首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stable cnidarian-dinoflagellate (genus Symbiodinium) endosymbioses depend on the regulation of nutrient transport between Symbiodinium populations and their hosts. It has been previously shown that the host cytosol is a nitrogen-deficient environment for the intracellular Symbiodinium and may act to limit growth rates of symbionts during the symbiotic association. This study aimed to investigate the cell proliferation, as well as ultrastructural and lipid compositional changes, in free-living Symbiodinium spp. (clade B) upon nitrogen (N)-deprivation. The cell proliferation of the N-deprived cells decreased significantly. Furthermore, staining with a fluorescent probe, boron dipyrromethane 493/503 (BODIPY 493/503), indicated that lipid contents progressively accumulated in the N-deprived cells. Lipid analyses further showed that both triacylglycerol (TAG) and cholesterol ester (CE) were drastically enriched, with polyunsaturated fatty acids (PUFA; i.e., docosahexaenoic acid, heneicosapentaenoic acid, and oleic acid) became more abundant. Ultrastructural examinations showed that the increase in concentration of these lipid species was due to the accumulation of lipid droplets (LDs), a cellular feature that have previously shown to be pivotal in the maintenance of intact endosymbioses. Integrity of these stable LDs was maintained via electronegative repulsion and steric hindrance possibly provided by their surface proteins. Proteomic analyses of these LDs identified proteins putatively involved in lipid metabolism, signaling, stress response and energy metabolism. These results suggest that LDs production may be an adaptive response that enables Symbiodinium to maintain sufficient cellular energy stores for survival under the N-deprived conditions in the host cytoplasm.  相似文献   

2.
BACKGROUND: Poly [(R)-3-hydroxybutyric acid] (PHB) is a prokaryote storage material for carbon and energy that accumulates in cells under unbalanced growth conditions. Because this class of biopolymers has plastic-like properties, it has attracted considerable interest for biomedical applications and as a biodegradable commodity plastic. Current flow cytometric techniques to quantify intracellular PHB are based on Nile red. Here, an improved cytometric technique for cellular PHB quantification utilizing BODIPY 493/503 staining was developed. This technique was then automated using an automated flow cytometry system. MATERIALS: Using flow cytometry, the fluorescence of Saccharomyces cerevisiae and Cupriavidus necator with varying PHB content after staining with BODIPY 493/503 and Nile red was compared, and automated staining techniques were developed for both cultures. RESULTS: BODIPY 493/503 staining had less background staining, higher sensitivity and specificity to PHB, and higher saturation values than did Nile red staining. The developed automated staining procedure was capable of analyzing the PHB content of a bioreactor sample every 25 min and measured the average PHB content with accuracy comparable to offline GC analysis. CONCLUSION: BODIPY 493/503 produced an overall better staining for PHB than did Nile red. When combined with the automated system, this technique provides a new method for the online monitoring and control of bioreactors.  相似文献   

3.
The lipid droplet (LD) has become a focus of intense research. Fluorescence labeling is indispensable for the cell biological analysis of the LD, and a lipophilic fluorescence dye, BODIPY 493/503, which emits bright green fluorescence has been used extensively for LD labeling. The dye is convenient for double fluorescence labeling, but we noticed that it emits red fluorescence under certain conditions, which could lead to erroneous interpretations. We propose a protocol to preclude such a possibility.  相似文献   

4.
摘要 目的:研究细胞内脂滴含量的变化对肥胖、糖尿病等代谢性疾病发生发展的影响。方法:建立高内涵脂滴三维成像和定量分析系统,获得脂滴三维动态表型参数,例如细胞内脂滴的总体积量、脂滴平均体积、单一细胞内脂滴平均数量等指标。选择HeLa、AML-12、COS-7和3T3-L1四种细胞系进行油酸、基因沉默、酶活性抑制剂的处理,量化处理后四种细胞内的脂滴数量与大小的表型差异。结果:在加入油酸情况下,细胞随油酸浓度增加而生成更多、更大的脂滴,但AML-12细胞只有展现增加脂滴数量的变化表型;在HeLa细胞中进行19种中性脂合成通路上关键基因的转录表达沉默,发现需要同时双敲降两种甘油三酯合成酶DGAT1和DGAT2才能显着降低细胞内脂滴总体积储存量,但在COS-7细胞中只需要单敲降DGAT1即可降低脂滴存量;进一步使用了DGAT1/2抑制剂处理四种细胞后,发现对抑制剂响应可区分为两类细胞分组(HeLa、AML-12与COS-7、3T3-L1)的脂滴存量表型差异,其原因是DGAT1和DGAT2的转录表达谱在这两类细胞分组中的不同。结论:建立了高内涵脂滴三维成像和定量分析系统,量化了四种细胞系的脂滴数量与大小的表型差异,揭示了细胞的脂滴脂储存方式与蛋白酶表达谱的关系。  相似文献   

