首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three forms of cytochrome P-450 of liver microsomes of 3-methylcholanthrene-treated Golden hamsters were purified and characterized as regards their catalytic activity toward aflatoxin B1-related hepatocarcinogenic mycotoxins. These include two major forms, designated as cytochrome P-450-AFB (P-450-I) and P-450-II, and one minor form, P-450-III. Cytochromes P-450-AFB, P-450-II, and P-450-III have their absorption maximum in the carbon monoxide-complex of the reduced form at 448.5, 447.0, and 448.0 nm, have apparent molecular weights of 56,000, 58,000, and 59,500, and are in the low spin, high spin, and low spin state, respectively. Of these, cytochrome P-450-AFB was shown to be highly active in the mutagenic activation of aflatoxin B1-related hepatocarcinogens such as sterigmatocystin and O-methylsterigmatocystin. Activation of aflatoxin B1 by hepatic microsomes of 3-methylcholanthrene-treated hamsters was inhibited almost completely by the antibody against P-450-AFB but not by the antibody against P-450-II, indicating that P-450-AFB is the major component responsible for the activation of aflatoxin B1 by hamster liver. Western blot analysis demonstrated that no protein cross-reacted with the antibody to P-450-AFB in the liver microsomes from guinea pig, rat, mouse, and house musk shrew (Suncus murinus) treated with 3-methylcholanthrene, while one or two proteins cross-reacted with the antibody to P-450-II in the liver microsomes of these animals.  相似文献   

2.
We have studied the activation of aflatoxin B1 by hamster liver microsomes and purified hamster cytochrome P-450 isozymes using a umu mutagen test. The hamster liver microsomes or S-9 fractions were much more active than rat liver microsomes or S-9 fractions in the activation of umu gene expression by aflatoxin B1 metabolites. 3-Methyl-cholanthrene treatment increased aflatoxin B1 activation by hamster liver microsomes. Two major 3-methylcholanthrene-inducible cytochrome P-450 isozymes, P-450 MC1 (IIA) and P-450 MC4 (IA2), were purified from 3-methylcholanthrene-treated hamster liver microsomes, and the metabolism of aflatoxin B1 by these two cytochromes was studied. In the reconstituted enzyme system, both P-450 MC1 and P-450 MC4 were highly active in the activation of aflatoxin B1, and antibodies against these P-450s specifically inhibited these activities. Antibody against P-450 MC1 inhibited the activation of aflatoxin B1 by 20% in the presence of 3-methyl-cholanthrene-treated hamster liver microsomes. In contrast, antibody against P-450 MC4 stimulated the activity by 175%. These results indicated that hamster P-450 MC1 might convert aflatoxin B1 to more toxic metabolite(s), whereas P-450 MC4 might convert aflatoxin B1 to less toxic metabolite(s), than aflatoxin B1 in liver microsomes. The metabolite(s) produced by both hamster cytochrome P-450 MC1 and MC4 were genotoxic in the umu mutagen test.  相似文献   

3.
A form of cytochrome P-450 highly active in inducing mutagenicity of aflatoxin B1 was purified to a specific content of 15.1 nmol/mg of protein from 3-methylcholanthrene-treated hamster liver. This species of cytochrome P-450, having its absorption maximum at 448.5 nm in carbon monoxide-complex of reduced form and low spin ferric ion, is of molecular weight of 56,000 and distinctly different in physicochemical and catalytic properties from major forms of cytochrome P-450 purified from phenobarbital- or 3-methylcholanthrene-treated rat liver. In the induction of aflatoxin B1 mutagenicity, this hamster cytochrome P-450 is 50 times more potent than those from rat liver.  相似文献   

4.
Cytochrome P-450 was partially purified from liver microsomes obtained from control, ethanol, phenobarbital, and 3-methylcholanthrene-treated rats. Benzphetamine demethylation, benzpyrene hydroxylation and aniline hydroxylation activities were assayed in a reconstituted system using fixed amounts of reductase and lipids, and increasing amounts of cytochrome P-450 from each source. Cytochrome P-450 from ethanol-fed rats showed substrate specificity differing from cytochrome P-450 obtained from control, phenobarbital and 3-methylcholanthrene-treated rats.  相似文献   

