首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Extracellular alpha-amylase was purified to homogeneity from a Marburg strain of Bacillus subtilis. The enzyme is a single polypeptide chain of molecular weight approximately 67,000. Its NH2-terminal amino acid sequence is Leu-Thr-Ala-Pro-Ser-Ile-Lys. A membrane-derived alpha-amylase was solubilizing from membrane vesicles by treatment with Triton X-100 and was highly purified by chromatography on an anti-alpha-amylase-protein A-Sepharose column. Membrane-derived alpha-amylase was indistinguishable from the soluble extracellular enzyme by sodium dodecyl sulfate-gel electrophoresis and radioimmunoassay. The membrane-derived enzyme contains phospholipid. Approximately 30 to 80% of the phospholipid was extracted from the purified enzyme by chloroform:methanol. The extracted phospholipid was predominately phosphatidylethanolamine. Treatment with phospholipase D released phosphatidic acid. Membrane-bound alpha-amylase was latent in membrane vesicles. Release of membrane-bound alpha-amylase from vesicles by an endogenous enzyme was maximal at pH 8.5, was inhibited by metal chelators and diisopropyl fluorophosphate and was stimulated by Ca2+ and Mg2+. The amount of membrane-bound alpha-amylase was related to the level of secretion.  相似文献   

2.
The extracellular alpha-amylase (1,4-alpha-D-glucanglucanohydrolase; EC 3.2.1.1) from maltose-grown Streptococcus bovis JB1 was purified to apparent homogeneity by ion-exchange chromatography (Mono Q). The enzyme had an isoelectric point of 4.50 and an apparent molecular mass of 77,000 Da, as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme was rich in acidic and hydrophobic amino acids. The 15-amino-acid NH2-terminal sequence was 40% homologous with the Bacillus subtilis saccharifying alpha-amylase and 27% homologous with the Clostridium acetobutylicum alpha-amylase. alpha-Amylase activity on soluble starch was optimal at pH 5.0 to 6.0. The enzyme was relatively stable between pH 5.5 and 8.5 and at temperatures below 50 degrees C. When soluble potato starch was used as the substrate, the enzyme had a Km of 0.88 mg.ml-1 and a kcat of 2,510 mumol of reducing sugar.min-1.mg of protein-1. The enzyme exhibited neither pullulanase nor dextranase activity and was 40 to 70% as active on amylopectin as on amylose. The major end products of amylose hydrolysis were maltose, maltotriose, and maltotetraose.  相似文献   

3.
Extracellular alpha-amylases were isolated from the culture medium filtrates of Bacillus subtilis R-623 morphological variants R, P and S by means of biospecific chromatography on artificial sorbents and then purified to homogeneity. Some properties of purified alpha-amylases were being studied. The molecular weight of alpha-amylases from Bacillus subtilis variants R, P and S equals 57,000, 58,000 and 56,000, and the isoelectric points are at pH 5.4, 5.6 and 5.1, respectively. pH optimum for alpha-amylase from variants R and P is 4.5, and for that from variant S--5.0. alpha-Amylases from Bacillus subtilis R-623 morphological variants are thermostable enzymes. According to the properties studied, they correspond to Bacillus subtilis alpha-amylases that were isolated and described by other researchers.  相似文献   

4.
The extracellular alpha-amylase (1,4-alpha-D-glucanglucanohydrolase; EC 3.2.1.1) from Clostridium acetobutylicum ATCC 824 was purified to homogeneity by anion-exchange chromatography (mono Q) and gel filtration (Superose 12). The enzyme had an isoelectric point of 4.7 and a molecular weight of 84,000, as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It was a monomeric protein, the 19-amino-acid N terminus of which displayed 42% homology with the Bacillus subtilis saccharifying alpha-amylase. The amino acid composition of the enzyme showed a high number of acidic and hydrophobic residues and only one cysteine residue per mole. The activity of the alpha-amylase was not stimulated by calcium ions (or other metal ions) or inhibited by EDTA, although the enzyme contained seven calcium atoms per molecule. alpha-Amylase activity on soluble starch was optimal at pH 5.6 and 45 degrees C. The alpha-amylase was stable at an acidic pH but very sensitive to thermal inactivation. It hydrolyzed soluble starch, with a Km of 3.6 g . liter-1 and a Kcat of 122 mol of reducing sugars . s-1 . mol-1. The alpha-amylase showed greater activity with high-molecular-weight substrates than with low-molecular-weight maltooligosaccharides, hydrolyzed glycogen and pullulan slowly, but did not hydrolyze dextran or cyclodextrins. The major end products of maltohexaose degradation were glucose, maltose, and maltotriose; maltotetraose and maltopentaose were formed as intermediate products. Twenty seven percent of the glucoamylase activity generally detected in the culture supernatant of C. acetobutylicum can be attributed to the alpha-amylase.  相似文献   

