首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The rat myoblast L6E9 cell line under appropriate culture conditions is a uniform population of cycling cells which can be induced to differentiate into a pure population of myotubes. The pattern and kinetics of myogenic differentiation of this cell line are similar to those of primary skeletal muscle myoblasts. We have used this cell line to investigate the controls regulating the synthesis and accumulation of myosin heavy chain during myogenic development. From pulse labeling studies of total cellular protein synthesis, we observed that activation of MHC4 synthesis is temporally correlated with cell fusion and myotube formation. MHC synthesis is transiently induced from <1% up to 25% of the total protein synthesized. After MHC has accumulated to the steady-state level characteristic of fully differentiated myotubes, MHC synthesis decreases very rapidly to almost basal levels. To determine whether this transient induction of MHC synthesis was due to parallel changes in MHC messenger RNA levels, the accumulation and compartmentalization of MHC mRNA during L6E9 cell differentiation was followed by complementary DNA/RNA hybridization using cDNA prepared against MHC mRNA purified from L6E9 cells. We demonstrate that the level of MHC synthesis closely parallels the level of cytoplasmic MHC mRNA. The induction of MHC mRNA accumulation is initiated at least 36 hours prior to cell fusion and at a time when all cells in the population are still uncommitted to terminal differentiation as tested by cell cloning. The level of cytoplasmic MHC mRNA is increased from ~200 molecules per cell in the growing state to ~50,000 molecules at the peak of induction (day 6 after plating). Subsequently the levels of MHC mRNA decrease very rapidly and at day 10 after plating there are only ~3000 molecules per myotube nucleus. A striking feature of this regulation is the behavior of MHC mRNA on oligo(dT) columns. Most (~90%) of the MHC mRNA transiently induced during differentiation has a very short poly(A) tail (<20 nucleotides). We conclude that the striking induction followed by deinduction of MHC synthesis is controlled primarily by the induction and deinduction of cytoplasmic MHC mRNA accumulation. The relationship of our observations to muscle physiology is discussed.  相似文献   

3.
Sodium butyrate, when added in millimolar concentration to a culture of myoblasts of the L6 cell line, inhibits reversibly cell proliferation and differentiation. In the present work, we have studied the effect of Na butyrate on the translational efficiency of the overall poly (A)+ RNA. The mRNA from treated cells was translated in vitro as efficiently as proliferating myoblasts mRNA, while a decrease of translation efficiency was observed with myotubes mRNA. In addition this RNA directs the synthesis of several new polypeptides. on the switch on of alpha actin and myosin heavy chains (MHC), muscle specific genes by the dot blot and Northern blot techniques using cloned probes. Na butyrate prevented the expression of MHC and allowed the switch on of alpha actin gene but at a lesser extent than in normal myotubes. In addition the drug prevented the translocation of alpha actin mRNA into the cytoplasm.  相似文献   

4.
5.
6.
Early embryonic and late fetal mouse myogenic cells showed distinct patterns of perinatal myosin heavy chain (MHC) isoform expression upon differentiation in vitro. In cultures of somite or limb muscle cells isolated from Day 9 to Day 12 embryos, differentiated cells that expressed perinatal MHC were rare and perinatal MHC was not detectable by immunoblotting. In cultures of limb muscle cells isolated from Day 13 to Day 18 fetuses, in contrast, the perinatal MHC isoform was easily detected and was expressed in a substantial percentage of myocytes and myotubes. Analyses of clonally derived muscle colonies and cytosine arabinoside-treated fetal muscle cell cultures suggested that different fetal muscle cell nuclei initiated perinatal MHC expression at different times. In both embryonic and fetal cell cultures, the embryonic MHC isoform was expressed by all differentiated cells examined. A small number of myotubes in fetal muscle cell cultures showed a mosaic distribution of MHC isoform accumulation in which the perinatal MHC isoform accumulated in a restricted region of the myotube near particular nuclei, whereas the embryonic MHC isoform accumulated throughout the myotube. Thus, the myogenic program of fetal, but not embryonic, mouse myogenic cells includes expression of the perinatal MHC isoform upon differentiation in culture.  相似文献   

7.
8.
9.
10.
When adult mouse muscle fibers are co-cultured with embryonic mouse spinal cord, the muscle regenerates to form myotubes that develop cross-striations and contractions. We have investigated the myosin heavy chain (MHC) isoforms present in these cultures using polyclonal antibodies to the neonatal, adult fast, and slow MHC isoforms of rat (all of which were shown to react specifically with the analogous mouse isoforms) in an immunocytochemical assay. The adult fast MHC was absent in newly formed myotubes but was found at later times, although it was absent when the myotubes myotubes were cultured without spinal cord tissue. When nerve-induced muscle contractions were blocked by the continuous presence of alpha-bungarotoxin, there was no decrease in the proportion of fibers that contained adult fast MHC. Neonatal and slow MHC were found at all times in culture, even in the absence of the spinal cord, and so their expression was not thought to be nerve-dependent. Thus, in this culture system, the expression of adult fast MHC required the presence of the spinal cord, but was probably not dependent upon nerve-induced contractile activity in the muscle fibers.  相似文献   

