首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
为了阐明烟草赤星病病原真菌长柄链格孢Alternaria longipes对二甲酰亚胺类杀菌剂(DCFs)抗性的分子机理,前期克隆了16个DCFs胁迫差异表达基因的部分cDNA片段.为了利用基因敲除技术进一步分析这些差异表达基因的功能,本研究选取4个差异表达基因,即AlATP7、AlCIT1、AlGLUT和AlHSP88,应用DNA Walking技术对它们两侧的未知序列进行克隆.DNA测序和Blast搜索表明,AlATP7基因开放阅读框为712 bp,含4个外显子和3个内含子,编码169个氨基酸;AlCIT1、AlGLUT和AlHSP88基因未克隆到全长序列,5′末端还有200-300bp才到达翻译起始密码子ATG;在这些DNA序列中,AlCIT1基因长1 214 bp,含1个内含子,编码386个氨基酸;AlGLUT基因长1 308 bP,含1个内含子,编码417个氨基酸;AlHSP88基因长2 087bp,含2个内含子,编码628个氨基酸.与其他丝状真菌的氨基酸序列同源性比对发现,AlATP7和线粒体ATP合酶D亚基、AlCIT1和柠檬酸合成酶、AlGLUT和主要易化子超家族(MFS)类型葡萄糖转运子、AlHSP88和热休克蛋白HSP88分别具有很高的同源性.同时,还对4个DCFs胁迫差异表达基因的系统发育进行分析.基于这些蛋白功能的文献报道和前期的研究,推测A.longipes存在着一种新的DCFs抗性机制:A.longipes利用MFS类型葡萄糖转运子将DCFs排除到细胞外解毒,线粒体ATP合酶和柠檬酸合成酶参与能量供给,而热休克蛋白AlHSP88可能在该机制中促进一些重要蛋白的正确折叠和修复过程中发挥重要作用.  相似文献   

2.
促分裂原活化蛋白激酶(MAPK)级联途径和活性氧参与调控植物过敏性细胞死亡。本文介绍促分裂原活化蛋白激酶级联途径在植物抗病防卫反应信号转导中的作用研究进展,并对活性氧积累与MAPK之间的关系作了分析。  相似文献   

3.
硫酸盐还原菌耐药性研究   总被引:15,自引:0,他引:15  
硫酸盐还原菌(简称SRB)对杀菌剂十二烷基二甲基等基氯化铵(简称“1227”)的耐药性是由药物诱导产生,这种由适应所产生的耐药性获得快而且是可逆的,随着时间的推迟抗药性减弱,6个月后抗药性逐渐消失。研究还表明SRB对甲硝叹没有明显的交叉耐药性。  相似文献   

4.
生物对药剂产生抗药性是生物有机体的基本特性之一,只要使用药剂,就不可避免会遇到抗药性问题。但是使用不同类别的药剂,产生抗药性的快慢、轻重程度是不同的。自六十年代推广内吸性杀菌剂以来,内吸性杀菌剂得到大量的使用,现已占杀菌剂总量的40%左右。随着内吸性  相似文献   

5.
就微生物对工业杀菌剂的抗药性概念、研究概况及抗药性的产生机理进行了介绍,为科学合理使用和开发新型工业杀菌剂提供科学依据。  相似文献   

6.
脱落酸(ABA)是植物体内一种重要的激素分子,在调节植物生长发育和对环境适应的过程中发挥重要的信号作用。促分裂原活化蛋白激酶(MAPK)是一种广泛存在于真核生物中的信号转导途径,由环境胁迫、细胞因子、植物激素、生长因子等诱导,是植物细胞信号转导过程中的主要级联途径之一。已知许多蛋白激酶和蛋白磷酸酶参与了ABA信号途径,MAPKs作为ABA信号转导的下游组分发挥着重要的调节作用。本文就MAPK级联参与ABA信号转导途径的相关研究进展进行叙述,以便对MAPKs和ABA信号之间的交互作用(cross-talk)机制有更深入了解。  相似文献   