5.
The structural gene for a thermostable alpha-amylase from Bacillus stearothermophilus was cloned in plasmids pTB90 and pTB53. It was expressed in both B. stearothermophilus and Bacillus subtilis. B. stearothermophilus carrying the recombinant plasmid produced about fivefold more alpha-amylase (20.9 U/mg of dry cells) than did the wild-type strain of B. stearothermophilus. Some properties of the alpha-amylases that were purified from the transformants of B. stearothermophilus and B. subtilis were examined. No significant differences were observed among the enzyme properties despite the difference in host cells. It was found that the alpha-amylase, with a molecular weight of 53,000, retained about 60% of its activity even after treatment at 80 degrees C for 60 min.  相似文献   

6.
The alpha-amylase (alpha-1,4-glucan 4-glucanohydrolase, EC 3.2.1.1) of Bacillus subtilis strain W23 is less negatively-charged than the alpha-amylase of B. amyloliquefaciens strain F, as determined by electrophoretic mobility in polyacrylamide gel at pH 8.6. The alpha-amylase of strain W23 is immunologically unrelated to the alpha-amylase of strain F, as judged by lack of cross-reaction in Ouchterlony immunodiffusion studies. The pH range of maximal activity for the enzyme of strain W23 was 5.7 to 6.7, with a maximum at 6.3. The pH range of activity for the alpha-amylase of strain F was 5.5 to 6.5, with a maximum at 5.9. No significant difference was found in the effect of temperature on the activity of the alpha-amylase of strain W23 and strain F. alpha-Amylase production by strain W23 occurs throughout the 7-hr growth period, whereas enzyme production by strain F does not begin until the culture enters the stationary phase of growth. The total amounts of enzyme produced by strains W23 and F after 7 hr of growth were 0.3 and 25.5 units/ml, respectively.  相似文献   

7.
An alpha-amylase (EC 3.2.1.1) secreted by Clostridium perfringens NCTC 8679 type A was purified to homogeneity and characterized. It was isolated from concentrated cell-free culture medium by ion-exchange and gel permeation chromatography. The enzyme exhibited maximal activity at pH 6.5 and 30 degrees C without the presence of calcium. The pI of the enzyme was 4.75. The estimated molecular weight of the purified enzyme was 76 kDa. The purified enzyme was inactivated between 35 and 40 degrees C, which increased to between 45 and 50 degrees C in the presence of calcium (5 mM). The purified enzyme produced a mixture of oligosaccharides as major end products of starch hydrolysis, indicating alpha-amylase activity.  相似文献   

8.
An artificially inserted extra peptide (21 amino acid peptide) between the B. subtilis alpha-amylase signal peptide and the mature thermostable alpha-amylase was completely cleaved by B. subtilis alkaline protease in vitro. The cleavage to form a mature enzyme was observed between pH 7.5 and 10, but not between pH 6.0 and 6.5, although a similar protease activity toward Azocall was observed between pH 6.0 and 7.5. To analyze the effects of pH on the cleavage, CD spectra at pH 6, 8, and 11 of the NH2-terminally extended thermostable alpha-amylase were analyzed and the results were compared with those of the mature form of the alpha-amylase. It is suggested that the cleavage of the NH2-terminally extended peptide is controlled by the secondary and tertiary structure of the precursor enzyme. Similar cleavage of different NH2-terminally extended peptides by the alkaline protease was also found in other hybrid thermostable alpha-amylases obtained.  相似文献   