5.
The distribution of cytochromes P-450 that catalyze aryl hydrocarbon hydroxylase and 7-ethoxycoumarin O-deethylase were studied with monoclonal antibody (MAb) 1-7-1 which completely inhibits these activities of a purified 3-methylcholanthrene-induced rat liver cytochrome P-450. The degree of inhibition by MAb 1-7-1 quantitatively assesses the contribution of different cytochromes P-450 in the liver, lung, and kidney microsomes from untreated, 3-methylcholanthrene- and phenobarbital (PB)-treated rats, mice, guinea pigs, and hamsters. Enzyme sensitivity to MAb 1-7-1 inhibition defines two types of cytochrome P-450 contributing to aryl hydrocarbon hydroxylase and 7-ethoxycoumarin O-deethylase. The MAb 1-7-1-sensitive cytochrome P-450 is a major contributor to aryl hydrocarbon hydroxylase in rat liver, lung, and kidney of 3-methylcholanthrene-treated rats, C57BL/6 mice, guinea pigs, and hamsters; this type is also present in lesser amounts in the extrahepatic tissues of the control and PB-treated animals, and in the lungs of the relatively "noninducible" DBA/2 mice treated with 3-methylcholanthrene. This form however makes little or no contribution to liver aryl hydrocarbon hydroxylase of control or PB-treated animals. 7-Ethoxycoumarin O-deethylase is also a function of both the MAb 1-7-1-sensitive and insensitive classes of cytochrome P-450. The ratio of the classes contributing to aryl hydrocarbon hydroxylase and 7-ethoxycoumarin O-deethylase differs in the various tissues and species and after inducer treatment. All of the 7-ethoxycoumarin O-deethylase activity in guinea pigs and hamsters is a function of cytochromes P-450 different than the MAb 1-7-1-sensitive cytochrome P-450 responsible for aryl hydrocarbon hydroxylase activity. Thus, the MAb 1-7-1 antigenically defines the type of cytochromes P-450 contributing to each reaction. Cytochromes P-450 can be viewed as paradigmatic for enzyme systems in which the nature and amount of product is regulated by multiple isoenzymic forms. Analyses using monoclonal antibodies to specific isoenzymes may thus have broad application to a variety of other complex systems which are composed of multiple isoenzymes.  相似文献   

6.
Two forms of cytochrome P-450 (P-450) from liver microsomes of hamsters treated with 2,3,4,7,8-pentachlorodibenzofuran (PenCDF), which possesses the potent acute toxicity and 3-methylcholanthrene (MC)-type inducing ability of liver microsomal monooxygenases in animals, were purified and characterized. These P-450 forms, designated as hamster P-450H and hamster P-450L, had the molecular masses of 52 and 50 kDa, respectively, and showed the absorption maximum of CO-reduced difference spectra at 446 nm. The absolute spectra of their oxidized forms indicated that hamster P-450H was in high-spin state and hamster P-450L was in low-spin state. A part of PenCDF injected into hamster was tightly bound to purified hamster P-450H at a ratio of 0.107 nmol PenCDF/nmol P-450. In a reconstituted system, both hamster P-450H and hamster P-450L showed relatively low catalytic activities for 3-hydroxylation of benzo[a]pyrene and O-deethylations of both 7-ethoxyresorufin and 7-ethoxycoumarin, while they both catalyzed 7 alpha- and 2 alpha-hydroxylations of testosterone effectively to a similar extent. Addition of cytochrome b5-to a reconstituted system accelerated the formation of 7 alpha-hydroxytestosterone 5.3-fold with hamster P-450L and 2.2-fold with hamster P-450H. In addition, hamster P-450H catalyzed estradiol 2-hydroxylation at a high rate but hamster P-450L did not.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
A procedure is described for the isolation of cytochrome P-450 fraction from hamster liver microsomes. It involves removal of NADPH-cytochrome c reductase activity by treatment with bacterial protease before solubilization with Triton X-100 and precipitation with ammonium sulfate. Reconstitution studies indicate that 2-acetylaminofluorene N-and ring-hydroxylation require both cytochrome P-450 fraction and the reductase fraction. N-hydroxylation activity of cytochrome P-450 fraction from 3-methylcholanthrene pretreated hamsters is different and severalfold greater than that of cytochrome P-450 fraction from controls. These results demonstrate for the first time an activation of a chemical carcinogen by a reconstituted cytochrome P-450 enzyme system.  相似文献   

