8, C1A and A1 genes from rice, barley, tomato and soybean and those from Arabidopsis are noted, indicating that some common, essential plant protease roles were established before the divergence of monocots and eudicots. Numerous examples of tandem duplications of protease genes and evidence for a variety of restricted expression patterns suggest that a high degree of specialization exists among proteases within each family. We propose that comprehensive analysis of the functions of these genes in Arabidopsis will firmly establish serine, cysteine and aspartic proteases as regulators and effectors of a wide range of plant processes.  相似文献   

15.
16.
17.
为研究棉花GA20-氧化酶同源基因GhGA20ox1的功能,将该基因转入本明烟(N.benthamiana)中进行超量表达。RT-PCR分析表明GhGA20ox1基因在转基因植株中得到了不同水平的表达。GhGA20ox1基因的超量表达促进了本明烟中的GA4+7合成,并导致赤霉素过量的表型出现。转基因本明烟的表型变化程度与GhGA20ox1基因的表达水平和GA4+7的含量一致。这些结果表明,GhGA20ox1基因编码一个有功能的GA20-氧化酶,能够在转基因烟草中促进活性GA(GA4+7)的合成,可以用作目的基因来提高棉花纤维和其他植物的内源GA水平。  相似文献   

18.
19.

Background and Aims

The OVATE gene encodes a nuclear-localized regulatory protein belonging to a distinct family of plant-specific proteins known as the OVATE family proteins (OFPs). OVATE was first identified as a key regulator of fruit shape in tomato, with nonsense mutants displaying pear-shaped fruits. However, the role of OFPs in plant development has been poorly characterized.

Methods

Public databases were searched and a total of 265 putative OVATE protein sequences were identified from 13 sequenced plant genomes that represent the major evolutionary lineages of land plants. A phylogenetic analysis was conducted based on the alignment of the conserved OVATE domain from these 13 selected plant genomes. The expression patterns of tomato SlOFP genes were analysed via quantitative real-time PCR. The pattern of OVATE gene duplication resulting in the expansion of the gene family was determined in arabidopsis, rice and tomato.

Key Results

Genes for OFPs were found to be present in all the sampled land plant genomes, including the early-diverged lineages, mosses and lycophytes. Phylogenetic analysis based on the amino acid sequences of the conserved OVATE domain defined 11 sub-groups of OFPs in angiosperms. Different evolutionary mechanisms are proposed for OVATE family evolution, namely conserved evolution and divergent expansion. Characterization of the AtOFP family in arabidopsis, the OsOFP family in rice and the SlOFP family in tomato provided further details regarding the evolutionary framework and revealed a major contribution of tandem and segmental duplications towards expansion of the OVATE gene family.

Conclusions

This first genome-wide survey on OFPs provides new insights into the evolution of the OVATE protein family and establishes a solid base for future functional genomics studies on this important but poorly characterized regulatory protein family in plants.  相似文献   

20.
Bioactive gibberellins (GAs) are involved in many developmental aspects in the life cycle of plants, acting either directly or through interaction with other hormones. One way to study the role of GA in specific mechanisms is to modify the levels of bioactive GA in specific tissues. We increased GA catabolism in different parts of the vascular tissue by overexpressing two different GA 2‐oxidase genes that encode oxidases with affinity for C20‐ or C19‐GA. We show that, irrespective of their localization in the vascular tissue, the expression of different members of this gene family leads to similar modifications in the primary and secondary growth of the stem of hybrid aspen. We also show that the precise localization of bioactive GA downregulation is important for the proper control of other developmental aspects, namely leaf shape and bud dormancy. Expression under the control of one of the studied promoters significantly affected both the shape of the leaves and the number of sylleptic branches. These phenotypic defects were correlated with alterations in the levels and repartitioning of auxins. We conclude that a precise localization of bioactive GA in the vasculature of the apex is necessary for the normal development of the plant through the effect of GAs on auxin transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号