首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An important risk in the clinical application of human pluripotent stem cells (hPSCs), including human embryonic and induced pluripotent stem cells (hESCs and hiPSCs), is teratoma formation by residual undifferentiated cells. We raised a monoclonal antibody against hESCs, designated anti-stage-specific embryonic antigen (SSEA)-5, which binds a previously unidentified antigen highly and specifically expressed on hPSCs--the H type-1 glycan. Separation based on SSEA-5 expression through fluorescence-activated cell sorting (FACS) greatly reduced teratoma-formation potential of heterogeneously differentiated cultures. To ensure complete removal of teratoma-forming cells, we identified additional pluripotency surface markers (PSMs) exhibiting a large dynamic expression range during differentiation: CD9, CD30, CD50, CD90 and CD200. Immunohistochemistry studies of human fetal tissues and bioinformatics analysis of a microarray database revealed that concurrent expression of these markers is both common and specific to hPSCs. Immunodepletion with antibodies against SSEA-5 and two additional PSMs completely removed teratoma-formation potential from incompletely differentiated hESC cultures.  相似文献   

2.
Siiman O  Burshteyn A 《Cytometry》2000,40(4):316-326
BACKGROUND: Fluorescent markers (labeled antibodies) and flow cytometry are used to enumerate the average number of receptors (antigens) on formed bodies (cells) in whole blood by using a new method that avoids the extra steps of separating bound from unbound fluorescent markers or the use of external standards. METHODS: Mean channel fluorescence intensities of equilibrated marker-cell suspension mixtures, total concentrations of marker, and targeted cell counts obtained by standard cytometry procedures are used to complete the analyses for receptors per cell. Also, flow cytometric assays using competitive binding between fluorescent marker (CD4-RD1, CD8-FITC, CD3-FITC, CD3-RD1) and unlabeled antibody (CD4, CD8, CD3, CD3-dextran) for receptors on white blood cells in whole blood are described for determination of relative and specific binding constants of unlabeled/labeled antibody for targeted receptors. RESULTS: Ranges that were obtained for receptors per cell (lymphocytes) in normal blood donors were as follows: CD4, 4.9 x 10(4)-1.5 x 10(5); CD8, 5.0 x 10(5)-2.1 x 10(6); CD3, 6.6-7.8 x 10(5). Binding constants were highest for unlabeled CD4 antibody, 2. 7 x 10(10)-2.1 x 10(12) M(-1), and then unlabeled CD3 antibody, 1.1 x 10(10)-1.9 x 10(11) M(-1). FITC- and RD1-labeled antibodies typically had binding constants that were 10-to 100-fold lower than the native antibodies. CONCLUSIONS: Values of receptors per cell and binding constants obtained by the new method from flow cytometric analyses of mixtures of whole blood with FITC- or RD1-labeled CD4, CD8, and CD3 antibodies compare well with literature values determined by other methods.  相似文献   

3.
Using multiparameter staining methods and flow cytometry to investigate the pluripotency of HUES7 human embryonic stem cell cultures, it was found that the multidimensional approach of marker co-expression allowed the different cell populations to be easily identified and demonstrated cross reactivity between the SSEA 4 and SSEA 1 antibodies, resulting in a substantial false positive SSEA 1 population. It is the accepted norm to apply control gates at a 95 % confidence level of the isotype control; however, this study found that adjusting the control gate to a 99 % confidence level significantly reduced the effect of this cross reactivity. Though conversely, this gating shift also decreased the positive marker expression of SSEA 4 and Tra-1-60, indicating that there is a need for strongly expressing markers coupled with increased optimization of fluorophore/antibody combinations before a gating strategy of 99 % can be implemented on a more routine basis.  相似文献   

4.
5.
The present resolution (75-100 A) of the conventional scanning electron microscope (SEM) and its ability to image the surfaces of large numbers of whole cells in situ permit the approach of problems such as viral and cell surface antigen localization by immunological labeling with visual markers. Identification of virus and cell surface antigens in situ has been accomplished in indirect reactions by unconjugated markers. Hemocyanin (Hcy) from whelk, Busycon canniculatum, has been developed as an immunospecific marker for virion and cell surface labeling in the electron microscope. Its size (30 x 50 nm) and distinct cylindrical shape permit easy visualization in the SEM and the transmission electron microscope (TEM). The Hcy method involves the preparation of antisera to Hcy in appropriate hosts for use in an unlabeled antibody macromolecule procedure based exclusively on antigen-antibody affinity to couple the macromolecule to the antigen site. Further correlative data from fluorescence microscopy can be obtained from similarly labeled samples by binding fluorescein to the bridging antibodies used in the Hcy technique. The usefulness of the Hcy marker system was demonstrated by employing highly specific antisera to the major envelope and cell surface glycoprotein (gp70) of Rauscher murine leukemia virus (R-MuLV), a type C retrovirus. The antiserum was shown to bind to the virion and cell surfaces of virus-infected cells in the homologous virus-infected cell system. It also demonstrated the expression of R-MuLV gp70-related antigens on a murine cell line Mm5mt/c1 which produces mouse mammary tumor virus (MuMTV), a type B retrovirus. Furthermore, when used in the Hcy marker system the anti-gp70 serum was able to distinguish type B from type C budding virus on the same cell. Methods for the preparation of immunoreagents and labeling of cells are discussed.  相似文献   