8.
Earlier, we reported the isolation of a cytochrome P-450 highly active in prostaglandin A (PGA) omega-hydroxylation (PGA omega-hydroxylase) from rabbit kidney cortex, small intestine, and colon microsomes. In the present studies, the effects of peroxisomal proliferating agents on the PGA omega-hydroxylase have been examined. Administration of clofibrate or di(2-ethylhexyl)phthalate (DEHP) resulted in a significant increase in the PGA1 omega-hydroxylase activity of kidney cortex, liver, and small intestine microsomes. Similar findings were also obtained for laurate hydroxylase activity in kidney and liver microsomes. Kidney PGA omega-hydroxylase (designated cytochrome P-450ka) was isolated and highly purified from clofibrate- or DEHP-treated rabbits, with a yield 3 times higher than that from untreated, or phenobarbital- or 3-methylcholanthrene-treated rabbits. Cytochrome P-450ka from clofibrate- or DEHP-treated rabbits exhibited the same properties as those from untreated rabbits. Guinea pig antiserum against cytochrome P-450ka strongly inhibited the omega-hydroxylation of PGA1 by kidney cortex microsomes from clofibrate-treated rabbits. The PGA1 omega-hydroxylase activity of clofibrate-treated liver microsomes was also inhibited by this antiserum, suggesting that a PGA omega-hydroxylase immunochemically related to cytochrome P-450ka exists in liver microsomes.  相似文献   

9.
Cytochromes P-450 and epoxide hydrolase in hamsters were studied by using two-dimensional gel electrophoresis of hepatic microsomes from untreated animals and those treated with phenobarbital, 3-methylcholanthrene, beta-naphthoflavone, trans-stilbene oxide, and pregnenolone-16 alpha-carbonitrile. Coelectrophoresis with corresponding microsomes from rats and in situ peptide mapping were used to identify resolved microsomal polypeptides as cytochromes P-450 or epoxide hydrolase. Two forms of hepatic microsomal epoxide hydrolase were shown to exist in hamsters; these evidenced extensive structural homology with the corresponding enzyme in rats and were induced by the same xenobiotics. At least eight inducible polypeptides in microsomes from hamsters were tentatively identified as cytochromes P-450. Two of these were electrophoretically identical and structurally related with previously characterized forms of the enzyme in rats. Homologues of several major cytochromes P-450 induced by pregnenolone-16 alpha-carbonitrile and/or phenobarbital in the rat were apparently not present in the hamster. In most cases, putative forms of inducible cytochrome P-450 in the hamster existed at significant levels in microsomes from untreated animals whereas in rats the levels of most inducible forms of the enzyme were low in control microsomes, being more strictly dependent on xenobiotic pretreatment. In contrast with epoxide hydrolase, the molecular complexity of hepatic cytochrome P-450 seems to be comparable for rats and hamsters, but the structure and control of these hemoproteins appear to have markedly diverged.  相似文献   

10.
Cytochrome P-450 was purified as a 3-methylcholanthrene complex from liver microsomes of 3-methylcholanthrene-treated rabbits to a specific content of 17 to 18 nmoles per mg of protein with a yield of about 10 %. The purified protein gave only a single protein band on sodium dodecylsulfate-urea-poly-acrylamide gel electrophoresis, and its apparent molecular weight was estimated to be about 54,000, a value which is higher than that for cytochrome P-450 from phenobarbital-treated rabbits by about 4,000. The reconstituted system containing the purified cytochrome and NADPH-cytochrome c reductase was active in NADPH-dependent hydroxylation of benzo[α]pyrene.  相似文献   

11.
The activities of 7-ethoxyresorufin-O-deethylase (EROD), 7-pentoxyresorufin-O-deethylase (PROD), 7-ethoxycoumarin-O-deethylase (ECOD) and aromatic hydrocarbon hydroxylase (AHH) were measured in hepatic microsomes from male and female Wistar rats and Syrian golden hamsters in order to probe the basal activity and the inducibility by phenobarbital (PB) and 3-methylcholanthrene (MC) of different P-450 isoenzymes. The basal activities of EROD and ECOD, but not PROD and AHH, were higher in male hamsters than in male rats. No sex-related difference in enzyme activities was observed with hamsters, whereas male rats had a higher ECOD and AHH activity than female rats. Induction by PB led to a 450-fold and 250-fold increase in PROD activity in male and female rat liver microsomes, respectively, while MC had a more pronounced inductive effect on EROD activity in this species. In hamsters, EROD activity was induced by MC but not by PB. Unexpectedly PROD activity in male and female hamster liver microsomes was only moderately induced by PB, the extent being lower than on induction by MC. Therefore, the activity of PROD, which is useful as a specific enzymatic assay for P-450 IIB in the rat liver, cannot be used to probe PB-like inducers in the hamster liver.  相似文献   