9.
A beta-d-glucanase highly specific for glucans containing a linkage sequence ... Glc 1 --> 4 Glc 1 --> 3 Glc 1 --> 4 Glc ... has been isolated from several commercial preparations of Bacillus subtilis alpha-amylase including one purified by repeated crystallization. The beta-d-glucanase will not hydrolyze cellulose or laminarin. Gel filtration on a Bio-Gel P-200 column results in separation of the glucanase from the alpha-amylase. The enzyme is of the endo type as changes in the substrate viscosity appear long before the appearance of detectable reducing sugars. No evidence of product inhibition was revealed and appropriate substrates were converted to oligosaccharides, the quantity of which approaches theoretical yields. The products of the reaction were separated according to molecular size by use of Bio-Gel P-2 gel filtration and found to be consistent with the action pattern of the enzyme. Kinetic studies show that the enzyme has an optimum activity at pH 6.5, a V(max) of 13.9 mug glucose equivalent released/mug protein.hour, and an apparent Km of 3.4 mg of lichenan per ml. Potential application of this enzyme for the structural characterization of plant cell wall glucans is discussed.  相似文献   

10.
A total of 59 bacteria samples from Antarctic sea water were collected and screened for their ability to produce alpha-amylase. The highest activity was recorded from an isolate identified as an Alteromonas species. The purified alpha-amylase shows a molecular mass of about 50,000 Da and a pI of 5.2. The enzyme is stable from pH 7.5 to 9 and has a maximal activity at pH 7.5. Compared with other alpha-amylases from mesophiles and thermophiles, the "cold enzyme" displays a higher activity at low temperature and a lower stability at high temperature. The psychrophilic alpha-amylase requires both Cl- and Ca2+ for its amylolytic activity. Br- is also quite efficient as an allosteric effector. The comparison of the amino acid composition with those of other alpha-amylases from various organisms shows that the cold alpha-amylase has the lowest content in Arg and Pro residues. This could be involved in the principle used by the psychrophilic enzyme to adapt its molecular structure to the low temperature of the environment.  相似文献   

11.
A fusion of DNA sequences encoding the SPO2 promoter, the alpha-amylase signal sequence from Bacillus amyloliquefaciens, and the mature part of the alpha-galactosidase from Cyamopsis tetragonoloba (guar) was constructed on a Bacillus subtilis multicopy vector. Bacillus cells of the protease-deficient strain DB104 harboring this vector produced and secreted the plant enzyme alpha-galactosidase up to levels of 1,700 U/liter. A growth medium suppressing the residual proteolytic activity of strain DB104 was used to reach these levels in a fermentor. Purification of the secreted product followed by NH2-terminal amino acid sequencing showed that the alpha-amylase signal sequence had been processed correctly. The molecular mass of the product estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis was slightly lower than that of the plant purified enzyme, which is most likely due to glycosylation of the latter. The alpha-galactosidase product was active both on the artificial substrate para-nitrophenyl-alpha-D-galactopyranoside and on the galactomannan substrate, guar gum. The activity of this Bacillus sp.-produced enzyme was similar to that of the glycosylated enzyme purified from guar seeds, indicating that glycosylation has no essential function for enzyme activity.  相似文献   

12.
A fusion of DNA sequences encoding the SPO2 promoter, the alpha-amylase signal sequence from Bacillus amyloliquefaciens, and the mature part of the alpha-galactosidase from Cyamopsis tetragonoloba (guar) was constructed on a Bacillus subtilis multicopy vector. Bacillus cells of the protease-deficient strain DB104 harboring this vector produced and secreted the plant enzyme alpha-galactosidase up to levels of 1,700 U/liter. A growth medium suppressing the residual proteolytic activity of strain DB104 was used to reach these levels in a fermentor. Purification of the secreted product followed by NH2-terminal amino acid sequencing showed that the alpha-amylase signal sequence had been processed correctly. The molecular mass of the product estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis was slightly lower than that of the plant purified enzyme, which is most likely due to glycosylation of the latter. The alpha-galactosidase product was active both on the artificial substrate para-nitrophenyl-alpha-D-galactopyranoside and on the galactomannan substrate, guar gum. The activity of this Bacillus sp.-produced enzyme was similar to that of the glycosylated enzyme purified from guar seeds, indicating that glycosylation has no essential function for enzyme activity.  相似文献   

