首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quantitative confocal microscopic analyses of living, polarized MDCK cells demonstrate different pH profiles for apical and basolateral endocytic pathways, despite a rapid and extensive intersection between the two. Three-dimensional characterizations of ligand trafficking demonstrate that the apical and basolateral endocytic pathways share early, acidic compartments distributed throughout the medial regions of the cell. Polar sorting for both pathways occurs in these common endosomes as IgA is sorted from transferrin to alkaline transcytotic vesicles. While transferrin is directly recycled from the common endosomes, IgA is transported to a downstream apical compartment that is nearly neutral in pH. By several criteria this compartment appears to be equivalent to the previously described apical recycling endosome. The functional significance of the abrupt increase in lumenal pH that accompanies IgA sorting is not clear, as disrupting endosome acidification has no effect on polar sorting. These studies provide the first detailed characterizations of endosome acidification in intact polarized cells and clarify the relationship between the apical and basolateral endocytic itineraries of polarized MDCK cells. The extensive mixing of apical and basolateral pathways underscores the importance of endocytic sorting in maintaining the polarity of the plasma membrane of MDCK cells.  相似文献   

2.
《The Journal of cell biology》1995,129(5):1241-1250
In polarized epithelial MDCK cells, all known endogenous endocytic receptors are found on the basolateral domain. The influenza virus hemagglutinin (HA) which is normally sorted to the apical plasma membrane, can be converted to a basolateral protein by specific mutations in its short cytoplasmic domain that also create internalization signals. For some of these mutations, sorting to the basolateral surface is incomplete, allowing internalization of two proteins that differ by a single amino acid of the internalization signal to be compared at both the apical and basolateral surfaces of MDCK cells. The rates of internalization of HA-Y543 and HA-Y543,R546 from the basolateral surface of polarized MDCK cells resembled those in nonpolarized cells, whereas their rates of internalization from the apical cell surface were fivefold slower. However, HA-Y543,R546 was internalized approximately threefold faster than HA-Y543 at both membrane domains, indicating that apical endocytic pits in polarized MDCK cells retained the ability to discriminate between different internalization signals. Slower internalization from the apical surface could not be explained by a limiting number of coated pits: apical membrane contained 0.7 as many coated pits per cell cross-section as did basolateral membranes. 10-14% of HA-Y543 at the apical surface of polarized MDCK cells was found in coated pits, a percentage not significantly different from that observed in apical coated pits of nonpolarized MDCK cells, where internalization was fivefold faster. Thus, there was no lack of binding sites for HA-Y543 in apical coated pits of polarized cells. However, at the apical surface many more shallow pits, and fewer deep, mature pits, were observed than were seen at the basolateral. These results suggest that the slower internalization at the apical surface is due to slower maturation of coated pits, and not to a difference in recognition of internalization signals.  相似文献   

3.
All basolateral sorting signals described to date reside in the cytoplasmic domain of proteins, whereas apical targeting motifs have been found to be lumenal. In this report, we demonstrate that wild-type rhodopsin is targeted to the apical plasma membrane via the TGN upon expression in polarized epithelial MDCK cells. Truncated rhodopsin with a deletion of 32 COOH-terminal residues shows a nonpolar steady-state distribution. Addition of the COOH-terminal 39 residues of rhodopsin redirects the basolateral membrane protein CD7 to the apical membrane. Fusion of rhodopsin''s cytoplasmic tail to a cytosolic protein glutathione S-transferase (GST) also targets this fusion protein (GST–Rho39Tr) to the apical membrane. The targeting of GST–Rho39Tr requires both the terminal 39 amino acids and the palmitoylation membrane anchor signal provided by the rhodopsin sequence. The apical transport of GST–Rho39Tr can be reversibly blocked at the Golgi complex by low temperature and can be altered by brefeldin A treatment. This indicates that the membrane-associated GST–Rho39Tr protein may be sorted along a yet unidentified pathway that is similar to the secretory pathway in polarized MDCK cells. We conclude that the COOH-terminal tail of rhodopsin contains a novel cytoplasmic apical sorting determinant. This finding further indicates that cytoplasmic sorting machinery may exist in MDCK cells for some apically targeted proteins, analogous to that described for basolaterally targeted proteins.  相似文献   