12.
Metabolism of (+)-, (-)-, and (+/-)-trans-3,4-dihydroxy-3, 4-dihydrobenzo[c]phenanthrenes by liver microsomes from rats and mice and by a purified monooxygenase system reconstituted with cytochrome P-450c has been examined. Bay-region 3,4-diol 1,2-epoxides are minor metabolites of both enantiomers of the 3,4-dihydrodiol with liver microsomes from 3-methylcholanthrene-treated rats or with the reconstituted system (less than 10% of total metabolites). Microsomes from control and phenobarbital-treated rats and from control mice form higher percentages of these diol epoxides (13-36% of total metabolites). Microsomes from 3-methylcholanthrene-treated rats and cytochrome P-450c in the reconstituted system form exclusively the diol expoxide-1 diastereomer, in which the benzylic hydroxyl group and oxirane oxygen are cis to each other, from the (+)-(3S,4S)-dihydrodiol. The same enzymes selectively form the diol expoxide-2 diastereomer, with its oxirane oxygen and benzylic hydroxyl groups trans to each other, from the (-)-(3R,4R)-dihydrodiol (77% of the total diol epoxides). Liver microsomes from control rats show similar stereoselectivity whereas liver microsomes from phenobarbital-treated rats and from control mice are less stereoselective. Three bis-dihydrodiols and three phenolic dihydrodiols are also formed from the enantiomeric 3,4-dihydrodiols of benzo[c]phenanthrene. A single diastereomer of one of these bis-dihydrodiols with the newly introduced dihydrodiol group at the 7,8-position accounts for 79-88% of the total metabolites of the (-)-(3R,4R)-dihydrodiol formed by liver microsomes from 3-methylcholanthrene-treated rats or by the reconstituted system containing epoxide hydrolase. In contrast, the (+)-(3S,4S)-dihydrodiol is metabolized to two diastereomers of this bis-dihydrodiol, a third bis-dihydrodiol, and two phenolic dihydrodiols.  相似文献   

13.
We have studied the immunochemical properties of two major 3-methylcholanthrene inducible hamster liver cytochrome P450 isozymes, P450 MC1 and P450 MC4. Immunoblots using specific antibodies against P450 MC1 and P450 MC4 demonstrated that these two P450s were present in very low levels in control hamster livers and were greatly induced by 3-methylcholanthrene treatment. P450 MC1 was immunochemically different from P450 MC4, rat P450c and P450d, and rabbit LM4. The immunorelated polypeptide to P450 MC1 was not present in the control or the 3-methylcholanthrene-treated rat liver microsomes, whereas it was present in two human liver microsomal preparations. On the other hand, P450 MC4 was immunochemically related to rat P450d and rabbit LM4. The immunorelated polypeptide to P450 MC4 was present in the human and 3-methylcholanthrene-treated rat liver microsomes. We also isolated full-length cDNA clones encoding P450 MC1 and P450 MC4 mRNAs from a 3-methylcholanthrene-induced hamster liver cDNA library. The full-length cDNA clones of P450 MC1 and P450 MC4 contained 1771 and 1868 base pairs, which encoded polypeptides of 494 and 513 amino acids, respectively. RNA blot analysis revealed that the mRNAs for P450 MC1 and P450 MC4 were 2100 and 2600 bases in length, respectively. 3-Methylcholanthrene pretreatment increased the P450 MC1 mRNA level by 16-fold and the P450 MC4 mRNA level by 11-fold in the hamster livers. A comparison of the deduced amino acid sequences with other cytochrome P450s revealed that P450 MC1 was most similar to the mouse P450(15) alpha with 75% sequence identity, whereas P450 MC4 shared 87% identity with the rat P450d or mouse P3(450). These results indicated that P450 MC1 was a unique member (CYP2A8) in the P450IIA subfamily, whereas P450 MC4 was the hamster P450IA2.  相似文献   

