首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The extraordinary radioresistance of Deinococcus radiodurans primarily originates from its efficient DNA repair ability. The kinetics of proteomic changes induced by a 6-kGy dose of gamma irradiation was mapped during the post-irradiation growth arrest phase by two-dimensional protein electrophoresis coupled with mass spectrometry. The results revealed that at least 37 proteins displayed either enhanced or de novo expression in the first 1 h of post-irradiation recovery. All of the radiation-responsive proteins were identified, and they belonged to the major functional categories of DNA repair, oxidative stress alleviation, and protein translation/folding. The dynamics of radiation-responsive protein levels throughout the growth arrest phase demonstrated (i) sequential up-regulation and processing of DNA repair proteins such as single-stranded DNA-binding protein (Ssb), DNA damage response protein A (DdrA), DNA damage response protein B (DdrB), pleiotropic protein promoting DNA repair (PprA), and recombinase A (RecA) substantiating stepwise genome restitution by different DNA repair pathways and (ii) concurrent early up-regulation of proteins involved in both DNA repair and oxidative stress alleviation. Among DNA repair proteins, Ssb was found to be the first and most abundant radiation-induced protein only to be followed by alternate Ssb, DdrB, indicating aggressive protection of single strand DNA fragments as the first line of defense by D. radiodurans, thereby preserving genetic information following radiation stress. The implications of both qualitative or quantitative and sequential or co-induction of radiation-responsive proteins for envisaged DNA repair mechanism in D. radiodurans are discussed.  相似文献   

2.
We have recently shown that Deinococcus radiodurans and other radiation resistant bacteria accumulate exceptionally high intracellular manganese and low iron levels. In comparison, the dissimilatory metal-reducing bacterium Shewanella oneidensis accumulates Fe but not Mn and is extremely sensitive to radiation. We have proposed that for Fe-rich, Mn-poor cells killed at radiation doses which cause very little DNA damage, cell death might be induced by the release of Fe(II) from proteins during irradiation, leading to additional cellular damage by Fe(II)-dependent oxidative stress. In contrast, Mn(II) ions concentrated in D. radiodurans might serve as antioxidants that reinforce enzymic systems which defend against oxidative stress during recovery. We extend our hypothesis here to include consideration of respiration, tricarboxylic acid cycle activity, peptide transport and metal reduction, which together with Mn(II) transport represent potential new targets to control recovery from radiation injury.  相似文献   

3.
Physiologic determinants of radiation resistance in Deinococcus radiodurans   总被引:3,自引:0,他引:3  
Immense volumes of radioactive wastes, which were generated during nuclear weapons production, were disposed of directly in the ground during the Cold War, a period when national security priorities often surmounted concerns over the environment. The bacterium Deinococcus radiodurans is the most radiation-resistant organism known and is currently being engineered for remediation of the toxic metal and organic components of these environmental wastes. Understanding the biotic potential of D. radiodurans and its global physiological integrity in nutritionally restricted radioactive environments is important in development of this organism for in situ bioremediation. We have previously shown that D. radiodurans can grow on rich medium in the presence of continuous radiation (6,000 rads/h) without lethality. In this study we developed a chemically defined minimal medium that can be used to analyze growth of this organism in the presence and in the absence of continuous radiation; whereas cell growth was not affected in the absence of radiation, cells did not grow and were killed in the presence of continuous radiation. Under nutrient-limiting conditions, DNA repair was found to be limited by the metabolic capabilities of D. radiodurans and not by any nutritionally induced defect in genetic repair. The results of our growth studies and analysis of the complete D. radiodurans genomic sequence support the hypothesis that there are several defects in D. radiodurans global metabolic regulation that limit carbon, nitrogen, and DNA metabolism. We identified key nutritional constituents that restore growth of D. radiodurans in nutritionally limiting radioactive environments.  相似文献   