4.
Several proteins linked to neurodegenerative diseases, such as the beta-amyloid precursor protein, amyloid beta-peptide, beta-secretase, and tau, undergo selective polarized sorting. We investigated polarized sorting of the mammalian prion protein (PrP(C)) and its homologue doppel (Dpl). In contrast to Dpl, which accumulates on the apical surface, PrP(C) is targeted selectively to the basolateral side in Madin-Darby canine kidney cells. An extensive deletion and domain swapping analysis revealed that the internal hydrophobic domain (HD) of PrP (amino acids 113-133) confers basolateral sorting in a dominant manner. PrP mutants lacking the HD are sorted apically, while Dpl chimeras containing the HD of PrP are directed to the basolateral membrane. Furthermore, a pathogenic PrP missense mutation within the HD leads to aberrant apical sorting of PrP as well.  相似文献   

5.
We previously demonstrated that distinct facilitative glucose transporter isoforms display differential sorting in polarized epithelial cells. In Madin-Darby canine kidney (MDCK) cells, glucose transporter 1 and 2 (GLUT1 and GLUT2) are localized to the basolateral cell surface whereas GLUTs 3 and 5 are targeted to the apical membrane. To explore the molecular mechanisms underlying this asymmetric distribution, we analyzed the targeting of chimeric glucose transporter proteins in MDCK cells. Replacement of the carboxy-terminal cytosolic tail of GLUT1, GLUT2, or GLUT4 with that from GLUT3 resulted in apical targeting. Conversely, a GLUT3 chimera containing the cytosolic carboxy terminus of GLUT2 was sorted to the basolateral membrane. These findings are not attributable to the presence of a basolateral signal in the tails of GLUTs 1, 2, and 4 because the basolateral targeting of GLUT1 was retained in a GLUT1 chimera containing the carboxy terminus of GLUT5. In addition, we were unable to demonstrate the presence of an autonomous basolateral sorting signal in the GLUT1 tail using the low-density lipoprotein receptor as a reporter. By examining the targeting of a series of more defined GLUT1/3 chimeras, we found evidence of an apical targeting signal involving residues 473-484 (DRSGKDGVMEMN) in the carboxy tail. We conclude that the targeting of GLUT3 to the apical cell surface in MDCK cells is regulated by a unique cytosolic sorting motif.  相似文献   

6.
MUC1 is efficiently delivered to the apical surface of polarized Madin-Darby canine kidney (MDCK) cells by transit through apical recycling endosomes, a route associated with delivery of apical proteins with glycan-dependent targeting signals. However, a role for glycans in MUC1 sorting has not been established. A key feature of MUC1 is a heavily O-glycosylated mucin-like domain with a variable number of nearly perfect tandem repeats and adjacent imperfect repeats. Metabolic labeling, cell surface biotinylation, immobilized lectins, and confocal immunofluorescence microscopy were used to characterize the polarized delivery of MUC1 mutants and chimeras in MDCK cells to identify the apical targeting signal. Both the interleukin-2 receptor α subunit (Tac) and a chimera where the Tac ectodomain replaced that of MUC1 were delivered primarily to the basolateral surface. Attachment of the MUC1 mucin-like domain to the N terminus of Tac enhanced apical but not basolateral delivery when compared with Tac. Conversely, deletions within the mucin-like domain in MUC1 reduced apical but not basolateral delivery when compared with MUC1. In pull-down assays with lectins, we found a notable difference in the presence of core 1 O-glycans, but not poly-N-acetyllactosamine, in apically targeted MUC1 and chimeras when compared with Tac. Consistent with these data, we found no effect on MUC1 targeting when galectin-3, with preference for poly-N-acetyllactosamine, was depleted from polarized MDCK cells. However, we did block the apical targeting activity of the mucin-like repeats when we overexpressed CMP-Neu5Ac:GalNAc-Rα2,6-sialyltransferase-1 to block core O-glycan synthesis. The cumulative data indicate that the core-glycosylated mucin-like repeats of MUC1 constitute an apical targeting signal.  相似文献   

7.
C G Dotti  K Simons 《Cell》1990,62(1):63-72
Cultured hippocampal neurons were infected with a temperature-sensitive mutant of vesicular stomatitis virus (VSV) and a wild-type strain of the avian influenza fowl plague virus (FPV). The intracellular distribution of viral glycoproteins was monitored by immunofluorescence microscopy. In mature, fully polarized neurons the VSV glycoprotein (a basolateral protein in epithelial MDCK cells) moved from the Golgi complex to the dendritic domain, whereas the hemagglutinin protein of FPV (an apically sorted protein in MDCK cells) was targeted preferentially, but not exclusively, to the axon. The VSV glycoprotein appeared in clusters on the dendritic surface, while the hemagglutinin was distributed uniformly along the axonal membrane. Based on the finding that the same viral glycoproteins are sorted in a polarized fashion in both neuronal and epithelial cells, we propose that the molecular mechanisms of surface protein sorting share common features in the two cell types.  相似文献   