14.
Metabolism of the environmental pollutant and weak carcinogen benzo[c]-phenanthrene (B[c]Ph) by rat liver microsomes and by a purified and reconstituted cytochrome P-450 system is examined. B[c]Ph proved to be one of the best polycyclic aromatic hydrocarbon substrates for rat liver microsomes. It is metabolized by microsomes from control rats and by rats treated with phenobarbital or 3-methylcholanthrene at 3.9, 4.2 and 7.8 nmol/nmol cytochrome P-450/min, respectively. Principal metabolites are dihydrodiols along with small amounts (less than 10%) of phenols. The K-region 5,6-dihydrodiol is the major metabolite and accounts for 77-89% of the total metabolites. The 3,4-dihydrodiol with a bay-region 1,2-double bond is formed in much smaller amounts and accounts for only 6-17% of the total metabolites, the highest percentage being formed by microsomes from control rats. Highly purified monooxygenase systems reconstituted with cytochrome P-450a, P-450b and P-450c and epoxide hydrolase form predominantly the 5,6-dihydrodiol (95-97% of total metabolites) and only a small percentage of the 3,4-dihydrodiol (3-5% of total metabolites). The 3,4-dihydrodiol is formed with higher enantiomeric purity by microsomes from 3-methylcholanthrene-treated rats (88%) than by microsomes from control rats (78%) or phenobarbital-treated rats (60%). In each case the (3R,4R)-enantiomer predominates. B[c]Ph 5,6-dihydrodiol formed by all three microsomal preparations is nearly racemic.  相似文献   

15.
Purification of a new cytochrome P-450 from human liver microsomes   总被引:3,自引:0,他引:3  
Using a classical methodology of purification consisting of three chromatographic steps (Octyl-Sepharose, DEAE-cellulose, CM-cellulose) we have purified a new cytochrome P-450 from human liver microsomes. It was called cytochrome P-450(9). It has been proven to be different from all precedingly purified human liver microsomal cytochrome P-450 isozymes by its immunological and electrophoretical properties. It does not cross-react with any rat liver cytochrome P-450 and anti-cytochrome P-450(9) does not recognize rat liver microsomes; thus this cytochrome P-450(9) is specific to humans. This cytochrome P-450 isozyme exists in low amounts in human liver microsomes and exhibits an important quantitative polymorphism. In reconstituted system, cytochrome P-450(9) is able to hydroxylate all substrates tested but is not specific of any; its exact role in xenobiotic metabolism in man remains to be elucidated.  相似文献   

16.
T Iyanagi  F K Anan  Y Imai  H S Mason 《Biochemistry》1978,17(11):2224-2230
Hepatic microsomal NADPH-cytochrome P-450 reductase was solubilized from rabbit liver microsomes in the presence of detergents and purified to homogeneity by column chromatography. The purified reductase had a molecular weight of 78 000 and contained 1 mol each of FAD and FMN per mol of enzyme. On reduction with NADPH in the presence of molecular oxygen, an 02-stable semiquinone containing one flavin free radical per two flavins was formed, in agreement with previous work on purified trypsin-solubilized reductase. The reduction of oxidized enzyme by NADPH, and autoxidation of NADPH-reduced enzyme by air, proceeded by both one-electron equivalent and two-electron equivalent mechanisms. The reductase reduced cytochrome P-450 (from phenobarbital-treated rabbits) and cytochrome P-448 (from 3-methylcholanthrene-treated rabbits). The rate of reduction of cytochrome P-450 increased in the presence of a substrate, benzphetamine, but that of cytochrome P-448 did not.  相似文献   

17.
Oxidative demethylation of dimethylnitosamine was studied with both reconstituted and unresolved liver microsomal cytochrome P-450 enzyme systems from rats and hamsters. Proteinase treatment of liver microsomal preparations yielded cytochrome P-450 particulate fractions. Both cytochrome P-450 and NADPH- cytochrome c reductase fractions were required for optimum demethylation activity. Particulate cytochrome P-450 fractions were more effecient than either Triton X-100- or cholatesolubilized preparations of these particles in demethylation activity with rat and hamster liver preparations appear to be due to differences in specificity in their cytochrome P-450 fractions.  相似文献   