4.
赵烨  华跃进 《生命科学》2014,(11):1136-1142
耐辐射球菌对于电离辐射等DNA损伤剂具有极强的抗性,能够将同一个基因组中同时产生的高达100个以上的DNA双链断裂在数十小时内高效而精准地进行修复,是研究DNA双链断裂修复机制的重要模式生物。同源重组、非同源末端连接和单链退火途径作为3个主要的修复途径参与了耐辐射球菌基因组DNA双链断裂的修复过程。此外,一系列新发现的重要蛋白质,如Ppr I、Ddr B等对于耐辐射球菌基因组的修复过程同样至关重要。根据本实验室和国内外在这一研究领域近年来的报道,以不同的修复途径为线索,综述该菌DNA双链断裂修复机制的最新研究成果。  相似文献   

5.
Expression of recA in Deinococcus radiodurans.   总被引:4,自引:2,他引:4       下载免费PDF全文
Deinococcus (formerly Micrococcus) radiodurans is remarkable for its extraordinary resistance to ionizing and UV irradiation and many other agents that damage DNA. This organism can repair > 100 double-strand breaks per chromosome induced by ionizing radiation without lethality or mutagenesis. We have previously observed that expression of D. radiodurans recA in Escherichia coli appears lethal. We now find that the RecA protein of D. radiodurans is ot detectable in D. radiodurans except in the setting of DNA damage and that termination of its synthesis is associated with the onset of deinococcal growth. The synthesis of Shigella flexneri RecA (protein sequence identical to that of E. coli RecA) in recA-defective D. radiodurans is described. Despite a large accumulation of the S. flexneri RecA in D. radiodurans, there is no complementation of any D. radiodurans recA phenotype, including DNA damage sensitivity, inhibition of natural transformation, or inability to support a plasmid that requires RecA for replication. To ensure that the cloned S. flexneri recA gene was not inactivated, it was rescued from D. radiodurans and was shown to function normally in E. coli. We conclude that neither D. radiodurans nor S. flexneri RecA is functional in the other species, nor are the kinetics of induction and suppression similar to each other, indicating a difference between these two proteins in their modes of action.  相似文献   

6.
The members of the Deinococcus-Thermus phylum, which include many species that are resistant to extreme radiation, as well as several thermophiles, have been recognized solely on the basis of their branching patterns in 16S rRNA and other phylogenetic trees. No biochemical or physiological characteristic is currently known that is unique to this group of species. To identify genes/proteins that are exclusive of this group of species, systematic protein basic local alignment tool (Blastp) searches were carried out on each open reading frame (ORF) in the genome of Deinococcus radiodurans. These studies identified 65 proteins that were only found in all three sequenced Deinococcus-Thermus genomes (viz. D. radiodurans, D. geothermalis and Thermus thermophilus), but not in any other bacteria. In addition, these studies also identified 206 proteins that are exclusively found in the two Deinocococci species, and 399 proteins that are unique to D. radiodurans. The identified proteins, which represent a genetic repertoire distinctive to the Deinococcus-Thermus group, or to Deinococci species, provide novel molecular markers for their identification and characterization. The cellular functions of most of these proteins are not known and their studies should prove useful in identifying novel biochemical and physiological characteristics that are exclusive of these groups of bacteria and also those responsible for the extreme radiation resistance of Deinococci.  相似文献   

7.
Deinococcus radiodurans exhibits extraordinary resistance to the lethal effect of DNA-damaging agents, a characteristic attributed to its highly proficient DNA repair capacity. Although the D. radiodurans genome is clearly devoid of recBC and addAB counterparts as RecA mediators, the genome possesses all genes associated with the RecFOR pathway. In an effort to gain insights into the role of D. radiodurans RecFOR proteins in homologous recombination, we generated recF, recO and recR disruptant strains and characterized the disruption effects. All the disruptant strains exhibited delayed growth relative to the wild-type, indicating that the RecF, RecO and RecR proteins play an important role in cell growth under normal growth conditions. A slight reduction in transformation efficiency was observed in the recF and recO disruptant strains compared to the wild-type strain. Interestingly, disruption of recR resulted in severe reduction of the transformation efficiency. On the other hand, the recF disruptant strain was the most sensitive phenotype to γ rays, UV irradiation and mitomycin C among the three disruptants. In the recF disruptant strain, the intracellular level of the LexA1 protein did not decrease following γ irradiation, suggesting that a large amount of the RecA protein remains inactive despite being induced. These results demonstrate that the RecF protein plays a crucial role in the homologous recombination repair process by facilitating RecA activation in D. radiodurans. Thus, the RecF and RecR proteins are involved in the RecA activation and the stability of incoming DNA, respectively, during RecA-mediated homologous recombination processes that initiated the ESDSA pathway in D. radiodurans. Possible mechanisms that involve the RecFOR complex in homologous intermolecular recombination and homologous recombination repair processes are also discussed.  相似文献   