8.
《The Journal of cell biology》1990,111(6):2923-2930
In different epithelial cell types, integral membrane proteins appear to follow different sorting pathways to the apical surface. In hepatocytes, several apical proteins were shown to be transported there indirectly via the basolateral membrane, whereas in MDCK cells a direct sorting pathway from the trans-Golgi-network to the apical membrane has been demonstrated. However, different proteins had been studied in these cells. To compare the sorting of a single protein in both systems, we have expressed aminopeptidase N, which already had been shown to be sorted indirectly in hepatocytes, in transfected MDCK cells. As expected, it was predominantly localized to the apical domain of the plasma membrane. By monitoring the appearance of newly synthesized aminopeptidase N at the apical and basolateral surface, it was found to be directly sorted to the apical domain in MDCK cells, indicating that the sorting pathways are indeed cell type-specific.  相似文献   

9.
Alzheimer amyloid precursor protein (APP) is the precursor for the Abeta peptide involved in pathogenesis of Alzheimer's disease. The soluble ectodomain fragment of APP (sAPP) functions as a growth factor for epithelial cells, suggesting an important function for APP outside neuronal tissue. Previous studies have shown that in polarized epithelial cells, APP is targeted to the basolateral domain. Tyr653 within the cytoplasmic tail of APP mediates the basolateral targeting of APP, but the sorting machinery that binds to this residue has largely remained unknown. In this study, we analyzed the role of adaptor complexes in the polarized sorting of APP. We show that the medium subunit mu1B of the epithelia-specific adaptor protein (AP)-1B binds onto the cytoplasmic tail of APP in a Tyr653-dependent way. Moreover, ectopic expression of mu1B in cells lacking AP-1B resulted in correction of apical missorting of wild-type but not Tyr653Ala APP. Basolateral secretion of sAPP was found to be independent of Tyr653. We propose a model for polarized targeting of APP according to which sorting of APP to basolateral domain is dependent on binding of AP-1B on Tyr653 in basolateral endosomes. This model is in accordance with the current understanding of sorting mechanisms mediating polarized targeting of membrane proteins.  相似文献   

10.
New techniques lead to advances in epithelial cell polarity.   总被引:1,自引:0,他引:1  
We have utilized cell surface biotinylation assays to study protein targeting signals and pathways in polarized epithelial cells. These studies have revealed that in MDCK cells, most proteins are sorted intracellularly and are targeted directly to the surface; in other cell types, protein targeting may be mediated by a selective retrieval event. Studies on both intact and permeabilized cells demonstrate that microtubules facilitate apical but not basolateral delivery. Recent transfection studies in MDCK cells have identified glycosyl phosphatidyl inositol (GPI) as an apical targeting signal; interaction of the GPI moiety with glycolipids preferentially expressed on the apical surface may mediate this process. Several proteinaceous basolateral targeting signals have also been recently described.  相似文献   

11.
Previous studies of fibroblasts have demonstrated that recycling of endocytic receptors occurs through a default mechanism of membrane-volume sorting. Epithelial cells require an additional level of polar membrane sorting, but there are conflicting models of polar sorting, some suggesting that it occurs in early endosomes, others suggesting it occurs in a specialized apical recycling endosome (ARE). The relationship between endocytic sorting to the lysosomal, recycling and transcytotic pathways in polarized cells was addressed by characterizing the endocytic itineraries of LDL, transferrin (Tf) and IgA, respectively, in polarized Madin-Darby canine kidney (MDCK) cells. Quantitative analyses of 3-dimensional images of living and fixed polarized cells demonstrate that endocytic sorting occurs sequentially. Initially internalized into lateral sorting endosomes, Tf and IgA are jointly sorted from LDL into apical and medical recycling endosomes, in a manner consistent with default sorting of membrane from volume. While Tf is recycled to the basolateral membrane from recycling endosomes, IgA is sorted to the ARE prior to apical delivery. Quantifications of the efficiency of sorting of IgA from Tf between the recycling endosomes and the ARE match biochemical measurements of transepithelial protein transport, indicating that all polar sorting occurs in this step. Unlike fibroblasts, rab11 is not associated with Tf recycling compartments in either polarized or glass-grown MDCK cells, rather it is associated with the compartments to which IgA is directed after sorting from Tf. These results complicate a suggested homology between the ARE and the fibroblast perinuclear recycling compartment and provide a framework that justifies previous conflicting models of polarized sorting.  相似文献   