13.
A newly isolated bacterium, identified as Bacillus subtilis 65, was found to produce raw-starch-digesting alpha-amylase. The electrophoretically homogeneous preparation of enzyme (molecular weight, 68,000) digested and solubilized raw corn starch to glucose and maltose with small amounts of maltooligosaccharides ranging from maltotriose to maltoheptaose. This enzyme was different from other amylases and could digest raw potato starch almost as fast as it could corn starch, but it showed no adsorbability onto any kind of raw starch at any pH. The mixed preparation with Endomycopsis glucoamylase synergistically digested raw potato starch to glucose at 30 degrees C. The raw-potato-starch-digesting alpha-amylase showed strong digestibility to small substrates, which hydrolyzed maltotriose to maltose and glucose, and hydrolyzed p-nitrophenyl maltoside to p-nitrophenol and maltose, which is different from the capability of bacterial liquefying alpha-amylase.  相似文献   

14.
Sirishinha, Stitaya (University of Rochester School of Medicine and Dentistry, Rochester, N.Y.), and Peter Z. Allen. Immunochemical studies on alpha-amylase. III. Immunochemical relationships among amylases from various microorganisms. J. Bacteriol. 90:1120-1128. 1965.-Immunochemical relationships among amylases obtained from a selected group of microorganisms were examined, and a cross-reaction was detected between the alpha-amylases of Bacillus stearothermophilus and B. subtilis. Immunodiffusion and quantitative precipitin studies, as well as cross-neutralization tests, indicate that B. stearothermophilus alpha-amylase reacts with a portion of antibody present in antisera to crystalline B. subtilis alpha-amylase. Amylases from these two species thus have some aspects of structure in common. Limited data obtained by immunodiffusion suggest that groupings which confer cross-reactivity to the B. stearothermophilus enzyme are lost after exposure to mercaptoethanol in the presence of ethylenediamine-tetraacetate, followed by treatment with iodoacetamide. With the antisera employed and within the concentration range examined, no immunochemical cross-reaction was observed among amylases from Aspergillus oryzae, B. subtilis, B. polymyxa, B. macerans, Pseudomonas saccharophila, and Euglena sanguinis. Immunoelectrophoresis of partially purified B. stearothermophilus alpha-amylase by use of antiserum to the crude enzyme, together with localization of amylase activity in immunoelectrophoretic plates, suggests that B. stearothermophilus alpha-amylase is antigenic in the rabbit.  相似文献   

15.
By chromatography on ultragel ACA-54 alpha-amylase was isolated from the enzymic preparation amylosubtilin G10x. As compared to the initial preparation, the specific activity of the purified enzyme per mg increased 25-fold. The major physico-chemical characteristics of alpha-amylase were determined. The molecular weight of the enzyme measured by gel-chromatography and electrophoresis was estimated to be 49,000. The isoelectric point determined by electrofocusing was found to be 5,2. Irreversible acid inactivation of the enzyme in the range of pH 2-5 was investigated. The reaction was found to develop in at least two stages.  相似文献   

16.
The extremely thermophilic anaerobic archaeon strain, HJ21, was isolated from a deep-sea hydrothermal vent, could produce hyperthermophilic alpha-amylase, and later was identified as Thermococcus from morphological, biochemical, and physiological characteristics and the 16S ribosomal RNA gene sequence. The extracellular thermostable alpha-amylase produced by strain HJ21 exhibited maximal activity at pH 5.0. The enzyme was stable in a broad pH range from pH 5.0 to 9.0. The optimal temperature of alpha-amylase was observed at 95 degrees C. The half-life of the enzyme was 5 h at 90 degrees C. Over 40% and 30% of the enzyme activity remained after incubation at 100 degrees C for 2 and 3 h, respectively. The enzyme did not require Ca(2+) for thermostability. This alpha-amylase gene was cloned, and its nucleotide sequence displayed an open reading frame of 1,374 bp, which encodes a protein of 457 amino acids. Analysis of the deduced amino acid sequence revealed that four homologous regions common in amylases were conserved in the HJ21 alpha-amylase. The molecular weight of the mature enzyme was calculated to be 51.4 kDa, which correlated well with the size of the purified enzyme as shown by the sodium dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   