7.
鼠类对抗凝血类灭鼠剂抗药性的遗传机制   总被引:1,自引:0,他引:1  
抗凝血类灭鼠剂是鼠类化学防治过程中最常用的,然而鼠类对抗凝血类灭鼠剂的抗药性极大地降低了灭鼠的效率.鼠类可以通过多种分子途径产生抗药性,维生素K环氧化物还原酶复合体,亚单位1基因是抗凝血类灭鼠剂的靶基因,该基因上的氨基酸变异是鼠类产生抗性的主要途径,此外,细胞色素氧化酶P450基因、Calumin基因等也参与介导鼠类的抗药性.本文简单总结了全世界鼠类抗药性的现状,重点介绍了鼠类产生抗药性的分子机制及最新研究进展.  相似文献   

8.
植物钙结合蛋白   总被引:1,自引:0,他引:1  
本文介绍了植物钙调素蛋白(CaM)、类钙调神经素B亚基蛋白(CBL)、Ca2+依赖蛋白激酶(CDPK)和其他钙结合蛋白的研究进展。  相似文献   

9.
信号传导途径新热点:双重特异性蛋白激酶家族按照传统,蛋白激酶分为两类,即丝氨酸/苏氨酸蛋白激酶与酪氨酸蛋白激酶。近来发现还存在着第三类蛋白激酶──双重特异性蛋白激酶(dualspecificitykinase,DSK),它们在信号传导途径与细胞的生长...  相似文献   

10.
正哈尔滨工业大学生物工程中心主要从事微生物基因工程、微生物发酵工程、微生物基因组学、微生物转录组学、微生物代谢组学等方面的研究工作。该中心的研究对象主要集中在对植物病原菌进行生物防治的真菌和与生物质资源化相关的真菌和细菌。对植物病原菌进行生物防治的真菌研究方面,经过20多年的努力,完成了苯并咪唑类杀菌剂抗药性  相似文献   

11.
We previously reported that the group III histidine kinase Dic1p in the maize pathogen Cochliobolus heterostrophus is involved in resistance to dicarboximide and phenylpyrrole fungicides and in osmotic adaptation. In addition, exposure to the phenylpyrrole fungicide fludioxonil led to improper activation of Hog1-type mitogen-activated protein kinases (MAPKs) in some phytopathogenic fungi, including C. heterostrophus. Here we report, for the first time, the relationship between the group III histidine kinase and Hog1-related MAPK: group III histidine kinase is a positive regulator of Hog1-related MAPK in filamentous fungi. The phosphorylation pattern of C. heterostrophus BmHog1p (Hog1-type MAPK) was analyzed in wild-type and dic1-deficient strains by Western blotting. In the wild-type strain, phosphorylated BmHog1p was detected after exposure to both iprodione and fludioxonil at a concentration of 1 microg/ml. In the dic1-deficient strains, phosphorylated BmHog1p was not detected after exposure to 10 microg/ml of the fungicides. In response to osmotic stress (0.4 M KCl), a trace of phosphorylated BmHog1p was found in the dic1-deficient strains, whereas the band representing active BmHog1p was clearly detected in the wild-type strain. Similar results were obtained for Neurospora crassa Os-2p MAPK phosphorylation in the mutant of the group III histidine kinase gene os-1. These results indicate that group III histidine kinase positively regulates the activation of Hog1-type MAPKs in filamentous fungi. Notably, the Hog1-type MAPKs were activated at high fungicide (100 microg/ml) and osmotic stress (0.8 M KCl) levels in the histidine kinase mutants of both fungi, suggesting that another signaling pathway activates Hog1-type MAPKs in these conditions.  相似文献   

12.
Mechanisms of resistance to QoI fungicides in phytopathogenic fungi.   总被引:1,自引:0,他引:1  
The major threat to crops posed by fungal diseases results in the use by growers of enormous amounts of chemicals. Of these, quinol oxydation inhibitors (QoIs) are probably the most successful class of agricultural fungicides. QoIs inhibit mitochondrial respiration in fungi by binding to the Qo site of the cytochrome bc1 complex, blocking electron transfer and halting ATP synthesis. Unfortunately, the rapid development of resistance to these fungicides and consequent control failure has become increasingly problematic. The main mechanism conferring resistance to QoIs is target site modification, involving mutations in the cytochrome b gene CYTB, such as the substitution of glycine by alanine at position 143 (G143A) that occurs in several phytopathogenic fungi. The impact of other mechanisms, including alternative respiration and efflux transporters, on resistance seems to be limited. Interestingly, in some species QoI resistance is not supported by mutations in CYTB, while in others the structure of the gene is such that it is unlikely to undergo G143A mutations. Better understanding of the biological basis of QoI resistance in a single pathogen species will facilitate the development of resistance diagnostic tools as well as proper anti-resistance strategies aimed at maintaining the high efficacy of these fungicides.  相似文献   