8.
Characterisation of a novel amylosucrase from Deinococcus radiodurans   总被引:2,自引:0,他引:2  
The BLAST search for amylosucrases has yielded several gene sequences of putative amylosucrases, however, with various questionable annotations. The putative encoded proteins share 32-48% identity with Neisseria polysaccharea amylosucrase (AS) and contain several amino acid residues proposed to be involved in AS specificity. First, the B-domains of the putative proteins and AS are highly similar. In addition, they also reveal additional residues between putative beta-strand 7 and alpha-helix 7 which could correspond to the AS B'-domain, which turns the active site into a deep pocket. Finally, conserved Asp and Arg residues could form a salt bridge similar to that found in AS, which is responsible for the glucosyl unit transfer specificity. Among these found genes, locus NP_294657.1 (dras) identified in the Deinococcus radiodurans genome was initially annotated as an alpha-amylase encoding gene. The putative encoded protein (DRAS) shares 42% identity with N. polysaccharea AS. To investigate the activity of this protein, gene NP_294657.1 was cloned and expressed in Escherichia coli. When acting on sucrose, the pure recombinant enzyme was shown to catalyse insoluble amylose polymer synthesis accompanied by side-reactions (sucrose hydrolysis, sucrose isomer and soluble maltooligosaccharide formation). Kinetic analyses further showed that DRAS follows a non-Michaelian behaviour toward sucrose substrate and is activated by glycogen, as is AS. This demonstrates that gene NP_294657.1 encodes an amylosucrase.  相似文献   

9.
The bacterium Deinococcus radiodurans shows remarkable resistance to a range of damage caused by ionizing radiation, desiccation, UV radiation, oxidizing agents, and electrophilic mutagens. D. radiodurans is best known for its extreme resistance to ionizing radiation; not only can it grow continuously in the presence of chronic radiation (6 kilorads/h), but also it can survive acute exposures to gamma radiation exceeding 1,500 kilorads without dying or undergoing induced mutation. These characteristics were the impetus for sequencing the genome of D. radiodurans and the ongoing development of its use for bioremediation of radioactive wastes. Although it is known that these multiple resistance phenotypes stem from efficient DNA repair processes, the mechanisms underlying these extraordinary repair capabilities remain poorly understood. In this work we present an extensive comparative sequence analysis of the Deinococcus genome. Deinococcus is the first representative with a completely sequenced genome from a distinct bacterial lineage of extremophiles, the Thermus-Deinococcus group. Phylogenetic tree analysis, combined with the identification of several synapomorphies between Thermus and Deinococcus, supports the hypothesis that it is an ancient group with no clear affinities to any of the other known bacterial lineages. Distinctive features of the Deinococcus genome as well as features shared with other free-living bacteria were revealed by comparison of its proteome to the collection of clusters of orthologous groups of proteins. Analysis of paralogs in Deinococcus has revealed several unique protein families. In addition, specific expansions of several other families including phosphatases, proteases, acyltransferases, and Nudix family pyrophosphohydrolases were detected. Genes that potentially affect DNA repair and recombination and stress responses were investigated in detail. Some proteins appear to have been horizontally transferred from eukaryotes and are not present in other bacteria. For example, three proteins homologous to plant desiccation resistance proteins were identified, and these are particularly interesting because of the correlation between desiccation and radiation resistance. Compared to other bacteria, the D. radiodurans genome is enriched in repetitive sequences, namely, IS-like transposons and small intergenic repeats. In combination, these observations suggest that several different biological mechanisms contribute to the multiple DNA repair-dependent phenotypes of this organism.  相似文献   