17.
A DNAase (deoxyribonuclease) was isolated from culture supernatants of sporulating Bacillus subtilis 168. The purified enzyme migrated as a single band during polyacrylamide-gel electrophoresis. The enzyme differs from other DNAases of B. subtilis in molecular weight, metal-ion requirement and mode of action. The enzyme was inactive in the absence of metal ions, and exhibited optimum activity with 10 mM-Mn2+, although Mg2+, Cd2+ and Co2+ could also permit some activity. The pH optimum for the enzyme was pH 7.5, and it degraded linear-duplex DNA or closed-circular-duplex DNA to acid-soluble material. There was little or no activity on single-stranded DNA or rRNA. Sucrose-gradient analysis of the products of DNAase action on bacteriophage T7 DNA showed that endonucleolytic cleavage had occurred by the introduction of single-strand breaks in both strands of the duplex. The molecular weight of the enzyme was determined, by gel filtration on Sephadex G-75, to be 12000.  相似文献   

18.
Liu XD  Xu Y 《Bioresource technology》2008,99(10):4315-4320
This study reports the purification and characterization of a novel raw starch digesting alpha-amylase from a newly isolated Bacillus sp. YX-1. Maximum alpha-amylase activity (53 U mL(-1)) was obtained at 45 degrees C after 44 h of incubation. The enzyme was purified using ammonium sulfate precipitation, ion exchange and gel filtration chromatography, and showed a molecular weight of 56 kDa by SDS-PAGE. This enzyme exhibited maximum activity at pH 5.0, performed stability over a broad range of pH 4.5-11.0, and was optimally active at 40-50 degrees C. The enzyme preparation had a strong digesting ability towards various raw starches and efficiently hydrolyzed raw corn starch at a concentration of 20% and pH 5.0, which were normally used in the starch industries, in a period of 12h. By analyzing its partial amino acid sequences, the enzyme was proposed to be a novel alpha-amylase.  相似文献   

19.
AIMS: The aims of this study were to purify and characterize an extracellular alpha-amylase from the salt-tolerant bacterium Bacillus dipsosauri. METHODS AND RESULTS: An extracellular alpha-amylase from B. dipsosauri strain DD1 was studied using the synthetic substrate 2-chloro-4-nitrophenyl-alpha-D-maltotrioside. Formation of the enzyme was induced by starch, repressed by D-glucose and highest after growth in medium containing 1.0 mol l-1 KCl. The alpha-amylase activity increased with KCl concentration, showed a pH optimum of 6.5, was stable up to 60 degrees C and was stimulated by 1.0 mol l-1 Na2SO4. The enzyme was purified from spent culture medium to apparent homogeneity by precipitation with ethanol, ion-exchange chromatography on DEAE-cellulose, centrifugal membrane filtration and gel-filtration chromatography on BioGel P-100. The purified enzyme had a denatured molecular mass of about 80 kDa but behaved on non-denaturing polyacrylamide gels as if it had a mass of about 30 kDa. The enzyme was partially inhibited by glucose-containing oligosaccharides of increasing length and strongly inhibited by the divalent cations Cd2+ and Zn2+. CONCLUSIONS: The extracellular alpha-amylase from B. dipsosauri strain DD1 was purified to homogeneity and found to exhibit an unusually high degree of salt tolerance. SIGNIFICANCE AND IMPACT OF THE STUDY: The alpha-amylase from B. dipsosauri differs from previously described enzymes and may be useful for the processing of starches under high-salt conditions.  相似文献   

20.
The glycogen branching enzyme gene (glgB) from Pectobacterium chrysanthemi PY35 was cloned, sequenced, and expressed in Escherichia coli. The glgB gene consisted of an open reading frame of 2196bp encoding a protein of 731 amino acids (calculated molecular weight of 83,859Da). The glgB gene is upstream of glgX and the ORF starts the ATG initiation codon and ends with the TGA stop codon at 2bp upstream of glgX. The enzyme was 43-69% sequence identical with other glycogen branching enzymes. The enzyme is the most similar to GlgB of E. coli and contained the four regions conserved among the alpha-amylase family. The glycogen branching enzyme (GlgB) was purified and the molecular weight of the enzyme was estimated to be 84kDa by SDS-PAGE. The glycogen branching enzyme was optimally active at pH 7 and 30 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号