18.
The epitope-specific cytochrome P-450 content of animal livers was analysed by radioimmunoassay using a panel of seven monoclonal antibodies (MAbs) made to a 3-methylcholanthrene-induced rat liver cytochrome P-450. Competitive radioimmunoassays utilizing a reference radiolabelled MAb and a series of unlabelled MAbs indicated that there are at least three distinct classes of MAbs to different epitopes on cytochrome P-450. In addition, a direct radioimmunoassay employing a radiolabelled second antibody detected MAb-specific cytochromes P-450 in livers from different animals. This radioimmunoassay detected large elevations in the levels of these cytochromes P-450 in the livers of 3-methylcholanthrene-treated rats and C57BL/6 mice compared with untreated rats, 3-methylcholanthrene-treated DBA/2 mice or guinea pigs. The two complementary radioimmunoassay methods are sensitive, efficient, and easily applicable for screening large number of tissue samples for MAb-defined cytochrome P-450 phenotype.  相似文献   

19.
Induction of perfluorodecalin (PFD) of the liver microsomal system of metabolism of xenobiotics has been studied and compared with the inductions by phenobarbital (PB) and 3-methylcholanthrene (MC). It has been shown that PFD increases the content of cytochrome P-450, NADPH-cytochrome c reductase activity. Like PB, PFD induces the activities of benzphetamine-N-demethylase, aldrine-epoxidase, 16 beta-androstendion-hydroxylase. Using specific antibodies against cytochromes P-450b and P-450c (which are the main isoenzymes of cytochrome P-450 in the PB- and MC-microsomes respectively), an immunological identity of the cytochrome P-450 isoforms during PFD and PB induction has been found. According to the rocket immunoelectrophoresis the content of cytochrome P-450 in PFD-microsomes, which is immunologically indistinguishable from P-450b, was approximately 70% of the total cytochrome P-450. Two forms of cytochrome P-450 were isolated from the liver microsomes of PFD-induced rats and purified to homogeneity. A comparison of these forms with cytochromes P-450b and P-450e obtained from the PB-induced rat liver microsomes revealed their similarity in a number of properties, e.g., chromotographic behavior on DEAE-Sephacel column, molecular weight determined by sodium dodecyl sulphate (SDS) electrophoresis in polyacrylamide gel, immunoreactivity, peptide mapping, catalytic activity. The data presented demonstrate that PFD induced in rat liver microsomes the cytochrome P-450 forms whose immunological properties and substrate specificity correspond to those of the PB-type cytochrome P-450. These findings suggest that PFD and PB, which differ in their chemical structure, induce in the rat liver microsomes identical forms of cytochrome P-450.  相似文献   

20.
The effects of ethanol on liver, kidney and intestine monooxygenases were studied using hamsters chronically fed with isocaloric control and ethanol-containing liquid diets. The inductive effects of ethanol on liver and kidney aniline hydroxylase activities began to approach plateau level after the animals were fed ethanol for two weeks. Intestinal aniline hydroxylation was refractory to ethanol induction. In control and ethanol-fed hamsters, CO-difference spectra of hepatic and extrahepatic microsomes differed in absorption maxima. Chronic alcohol consumption caused significant increases of cytochrome P-450 and cytochrome b5 contents of liver and kidney microsomes. The increases of the heme proteins were associated with the induction of aniline hydroxylase, N-nitrosodimethylamine demethylase and 7-ethoxycoumarin 0-deethylase activities. In contrast to the liver and kidney, intestinal microsomal cytochromes P-450 and b5 contents in ethanol-treated animals were lower than the controls. Ethanol pretreatment was without effect on intestinal monooxygenase activities toward the metabolism of aniline, N-nitrosodimethylamine, 7-ethoxycoumarin and benzo(a)pyrene. Gel electrophoresis of tissue microsomes from control and ethanol-treated hamsters revealed that ethanol treatment enhanced the intensity of the protein band(s) in the cytochrome P-450 molecular weight region in the liver and kidney, but not in the intestine. These results demonstrate that in hamsters the response of monooxygenase to ethanol may vary from tissue to tissue and it is difficult to make a generalization regarding the inducing property of ethanol. The differential effect on cytochrome P-450 may be an important factor in determining the interaction between ethanol and xenobiotic metabolism in animal tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号