10.
Protein oxidation can contribute to radiation-induced cell death by two mechanisms: (1) by reducing the fidelity of DNA repair, and (2) by decreasing cell viability directly. Previously, we explored the first mechanism by developing a mathematical model and applying it to data on Deinococcus radiodurans . Here we extend the model to both mechanisms, and analyze a recently published data set of protein carbonylation and cell survival in D. radiodurans and Escherichia coli exposed to gamma and ultraviolet radiation. Our results suggest that similar cell survival curves can be produced by very different mechanisms. For example, wild-type E. coli and DNA double-strand break (DSB) repair-deficient recA- D. radiodurans succumb to radiation doses of similar magnitude, but for different reasons: wild-type E. coli proteins are easily oxidized, causing cell death even at low levels of DNA damage, whereas proteins in recA- D. radiodurans are well protected from oxidation, but DSBs are not repaired correctly even when most proteins are intact. Radioresistant E. coli mutants survive higher radiation doses than the wild-type because of superior protection of cellular proteins from radiogenic oxidation. In contrast, wild-type D. radiodurans is much more radioresistant than the recA- mutant because of superior DSB repair, whereas protein protection in both strains is similar. With further development, the modeling approach presented here can also quantify the causes of radiation-induced cell death in other organisms. Enhanced understanding of these causes can stimulate research on novel radioprotection strategies.  相似文献   

11.
Deinococcus radiodurans shows remarkable resistance to reactive oxygen species (ROS), generated by irradiation. Disruption of recX (dr1310) in D. radiodurans using targeted mutagenesis method enhanced its ROS scavenging activity, and recX overexpression in this bacterium repressed its antioxidant activity significantly. Further analyses on catalase and superoxide dismutase, two important antioxidant proteins in cells, showed that RecX could repress the induction of antioxidant enzymes, revealing that it negatively regulates the ROS scavenging activity in D. radiodurans.  相似文献   

12.
Although Dienococcus radiodurans is notoriously resistant to far-ultraviolet radiation (FUV; 254 nm), it is highly sensitive to near-ultraviolet radiation (NUV; 300-400 nm), thus demonstrating that the mechanisms of damage (and/or recovery) by the two types of irradiation are different. This observed difference between FUV and NUV effects in D. radiodurans agrees with previous studies with Escherichia coli. Near-ultraviolet radiation produces DNA damage which is presumed to be single-strand breaks (SSB) in the DNA of D. radiodurans. Unique lesions, such as DNA-protein crosslinks could not be demonstrated in this study. Cells that were pre-irradiated with a small dose of NUV were subsequently protected against inactivating doses of NUV. The data presented are consistent with induced DNA repair following NUV damage in D. radiodurans; this is in contrast to FUV damage where DNA repair is constitutive but not induced.  相似文献   