6.
A murine stage-specific embryonic antigen (SSEA3) is defined by reactivity with a monoclonal antibody prepared by immunization of a rat with 4- to 8-cell-stage mouse embryos. This antigenic determinant, present on oocytes, becomes restricted first to the inner cell mass at the blastocyst stage, and later to the primitive endoderm. Murine teratocarcinoma stem cells do not react with this antibody, whereas human teratocarcinoma stem cells are SSEA3-positive. This antigenic determinant is not expressed on a variety of other human and murine cell lines, but is found on the surface of human erythrocytes. It is a carbohydrate and is present on both cell-surface glycolipids and glycopeptides. These results demonstrate the feasibility of identifying stage-specific antigenic determinants with monoclonal antibody prepared against embryos. The need for thorough screening on a variety of cell types to establish developmentally important cross-reactivities is also emphasized.  相似文献   

7.
8.
In an attempt to delineate spatial relationships between various allodeterminants of cell surface MHC antigens, competitive binding studies were performed using 4 different monoclonal antibodies, each of which reacted with the H-2Kk antigen but with different serologic specificities. Competition was studied by examining the effect of unlabeled antibodies on the binding of each 125I-labeled antibody to spleen cells of the H-2a haplotype. Mutual inhibition was observed between 2 of the antibodies, and a 3rd antibody of lower affinity was inhibited by the first 2 antibodies but did not itself inhibit the binding of these antibodies. The 4th antibody did not block the binding of the other 3 labeled antibodies, and binding of this 4th labeled antibody was only partially inhibitable by the other 3 antibodies. These results indicate the presence of at least 2 spatially distinct allodeterminants on H-2Kk molecules expressed on the cell surface.  相似文献   

9.
Monoclonal antibodies (mAb) are not only useful reagents but also represent a promising type of therapeutics due to their high affinity and exquisite specificity for their antigens. A critical step in mAb generation is to identify antigen-specific antibodies. Although enzyme-linked immunosorbent assay (ELISA) has been broadly applied for antibody selection against secreted antigens, an inherent disadvantage for ELISA is the difficulty in identifying antibodies that recognize the native conformation of cell surface antigens. To overcome this drawback, the authors have developed a high-throughput cell-based antibody binding assay using fluorometric microvolume assay technology (FMAT). This method offers a homogeneous assay for detection of antibody binding to its antigen on the cell surface. To distinguish antibodies that bind to antigen on the cell surface from those that bind nonspecifically to cells, the binding is assessed using both antigen-expressing cells and related cells devoid of the antigen expression. This assay can detect antibodies at a concentration as low as 5 ng/mL and cell surface antigen as low as 9000 copies per cell. Results demonstrate that the FMAT method provides a sensitive and homogeneous assay to detect antibody binding to cell surface antigens and is amenable for high-throughput hybridoma selection.  相似文献   

10.
11.
Bone marrow-derived (B) and thymus-derived (T) Balb/c mouse lymphocytes were identified in the scanning electron microscope (SEM) by the immunospecific attachment of one of several kinds of large-molecular-weight markers distinguishable in SEM. These markers (tobacco mosaic virus, keyhole limpet hemocyanin, bushy stunt virus, and bacteriophage T4) could be modified with hapten groups and linked with anti-hapten antibody, in an indirect (sandwich) scheme, to hapten-modified anti-cell-surface antibody bound to the cell surface. Hapten-modified antibodies to B cell antigens (goat anti-mouse-immunoglobulin) or to T cell antigens (rabbit anti-mouse brain) were employed to identify these two lymphoid cell types in unfractionated spleen, mesenteric lymph node, bone marrow, and thymus cell populations. The topography of B cells was always indistinguishable from that of T cells. No surface features were found to be unique to either cell type. In suspension, the majority of B and T cells had one or no microvilli regardless of the tissue source of the labeled cells. Cells in suspension that had microvilli (usually 10% of the total cell population) were always unlabeled. However, after cell contact with a glass surface, approximately half of both the B and T cell populations had a villous topography.  相似文献   