13.
The cAMP signal transduction pathway mediates the switch between yeast-like and filamentous growth and influences both sexual development and pathogenicity in the smut fungus Ustilago maydis. Signaling via cAMP may also play a role in fungicide resistance in U. maydis. In particular, the adr1 gene, which encodes the catalytic subunit of the U. maydis cAMP-dependent protein kinase (PKA), is implicated in resistance to the dicarboximide and aromatic hydrocarbon fungicides. In this study, we examined the sensitivity of PKA to vinclozolin and could not demonstrate direct inhibition of protein kinase activity. However, we did find that mutants with disruptions in the ubc1 gene, which encodes the regulatory subunit of PKA, were resistant to both vinclozolin and chloroneb. We also found that these fungicides altered the morphology of both wild-type and ubc1 mutant cells. In addition, strains that are defective in ubc1 display osmotic sensitivity, a property often associated with vinclozolin and chloroneb resistance in other fungi.  相似文献   

14.
真菌为了适应在生长侵染食品、饲料等农产品的过程中所面临的各种环境胁迫的考验,包括热胁迫、氧化胁迫、渗透压胁迫、紫外胁迫等,进化出一套高渗透性甘油促分裂原活化蛋白激酶(high osmolarity glycerol mitogen-activated protein kinase,HOG-MAPK)途径。该途径对真菌的生长发育、真菌毒素的产生和致病性都具有重要影响。HOG-MAPK途径共有两个分支,其中SLN1分支相比另一分支(SHO1分支)具有较为敏感的渗透压胁迫感应能力,能在高渗压和高盐浓度下进行渗透压胁迫反应。SHO1分支参与多种信号感应传导,比如氧化胁迫、热胁迫等。本文综述了真菌HOG-MAPK途径中关键基因sln1、sho1、ste11、ssk2、pbs2和hog1在应对渗透压胁迫、氧化胁迫等不同环境胁迫时所发挥的功能,说明HOG-MAPK途径可以响应多种环境信号,并参与调控黄曲霉、赭曲霉等致病真菌的生长和黄曲霉毒素(aflatoxin)、赭曲霉毒素(ochratoxin)等真菌毒素的产生。在不同环境胁迫下,HOG-MAPK途径对真菌毒素调控机制的研究可为食品和饲料等农产品真菌毒素的防控提供理论基础和指导方向。  相似文献   

15.
The cAMP signal transduction pathway mediates the switch between yeast-like and filamentous growth and influences both sexual development and pathogenicity in the smut fungus Ustilago maydis. Signaling via cAMP may also play a role in fungicide resistance in U. maydis. In particular, the adr1 gene, which encodes the catalytic subunit of the U. maydis cAMP-dependent protein kinase (PKA), is implicated in resistance to the dicarboximide and aromatic hydrocarbon fungicides. In this study, we examined the sensitivity of PKA to vinclozolin and could not demonstrate direct inhibition of protein kinase activity. However, we did find that mutants with disruptions in the ubc1 gene, which encodes the regulatory subunit of PKA, were resistant to both vinclozolin and chloroneb. We also found that these fungicides altered the morphology of both wild-type and ubc1 mutant cells. In addition, strains that are defective in ubc1 display osmotic sensitivity, a property often associated with vinclozolin and chloroneb resistance in other fungi.  相似文献   