12.
A typical feature of epithelial cells is the polarized distribution of their respective plasma membrane proteins. Apical and basolateral proteins can be sorted both in the trans-Golgi network and endosomes, or in both locations. Inclusion into basolateral carriers in the TGN requires the presence of distinct cytoplasmic determinants, which also appear to be recognized in endosomes. Inactivation of the basolateral sorting information leads to the efficient apical delivery, probably due to the unmasking of a recessive apical signal. Factors associated with the cytosolic face of organelles probably not only recognize these signals to mediate the inclusion of the proteins into the correct transport vesicles, but also target the carriers to the corresponding plasma membrane domain. Our interest has focused on analyzing at the molecular level how epithelial MDCK cells generate and maintain a polarized phenotype, taking advantage of immunoglobulin receptors to study the biosynthetic and endocytic pathways and the corresponding sorting events.  相似文献   

13.
Beta-amyloid (Abeta) peptides that accumulate in Alzheimer disease are generated from the beta-amyloid precursor protein (betaAPP) by cleavages by beta-secretase BACE1 and by presenilin-dependent gamma-secretase activities. Very few data document a putative cross-talk between these proteases and the regulatory mechanisms underlying such interaction. We show that presenilin deficiency lowers BACE1 maturation and affects both BACE1 activity and promoter transactivation. The specific gamma-secretase inhibitor DFK167 triggers the decrease of BACE1 activity in wild-type but not in presenilin-deficient fibroblasts. This decrease is also elicited by catalytically inactive gamma-secretase. The overexpression of APP intracellular domain (AICD), the gamma/epsilon-secretase-derived C-terminal product of beta-amyloid precursor protein, does not modulate BACE1 activity or promoter transactivation in fibroblasts and does not alter BACE1 expression in AICD transgenic brains of mice. A DFK167-sensitive increase of BACE1 activity is observed in cells overexpressing APPepsilon (the N-terminal product of betaAPP generated by epsilon-secretase cleavage harboring the Abeta domain but lacking the AICD sequence), suggesting that the production of Abeta could account for the modulation of BACE1. Accordingly, we show that HEK293 cells overexpressing wild-type betaAPP exhibit a DFK167-sensitive increase in BACE1 promoter transactivation that is increased by the Abeta-potentiating Swedish mutation. This effect was mimicked by exogenous application of Abeta42 but not Abeta40 or by transient transfection of cDNA encoding Abeta42 sequence. The IkappaB kinase inhibitor BMS345541 prevents Abeta-induced BACE1 promoter transactivation suggesting that NFkappaB could mediate this Abeta-associated phenotype. Accordingly, the overexpression of wild-type or Swedish mutated betaAPP does not modify the transactivation of BACE1 promoter constructs lacking NFkappaB-responsive element. Furthermore, APP/beta-amyloid precursor protein-like protein deficiency does not affect BACE1 activity and expression. Overall, these data suggest that physiological levels of endogenous Abeta are not sufficient per se to modulate BACE1 promoter transactivation but that exacerbated Abeta production linked to wild-type or Swedish mutated betaAPP overexpression modulates BACE1 promoter transactivation and activity via an NFkappaB-dependent pathway.  相似文献   