13.
14.
Limited oxygen availability is a prevalent problem in microbial biotechnology. Recombinant Escherichia coli expressing the hemoglobin from Vitreoscilla (VHb) or the flavohemoglobin from Ralstonia eutropha (formerly Alcaligenes eutrophus) (FHP) demonstrate significantly increased cell growth and productivity under microaerobic conditions. We identify novel bacterial hemoglobin-like proteins and examine if these novel bacterial hemoglobins can elicit positive effects similar to VHb and FHP and if these hemoglobins alleviate oxygen limitation under microaerobic conditions when expressed in E. coli. Several finished and unfinished bacterial genomes were screened using R. eutropha FHP as a query sequence for genes (hmp) encoding hemoglobin-like proteins. Novel hmp genes were identified in Pseudomonas aeruginosa, Salmonella typhi, Klebsiella pneumoniae, Deinococcus radiodurans, and Campylobacter jejuni. Previously characterized hmp genes from E. coli and Bacillus subtilis and the novel hmp genes from P. aeruginosa, S. typhi, C. jejuni, K. pneumoniae, and D. radiodurans were PCR amplified and introduced into a plasmid for expression in E. coli. Biochemically active hemoproteins were expressed in all constructs, as judged by the ability to abduct carbon monoxide. Growth behavior and byproduct formation of E. coli K-12 MG1655 cells expressing various hemoglobins were analyzed in microaerobic fed-batch cultivations and compared to plasmid-bearing control and to E. coli cells expressing VHb. The clones expressing hemoglobins from E. coli, D. radiodurans, P.aeruginosa, and S. typhi reached approximately 10%, 27%, 23%, and 36% higher final optical density values, respectively, relative to the plasmid bearing E. coli control (A(600) 5.5). E. coli cells expressing hemoproteins from P. aeruginosa, S. typhi, and D. radiodurans grew to similar final cell densities as did the strain expressing VHb (A(600) 7.5), although none of the novel constructs was able to outgrow the VHb-expressing E. coli strain. Additionally, increased yield of biomass on glucose was measured for all recombinant strains, and an approximately 2-fold yield enhancement was obtained with D. radiodurans hemoprotein-expressing E. coli relative to the E. coli control carrying the parental plasmid without any hemoglobin gene.  相似文献   

15.
Orthologs of proteins SbcD (Mre11) and SbcC (Rad50) exist in all kingdoms of life and are involved in a wide variety of DNA repair and maintenance functions, including homologous recombination and nonhomologous end joining. Here, we have inactivated the sbcC and/or sbcD genes of Deinococcus radiodurans, a highly radioresistant bacterium able to mend hundreds of radiation-induced DNA double-strand breaks (DSB). Mutants devoid of the SbcC and/or SbcD proteins displayed reduced survival and presented a delay in kinetics of DSB repair and cell division following gamma-irradiation. It has been recently reported that D. radiodurans DNA polymerase X (PolX) possesses a structure-modulated 3'-to-5' exonuclease activity reminiscent of specific nuclease activities displayed by the SbcCD complex from Escherichia coli. We constructed a double mutant devoid of SbcCD and PolX proteins. The double-mutant DeltasbcCD DeltapolX(Dr) (where Dr indicates D. radiodurans) bacteria are much more sensitive to gamma-irradiation than the single mutants, suggesting that the deinococcal SbcCD and PolX proteins may play important complementary roles in processing damaged DNA ends. We propose that they are part of a backup repair system acting to rescue cells containing DNA lesions that are excessively numerous or difficult to repair.  相似文献   

16.
Deinococcus radiodurans, one of the most radioresistant organisms known to date, is able to repair efficiently hundreds of DNA double- and single-strand breaks as well as other types of DNA damages promoted by ionizing or ultraviolet radiation. We review recent discoveries concerning several aspects of radioresistance and survival under high genotoxic stress. We discuss different hypotheses and possibilities that have been suggested to contribute to radioresistance and propose that D. radiodurans combines a variety of physiological tools that are tightly coordinated. A complex network of regulatory proteins may be discovered in the near future that might allow further understanding of radioresistance.  相似文献   

17.
Aims:  To evaluate the antioxidant effect of carotenoids from Deinococcus radiodurans on protein.
Methods and Results:  Deinococcus radiodurans strain R1 (ATCC 13939) and its mutant strain R1ΔcrtB were used for this study. The total carotenoids (R1ex) from D. radiodurans were obtained by extraction with acetone/methanol (7 : 2, by vol), and their antioxidant activity was measured using the DPPH˙ (2,2-diphenyl-1-picrylhydrazyl) system. The protein oxidation level, in vitro and in the cell, was measured using the DNPH (2,4-dinitrophenyl hydrazine) method. The carotenoid extract R1ex scavenged 40·2% DPPH˙ radicals compared to β-carotene (31·7%) at a concentration of 0·5 mg ml−1. The intracellular level of protein oxidation in mutant R1ΔcrtB, which does not contain carotenoid, was 0·0212 mmol mg−1 protein which is significantly greater than that in the wild type (0·0169 mmol mg−1 protein) following the treatment with H2O2. The purified major carotenoid product (deinoxanthin) from the wild type showed a greater inhibition of oxidative damage in bovine serum albumin than lycopene or lutein.
Conclusions:  Carotenoids prevent protein oxidation and contribute to the resistance to cell damage in D. radiodurans .
Significance and Impact of the Study:  Our results provide the evidence that carotenoids can protect proteins in D. radiodurans against oxidative stress.  相似文献   