12.
Wu DT  Seita Y  Zhang X  Lu CW  Roth MJ 《PloS one》2012,7(4):e34778
The identification of stem cells within a mixed population of cells is a major hurdle for stem cell biology--in particular, in the identification of induced pluripotent stem (iPS) cells during the reprogramming process. Based on the selective expression of stem cell surface markers, a method to specifically infect stem cells through antibody-conjugated lentiviral particles has been developed that can deliver both visual markers for live-cell imaging as well as selectable markers to enrich for iPS cells. Antibodies recognizing SSEA4 and CD24 mediated the selective infection of the iPS cells over the parental human fibroblasts, allowing for rapid expansion of these cells by puromycin selection. Adaptation of the vector allows for the selective marking of human embryonic stem (hES) cells for their removal from a population of differentiated cells. This method has the benefit that it not only identifies stem cells, but that specific genes, including positive and negative selection markers, regulatory genes or miRNA can be delivered to the targeted stem cells. The ability to specifically target gene delivery to human pluripotent stem cells has broad applications in tissue engineering and stem cell therapies.  相似文献   

13.
This study aims at generating immune chicken phage display libraries and single-chain antibodies (scFvs) specifically directed against cell surface markers of cultured peripheral blood mononuclear cells (PBMCs) that contain endothelial progenitor cells (EPCs). In contrast to previous approaches that use well-defined recombinant antigens attached to plastic surfaces that may alter the structure of the proteins, the authors describe a method that maintains the cell surface markers on live cells while providing the opportunity to rapidly screen entire libraries for antibodies that bind to unknown cell surface markers of progenitor/stem cells. Chickens immunized with live EPCs, consisting of a heterogeneous population of lymphocytes and monocytes, demonstrated a robust immune response. After three rounds of biopanning, the authors purified and characterized three unique scFvs called UG1-3. Codon-optimized recombinant UG1 (gUG-1) shows binding by flow cytometry to circulating CD14-positive cells in peripheral blood consistent with predominant expression of a target protein on monocyte subsets. The authors describe the successful use of immunization of chickens for the generation of scFvs against a heterogenous population of EPCs displaying unknown cell surface markers and demonstrate the strong potential of phage display technology in the development of reagents for the isolation and characterization of stem/progenitor cells.  相似文献   

14.
Glioblastoma (GBM) is the most malignant primary brain tumor, with an average survival rate of 15 months. GBM is highly refractory to therapy, and such unresponsiveness is due, primarily, but not exclusively, to the glioma stem-like cells (GSCs). This subpopulation express stem-like cell markers and is responsible for the heterogeneity of GBM, generating multiple differentiated cell phenotypes. However, how GBMs maintain the balance between stem and non-stem populations is still poorly understood. We investigated the GBM ability to interconvert between stem and non-stem states through the evaluation of the expression of specific stem cell markers as well as cell communication proteins. We evaluated the molecular and phenotypic characteristics of GSCs derived from differentiated GBM cell lines by comparing their stem-like cell properties and expression of connexins. We showed that non-GSCs as well as GSCs can undergo successive cycles of gain and loss of stem properties, demonstrating a bidirectional cellular plasticity model that is accompanied by changes on connexins expression. Our findings indicate that the interconversion between non-GSCs and GSCs can be modulated by extracellular factors culminating on differential expression of stem-like cell markers and cell-cell communication proteins. Ultimately, we observed that stem markers are mostly expressed on GBMs rather than on low-grade astrocytomas, suggesting that the presence of GSCs is a feature of high-grade gliomas. Together, our data demonstrate the utmost importance of the understanding of stem cell plasticity properties in a way to a step closer to new strategic approaches to potentially eliminate GSCs and, hopefully, prevent tumor recurrence.  相似文献   

15.
无饲养层培养人胚胎干细胞方法的建立   总被引:5,自引:2,他引:3  
人胚胎干细胞(human embryonic stem cell,hES细胞)是当前医学研究的热点之一.然而hES细胞培养条件苛刻,通常需要采用鼠胚胎成纤维细胞(mouse embryonic fibroblast,MEFs)饲养层来维持其未分化状态,成为目前hES细胞研究的瓶颈之一、本实验成功地将hES细胞接种在细胞外基质包被的六孔板上培养,传代20次后细胞仍然保持良好的未分化状态,各种hES细胞生物学特性(如表面标志物SSEA-3、SSEA-4、TRA-1-60和TRA-1-8l,OCT-4,碱性磷酸酶及体内外分化潜能等)均无改变;其冻存、复苏效果与生长在饲养层上的hES细胞无明显差异.因此,该无饲养层培养体系可以用于培养hES细胞,并为hES细胞转基因研究及大规模培养打下良好的基础.  相似文献   