14.
We have set up stably transfected HEK293 cells overexpressing the beta-secretases BACE1 and BACE2 either alone or in combination with wild-type beta-amyloid precursor protein (betaAPP). The characterization of the betaAPP-derived catabolites indicates that cells expressing BACEs produce less genuine Abeta1- 40/42 but higher amounts of secreted sAPPbeta and N-terminal-truncated Abeta species. This was accompanied by a concomitant modulation of the C-terminal counterpart products C89 and C79 for BACE1 and BACE2, respectively. These cells were used to set up a novel BACE assay based on two quenched fluorimetric substrates mimicking the wild-type (JMV2235) and Swedish-mutated (JMV2236) betaAPP sequences targeted by BACE activities. We show that BACEs activities are enhanced by the Swedish mutation and maximal at pH 4.5. The specificity of this double assay for genuine beta-secretase activity was demonstrated by means of cathepsin D, a "false positive" BACE candidate. Thus, cathepsin D was unable to cleave preferentially the JMV2236-mutated substrate. The selectivity of the assay was also emphasized by the lack of JMV cleavage triggered by other "secretases" candidates such as ADAM10 (A disintegrin and metalloprotease 10), tumor necrosis alpha-converting enzyme, and presenilins 1 and 2. Finally, the assay was used to screen for putative in vitro BACE inhibitors. We identified a series of statine-derived sequences that dose-dependently inhibited BACE1 and BACE2 activities with IC50 in the micromolar range, some of which displaying selectivity for either BACE1 or BACE2.  相似文献   

15.
In polarized epithelial cells, newly synthesized membrane proteins are delivered on specific pathways to either the apical or basolateral domains, depending on the sorting motifs present in these proteins. Because myosin VI has been shown to facilitate secretory traffic in nonpolarized cells, we investigated its role in biosynthetic trafficking pathways in polarized MDCK cells. We observed that a specific splice isoform of myosin VI with no insert in the tail domain is required for the polarized transport of tyrosine motif containing basolateral membrane proteins. Sorting of other basolateral or apical cargo, however, does not involve myosin VI. Site-directed mutagenesis indicates that a functional complex consisting of myosin VI, optineurin, and probably the GTPase Rab8 plays a role in the basolateral delivery of membrane proteins, whose sorting is mediated by the clathrin adaptor protein complex (AP) AP-1B. Our results suggest that myosin VI is a crucial component in the AP-1B-dependent biosynthetic sorting pathway to the basolateral surface in polarized epithelial cells.  相似文献   

16.
We have evaluated transcytotic routes in MDCK cells for their ability to generate a polarized surface distribution of trafficking proteins by following the intracellular sorting of transferrin receptors (TRs). We find that the selective basolateral expression of TRs is maintained in the face of extensive trafficking between the apical and basolateral surfaces. Biochemical studies of receptors loaded with tracer under conditions approaching steady state indicate that TRs internalized from the two surfaces are extensively colocalized within MDCK cells and that both populations of receptors are selectively delivered to the basolateral surface. Tailless TRs in which the cytoplasmic domain has been deleted display an unpolarized cell surface distribution and recycle in an unpolarized fashion. We show by EM that wild-type receptors internalized from each surface are colocalized within endosomal elements distributed throughout the cytoplasm. By preloading endosomal elements directly accessible from the basolateral surface with transferrin (Tf)-HRP, we show that apically internalized TRs rapidly enter the same compartment. We also show that both transcytosing (apically internalized) and recycling (basolaterally internalized) TRs are delivered to the basolateral border by a distinctive subset of exocytotic, 60-nm-diam vesicles. Together, the biochemical and morphological data show that apical and basolateral endosomes of MDCK cells are interconnected and contain a signal- dependent polarized sorting mechanism. We propose a dynamic model of polarized sorting in MDCK cells in which a single endosome-based, signal-dependent sorting step is sufficient to maintain the polarized phenotype.  相似文献   

17.
Processing of the beta-amyloid precursor protein (betaAPP) by beta- and gamma-secretases generates the amyloidogenic peptide Abeta, a major factor in the etiology of Alzheimer's disease. Following the recent identification of the beta-secretase beta-amyloid-converting enzyme (BACE), we herein investigate its zymogen processing, molecular properties, and cellular trafficking. Our data show that among the proprotein convertase family members, furin is the major converting enzyme of pro-BACE into BACE within the trans-Golgi network of HK293 cells. While we demonstrate that the 24-amino acid prosegment is required for the efficient exit of pro-BACE from the endoplasmic reticulum, it may not play a strong inhibitory role since we observe that pro-BACE can produce significant quantities of the Swedish mutant betaAPP(sw) beta-secretase product C99. BACE is palmitoylated at three Cys residues within its transmembrane/cytosolic tail and is sulfated at mature N-glycosylated moieties. Data with three different antibodies show that a small fraction of membrane-bound BACE is shed into the medium and that the extent of ectodomain shedding is palmitoylation-dependent. Overexpression of full-length BACE causes a significant increase in the production of C99 and a decrease in the alpha-secretase product APPsalpha. Although there is little increase in the generation of Abeta by full-length BACE, overexpression of either a soluble form of BACE (equivalent to the shed form) or one lacking the prosegment leads to enhanced Abeta levels. These findings suggest that the shedding of BACE may play a role in the amyloidogenic processing of betaAPP.  相似文献   