18.
We have developed a radiation resistant bacterium for the treatment of mixed radioactive wastes containing ionic mercury. The high cost of remediating radioactive waste sites from nuclear weapons production has stimulated the development of bioremediation strategies using Deinococcus radiodurans, the most radiation resistant organism known. As a frequent constituent of these sites is the highly toxic ionic mercury (Hg) (II), we have generated several D. radiodurans strains expressing the cloned Hg (II) resistance gene (merA) from Escherichia coli strain BL308. We designed four different expression vectors for this purpose, and compared the relative advantages of each. The strains were shown to grow in the presence of both radiation and ionic mercury at concentrations well above those found in radioactive waste sites, and to effectively reduce Hg (II) to the less toxic volatile elemental mercury. We also demonstrated that different gene clusters could be used to engineer D. radiodurans for treatment of mixed radioactive wastes by developing a strain to detoxify both mercury and toluene. These expression systems could provide models to guide future D. radiodurans engineering efforts aimed at integrating several remediation functions into a single host.  相似文献   

19.
Compared to radiation-sensitive bacteria, the nucleoids of radiation-resistant Deinococcus species show a higher degree of compaction. Such a condensed nucleoid may contribute to the extreme radiation resistance of Deinococcus by limiting dispersion of radiation-induced DNA fragments. Architectural proteins may play a role in this high degree of nucleoid compaction, but comparative genomics revealed only a limited number of Deinococcus homologs of known nucleoid-associated proteins (NAPs) from other species such as Escherichia coli. A comparative proteomic approach was used to identify potentially novel proteins from isolated nucleoids of Deinococcus radiodurans and Deinococcus deserti. Proteins in nucleoid enriched fractions were identified and semi-quantified by shotgun proteomics. Based on normalized spectral counts, the histone-like DNA-binding protein HU appeared to be the most abundant among candidate NAPs from both micro-organisms. By immunofluorescence microscopy, D. radiodurans HU and both DNA gyrase subunits were shown to be distributed throughout the nucleoid structure and absent from the cytoplasm. Taken together, our results suggest that D. radiodurans and D. deserti bacteria contain a very low diversity of NAPs, with HU and DNA gyrase being the main proteins involved in the organization of the Deinococcus nucleoids.  相似文献   

20.
Free radical scavenging effects of the cellular protein extracts from two strains of Deinococcus radiodurans and Escherichia coli against O2-, H2O2 and *OH were investigated by chemiluminescence (CL) methods. The cellular protein extracts of D. radiodurans R1 and KD8301 showed higher scavenging effects on O2- than that of E. coli. D. radiodurans R1 and KD8301 also strongly scavenged H2O2 with an EC50 (50% effective concentration) of 0.12 and 0.2 mg/mL, respectively, compared to that of E. coli (EC50 = 3.56 mg/mL). The two strains of D. radiodurans were effective in scavenging *OH generated by the Fenton reaction, with EC50 of 0.059 and 0.1 mg/mL, respectively, compared to that of E. coli (EC50 > 1 mg/mL). Results from the chemiluminescence assay of *OH-induced DNA damage and the plasmid pUC18 DNA double-strand break (DSB) model in vitro showed that D. radiodurans had remarkably inhibitory effect on the *OH-induced oxidative damage of DNA. The scavenging effects of D. radiodurans on reactive oxygen species (ROS) played an important role in the response to oxidation stress and preventing against DNA oxidative damage, and may be attributed to intracellular scavenging proteins, including superoxide dismutase (SOD) and catalase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号