11.
12.
13.
14.
Regulation of tropomyosin gene expression during myogenesis.   总被引:2,自引:0,他引:2       下载免费PDF全文
In skeletal muscle, tropomyosin has a critical role in transduction of calcium-induced contraction. Presently, little is known about the regulation of tropomyosin gene expression during myogenesis. In the present study, qualitative and quantitative changes in the nucleic acid populations of differentiating chicken embryo muscle cells in culture have been examined. Total nucleic acid content per nucleus increased about fivefold in fully developed myotubes as compared to mononucleated myoblasts. The contribution of deoxyribonucleic acid to the total nucleic acid population decreased from 24% in myoblasts to 5% of total nucleic acid in myotubes. Concomitant with the decrement in deoxyribonucleic acid contribution to total nucleic acid was an increase in polyadenylated ribonucleic acid (RNA) content per cell which reached levels in myotubes that were 17-fold higher than those of myoblasts. Specific changes in the RNA population during myogenesis were further investigated by quantitation of the synthetic capacity (messenger RNA levels) per cell for alpha- and beta-tropomyosin. Cell-free translation and immunoprecipitation demonstrated an approximately 40-fold increase in messenger RNA levels per nucleus for alpha- and beta-tropomyosin after fusion in the terminally differentiated myotubes. Indirect immunofluorescence with affinity-purified tropomyosin antibodies demonstrated the presence of tropomyosin-containing filaments in cells throughout myogenesis. Thus, the tropomyosin genes are constitutively expressed during muscle differentiation through the production of tropomyosin messenger RNA and translation into tropomyosin protein.  相似文献   

15.
Vertebrate myosin heavy chains (MHC) are represented by multiple genes that are expressed in a spatially and temporally distinct pattern during development. In order to obtain molecular probes for developmentally regulated human MHC isoforms, we used monoclonal antibodies to screen an expression cDNA library constructed from primary human myotube cultures. A 3.4 kb cDNA was isolated that encodes one of the first MHCs to be transcribed in human skeletal muscle development. A portion of the corresponding gene encoding this isoform has also been isolated. Expression of this embryonic MHC is a hallmark of muscle regeneration after birth and is a characteristic marker of human muscular dystrophies. During normal human development, expression is restricted to the embryonic period of development prior to birth. In primary human muscle cell cultures, devoid of other cell types, mRNA accumulation begins as myotubes form, reaches a peak 2 days later and declines to undetectable levels within 10 days. The expression of the protein encoded by the embryonic skeletal MHC gene follows a similar time course, lagging behind the mRNA by approximately two days. Thus, expression of the human embryonic gene is efficiently induced and then repressed in cultured muscle cells, as it is in muscle tissue. The study of the regulation of a human MHC isoform with a central role in muscle development and in muscle regeneration in disease states is therefore amendable to analysis at a molecular level.  相似文献   

16.
17.
18.
Myosin heavy chain (MHC) is encoded by a multigene family containing members which are expressed in developmental and fiber type-specific patterns. In developing rats, primary (1°) and secondary (2°) myotjbes can be disfinguished by differences in MHC expression: 1° myotubes coexpress embryonic and slow MHC, while 2° myotubes initially express only embryonic MHC. We have used monoclonal antibodies which recognize the embryonic, slow, neonatal, and adult fast IIB/IIX MHCs to examine MHC accumulation in myoblasts obtained from hindlimbs of embryonic day (ED) 14 and ED 20 Sprague-Dawley rats during differentiation in vitro. Embryonic myoblasts (ED 14), which develop into 1° myotubes in vivo, differentiate as myocytes or small myotubes (i.e., 1–4 nuclei) which express both embryonic and slow MHC. They do not accumulate detectable levels of neonatal or adult fast IIB/IIX MHC. Fetal myoblasts, which develop into secondary myotubes in vivo, fuse to form large myotubes (i.e., 10–50 nuclei) and express predominantly embryonic MHC at 3 days in culture. These myotubes accumulate neonatal and adult fast IIB/IIX isoforms of MHC and eventually contract spontaneously. In contrast to embryonic myotubes, they do not accumulate slow MHC. Our results demonstrate that embryonic and fetal rat myoblasts express different phenotypes in vitro and suggest that they represent distinct myoblast lineages similar to those previously described in chickens and mice. These two lineages may be responsible for the generation of distinct populations of 1° and 2° myotubes in vivo. © 1993Wiley-Liss, Inc.  相似文献   

19.
20.
The emergence of avian satellite cells during development has been studied using markers that distinguish adult from fetal cells. Previous studies by us have shown that myogenic cultures from fetal (Embryonic Day 10) and adult 12-16 weeks) chicken pectoralis muscle (PM) each regulate expression of the embryonic isoform of fast myosin heavy chain (MHC) differently. In fetal cultures, embryonic MHC is coexpressed with a ventricular MHC in both myocytes (differentiated myoblasts) and myotubes. In contrast, myocytes and newly formed myotubes in adult cultures express ventricular but not embryonic MHC. In the current study, the appearance of myocytes and myotubes which express ventricular but not embryonic MHC was used to determine when adult myoblasts first emerge during avian development. By examining patterns of MHC expression in mass and clonal cultures prepared from embryonic and posthatch chicken skeletal muscle using double-label immunofluorescence with isoform-specific monoclonal antibodies, we show that a significant number of myocytes and myotubes which stain for ventricular but not embryonic MHC are first seen in cultures derived from PM during fetal development (Embryonic Day 18) and comprise the majority, if not all, of the myoblasts present at hatching and beyond. These results suggest that adult type myoblasts become dominant in late embryogenesis. We also show that satellite cell cultures derived from adult slow muscle give results similar to those of cultures derived from adult fast muscle. Cultures derived from Embryonic Day 10 hindlimb form myocytes and myotubes that coexpress ventricular and embryonic MHCs in a manner similar to cells of the Embryonic Day 10 PM. Thus, adult and fetal expression patterns of ventricular and embryonic MHCs are correlated with developmental age but not muscle fiber type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号