16.
17.
We have examined the reactions of a panel of nine monoclonal anti-idiotype antibodies with the surface immunoglobulin in situ on guinea pig L2C leukemic lymphocytes. Equilibrium binding constants were shown to range between 10(7) and 10(8) M-1 for univalent Fab' gamma fragments and between 10(8) and 10(9) M-1 for intact IgG. Saturation of the cell surface binding sites was achieved with 2.9 X 10(5) Fab' gamma molecules/cell and 1.2 X 10(5) IgG molecules/cell for each antibody, a result that is consistent with a bivalent mode of interaction for the IgG. Despite these overall similarities in binding characteristics antibodies showed striking differences in their ability to clear Ig from the cell surface by antigenic modulation in vitro. This suggested differences in the readiness with which the antibodies cross-linked neighboring surface Ig molecules. Such an interpretation was supported by differences in the times required to achieve bivalent binding at 0 degree C, and in the rates at which labeled antibody dissociated from the cell surface in the presence or absence of an excess of unlabeled antibody. The data are consistent with there being two functionally distinct types of anti-idiotype antibody: those that form predominantly intra-Ig bridges, with each antibody Fab being linked to an Fab on one target molecule ("monogamous" binding) and not favoring modulation; and those that form predominantly inter-Ig bridges ("bigamous" binding) and favor modulation. The nature of interaction is presumably dictated by the orientation of the particular idiotope concerned. This distinction could be of great importance in the therapeutic use of anti-idiotype to ablate B cell neoplasms.  相似文献   

18.
M cells of intestinal epithelia overlying lymphoid follicles endocytose luminal macromolecules and microorganisms and deliver them to underlying lymphoid tissue. The effect of luminal secretory IgA antibodies on adherence and transepithelial transport of antigens and microorganisms by M cells is unknown. We have studied the interaction of monoclonal IgA antibodies directed against specific enteric viruses, or the hapten trinitrophenyl (TNP), with M cells. To produce monospecific IgA antibodies against mouse mammary tumor virus (MMTV) and reovirus type 1, Peyer's patch cells from mucosally immunized mice were fused with myeloma cells, generating hybridomas that secreted virus-specific IgA antibodies in monomeric and polymeric forms. One of two anti-MMTV IgA antibodies specifically bound the viral surface glycoprotein gp52, and 3 of 10 antireovirus IgA antibodies immunoprecipitated sigma 3 and mu lc surface proteins. 35S-labeled IgA antibodies injected intravenously into rats were recovered in bile as higher molecular weight species, suggesting that secretory component had been added on passage through the liver. Radiolabeled or colloidal gold-conjugated mouse IgA was injected into mouse, rat, and rabbit intestinal loops containing Peyer's patches. Light microscopic autoradiography and EM showed that all IgA antibodies (antivirus or anti-TNP) bound to M cell luminal membranes and were transported in vesicles across M cells. IgA-gold binding was inhibited by excess unlabeled IgA, indicating that binding was specific. IgG-gold also adhered to M cells and excess unlabeled IgG inhibited IgA-gold binding; thus binding was not isotype-specific. Immune complexes consisting of monoclonal anti-TNP IgA and TNP-ferritin adhered selectively to M cell membranes, while TNP-ferritin alone did not. These results suggest that selective adherence of luminal antibody to M cells may facilitate delivery of virus-antibody complexes to mucosal lymphoid tissue, enhancing subsequent secretory immune responses or facilitating viral invasion.  相似文献   

19.
20.
Many biological and biomedical laboratory assays require the use of antibodies and antibody fragments that strongly bind to their cell surface targets. Conventional binding assays, such as the enzyme-linked immunosorbent assay (ELISA) and flow cytometry, have many challenges, including capital equipment requirements, labor intensiveness, and large reagent and sample consumption. Although these techniques are successful in mainstream biology, there is an unmet need for a tool to quickly ascertain the relative binding capabilities of antibodies/antibody fragments to cell surface targets on the benchtop at low cost. We describe a novel cell capture assay that enables several candidate antibodies to be evaluated quickly as to their relative binding efficacies to their cell surface targets. We used chimeric rituximab and murine anti-CD20 monoclonal antibodies as cell capture agents on a functionalized microscope slide surface to assess their relative binding affinities based on how well they capture CD20-expressing mammalian cells. We found that these antibodies’ concentration-dependent cell capture profiles correlate with their relative binding affinities. A key observation of this assay involved understanding how differences in capture surfaces affect the assay results. This approach can find utility when an antibody or antibody fragment against a known cell line needs to be selected for targeting studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号