16.
17.
When certain phytopathogenic fungi contact plant surfaces, specialized infection structures (appressoria) are produced that facilitate penetration of the plant external barrier; the cuticle. Recognition of this hydrophobic host surface must be sensed by the fungus, initiating the appropriate signaling pathway or pathways for pathogenic development. Using polymerase chain reaction and primers designed from mammalian protein kinase C sequences (PKC), we have isolated, cloned, and characterized a protein kinase from Colletotrichum trifolii, causal agent of alfalfa anthracnose. Though sequence analysis indicated conserved sequences in mammalian PKC genes, we were unable to induce activity of the fungal protein using known activators of PKC. Instead, we show that the C. trifolii gene, designated LIPK (lipid-induced protein kinase) is induced specifically by purified plant cutin or long-chain fatty acids which are monomeric constituents of cutin. PKC inhibitors prevented appressorium formation and, to a lesser extent, spore germination. Overexpression of LIPK resulted in multiple, abnormally shaped appressoria. Gene replacement of lipk yielded strains which were unable to develop appressoria and were unable to infect intact host plant tissue. However, these mutants were able to colonize host tissue following artificial wounding, resulting in typical anthracnose lesions. Taken together, these data indicate a central role in triggering infection structure formation for this protein kinase, which is induced specifically by components of the plant cuticle. Thus, the fungus is able to sense and use host surface chemistry to induce a protein kinase-mediated pathway that is required for pathogenic development.  相似文献   

18.
Filamentous ascomycetous fungi possess many histidine kinases and two conserved response regulators, Ssk1p and Skn7p, in their two-component signaling systems. We previously reported that the fungus unique group III histidine kinase regulates high-osmolarity adaptation and iprodione/fludioxonil fungicide sensitivity by controlling the phosphorylation of Hog1-type mitogen-activated protein kinase (MAPK) in filamentous ascomycetes. Here, we have characterized the response regulator genes ChSsk1 and ChSkn7 in the southern corn leaf blight fungus Cochliobolus heterostrophus. Both ChSsk1- and ChSkn7-disrupted mutants showed little sensitivity to high-osmolarity stress and moderate resistance to the iprodione/fludioxonil fungicides. The phosphorylation of Hog1-type MAPK BmHog1p induced by high-osmolarity stress and fungicide treatments was only regulated by ChSsk1p, indicating that ChSkn7p has roles in high-osmolarity adaptation and fungicide sensitivity that are independent from the activation of BmHog1p. The Chssk1 Chskn7 double mutants clearly showed higher sensitivity to osmolar stress and higher resistance to fungicides than the single mutants. The dose responses of the double mutants fit well with those of the group III histidine kinase-deficient strain. These results suggest that in filamentous ascomycetes, the Ssk1- and Skn7-type response regulators control high-osmolarity adaptation and fungicide sensitivity additively with differential mechanisms under the regulation of the group III histidine kinase. This study provides evidence that filamentous fungi have a unique two-component signaling system that is different from that of yeast and is responsible for high-osmolarity adaptation and fungicide sensitivity.  相似文献   

19.
20.
Fungal Resistance to Plant Antibiotics as a Mechanism of Pathogenesis   总被引:14,自引:0,他引:14       下载免费PDF全文
Many plants produce low-molecular-weight compounds which inhibit the growth of phytopathogenic fungi in vitro. These compounds may be preformed inhibitors that are present constitutively in healthy plants (also known as phytoanticipins), or they may be synthesized in response to pathogen attack (phytoalexins). Successful pathogens must be able to circumvent or overcome these antifungal defenses, and this review focuses on the significance of fungal resistance to plant antibiotics as a mechanism of pathogenesis. There is increasing evidence that resistance of fungal pathogens to plant antibiotics can be important for pathogenicity, at least for some fungus-plant interactions. This evidence has emerged largely from studies of fungal degradative enzymes and also from experiments in which plants with altered levels of antifungal secondary metabolites were generated. Whereas the emphasis to date has been on degradative mechanisms of resistance of phytopathogenic fungi to antifungal secondary metabolites, in the future we are likely to see a rapid expansion in our knowledge of alternative mechanisms of resistance. These may include membrane efflux systems of the kind associated with multidrug resistance and innate resistance due to insensitivity of the target site. The manipulation of plant biosynthetic pathways to give altered antibiotic profiles will also be valuable in telling us more about the significance of antifungal secondary metabolites for plant defense and clearly has great potential for enhancing disease resistance for commercial purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号