18.
《The Journal of cell biology》1993,121(5):1031-1039
Glycosylphosphatidylinositol (GPI) acts as an apical targeting signal in MDCK cells and other kidney and intestinal cell lines. In striking contrast with these model polarized cell lines, we show here that Fischer rat thyroid (FRT) epithelial cells do not display a preferential apical distribution of GPI-anchored proteins. Six out of nine detectable endogenous GPI-anchored proteins were localized on the basolateral surface, whereas two others were apical and one was not polarized. Transfection of several model GPI proteins, previously shown to be apically targeted in MDCK cells, also led to unexpected results. While the ectodomain of decay accelerating factor (DAF) was apically secreted, 50% of the native, GPI-anchored form, of this protein was basolateral. Addition of a GPI anchor to the ectodomain of Herpes simplex gD-1, secreted without polarity, led to basolateral localization of the fusion protein, gD1-DAF. Targeting experiments demonstrated that gD1-DAF was delivered vectorially from the Golgi apparatus to the basolateral surface. These results indicate that FRT cells have fundamental differences with MDCK cells with regard to the mechanisms for sorting GPI-anchored proteins: GPI is not an apical signal but, rather, it behaves as a basolateral signal. The "mutant" behavior of FRT cells may provide clues to the nature of the mechanisms that sort GPI-anchored proteins in epithelial cells.  相似文献   

19.
In polarized Madin-Darby canine kidney (MDCK) cells, newly synthesized transforming growth factor-alpha precursor (proTGFalpha) is directly sorted to the basolateral cell surface where it is sequentially cleaved and released into the basolateral conditioned medium (Dempsey, P.J., Coffey, R.J., J. Biol. Chem. 269 (1994) 16878-16889). In the present study, the role of the proTGFalpha cytoplasmic domain in basolateral sorting has been investigated using deletional and site-directed mutagenesis, as well as chimeric analyses of different TGFalpha constructs stably expressed in MDCK cells. The loss of polarized secretion of a proTGFalpha secretory mutant (TGFsec88) indicated that the proTGFalpha transmembrane and/or cytoplasmic domains contain essential basolateral sorting information. Using reporter chimeras with two apically sorted membrane proteins, p75 neurotrophin growth factor receptor and placental alkaline phosphatase, we show that the proTGFalpha cytoplasmic domain contains dominant basolateral sorting information. Analysis of proTGFalpha cytoplasmic domain truncation and internal deletion mutants, together with site-directed mutagenesis studies within the full-length proTGFalpha cytoplasmic domain, revealed redundant basolateral sorting motifs. Importantly, the C-terminal type I PDZ-binding motif was not required for basolateral sorting as determined by the integrity of basolateral sorting in deletion mutants lacking this motif. ProTGFalpha basolateral sorting may have important consequences for ligand presentation and spatial compartmentalization of epidermal growth factor receptor signaling networks in polarized epithelial cells.  相似文献   

20.
In polarized epithelial cells, sorting of proteins and lipids to the apical or basolateral domain of the plasma membrane can occur via direct or indirect (transcytotic) pathways from the trans Golgi network (TGN). The 'rafts' hypothesis postulates that the key event for direct apical sorting of some transmembrane proteins and the majority of GPI-anchored proteins depends on their association with glycosphingolipid and cholesterol enriched microdomains (rafts). However, the mechanism of indirect sorting to the apical membrane is not clear. The polyimmunoglobulin receptor (pIgR) is one of the best studied proteins that follow the transcytotic pathway. It is normally delivered from the TGN to the basolateral surface of polarized Madin–Darby Canine Kidney (MDCK) cells from where it transports dIgA or dIgM to the apical surface. We have studied the intracellular trafficking of pIgR in Fischer rat thyroid cells (FRT), and have investigated the sorting machinery involved in transcytosis of this receptor in both FRT and MDCK cells. We found that, in contrast with MDCK cells, a significant amount (∼30%) of pIgR reaches the apical surface by a direct pathway. Furthermore, in both cell lines it does not associate with Triton X-100-insoluble microdomains, suggesting that at least in these cells 'rafts' are not involved in basolateral to apical transcytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号