5.
Localization and movement of organelles in living hyphae of an arbuscular mycorrhizal fungus, Gigaspora margarita, were observed using a combination of fluorescent probes and laser-scanning confocal microscopy. Dense, evenly distributed acidic vesicles were visible in germ tubes and extraradical hyphae using DIC with the fluorescent acidotropic probe LysoTracker. These vesicles were distinct from both tubular vacuoles stained with DFFDA and lipid bodies stained with BODIPY 493/503 or Nile Red. Tubular vacuole bundles appeared to be influenced by the bidirectional cytoplasmic streaming of acidic vesicles and lipid bodies. Movement of the acidic vesicles occurred bidrectionally at different rates. The size and distribution of lipid bodies were variable. Based on our observations, the function of these organelles is discussed in relation to nutrient translocation in arbuscular mycorrhizas. Abbreviations: AM – arbuscular mycorrhiza; DAPI – 4′,6-diamidino-2-phenylindole; DIC – differential interference contrast; BODIPY 493/503 – 4,4-difluoro-1,3,5,7,8-pentamethyl-4-bora-3a,4a-diaza-s-indacene; DMSO – dimethyl sulfoxide; FITC – fluorescein isothiocynate; caboxy-DFFDA – Oregon Green 488 carboxylic acid diacetate.  相似文献   

6.
The lipins have been described as metabolic enzymes that regulate lipid biosynthesis and also signaling processes by controlling the cellular concentration of bioactive lipids, phosphatidic acid, and diacylgycerol. In the present work we have studied the subcellular localization and role of lipin-1 in human monocyte-derived macrophages. Human macrophages express lipin-1 isoforms α and β. A transfected lipin-1α-enhanced GFP construct associates with membranes of cellular organelles that can be stained with Nile Red. Colocalization experiments with lipid droplet (LD)-specific proteins such as adipophilin/adipose differentiation-related protein/perilipin 2 or TIP47/perilipin 3 show that both proteins colocalize with lipin-1α in the same cellular structures. Reduction of the expression levels of lipin-1 by small interfering RNA technology does not impair triacylglycerol biosynthesis but reduces the size of LDs formed in response to oleic acid. In agreement with these data, peritoneal macrophages from animals that carry a mutation in the Lpin-1 gene (fld animals) also produce less and smaller LDs in response to oleic acid. Mass spectrometry determinations demonstrate that the fatty acid composition of triacylglycerol in isolated LDs from lipin-1-deficient cells differs from that of control cells. Moreover, activation of cytosolic group IVA phospholipase A(2)α, a proinflammatory enzyme that is also involved in LD biogenesis, is also compromised in lipin-1-deficient cells. Collectively, these data suggest that lipin-1 associates with LDs and regulates the activation of cytosolic group IVA phospholipase A(2)α in human monocyte-derived macrophages.  相似文献   

7.
Accumulation of neutral lipids in Bruch''s membrane (BrM) is a major age change in human retina and contributes to the formation of extracellular lesions associated with age-related macular degeneration. We developed a BrM–choroid wholemounting technique suitable for reliable staining and evaluated different fluorescent lipid dyes for topographic semiquantitative analysis of BrM lipids. Thin BrM–choroid complexes with partially stripped choroid from 10 aged donor eyes were prepared with an optimized wholemounting technique. Preparation quality was monitored by examining 1-μm-thick sections of representative samples. The staining patterns of Nile Red, BODIPY 493/503, filipin for unesterified cholesterol (UC-F), filipin for esterified cholesterol (EC-F), and Oil Red O in wholemounts were compared with their staining patterns in chorioretinal sections, using wide-field epi-fluorescence microscopy. Wholemounts exhibited optimal flatness on the BrM side. Reduced tissue thickness allowed reliable dye penetration and staining of BrM. Only EC-F was with high specificity localized to BrM and demonstrated an intense and distinct granular staining pattern not previously appreciated in chorioretinal sections. All other lipid dyes also stained choroidal or retinal tissue intensely. No dye provided perfect characteristics in regard to representing all neutral lipid classes present in BrM or to fluorescence intensity. Nevertheless, only EC-F was highly localized to BrM with a specific granular pattern. Because direct assays indicate that esterified cholesterol is abundantly present in BrM, we consider EC-F the most valuable choice for analyzing neutral lipid deposits in human BrM. (J Histochem Cytochem 57:731–739, 2009)  相似文献   

8.
In the present study, we developed a cell-based protocol for the identification of drugs able to induce steatosis. The assay measures multiple markers of toxicity in a 96-well plate format using high-content screening (HCS) technology. After treating HepG2 cells with increasing concentrations of the tested compounds, toxicity parameters were analyzed using fluorescent probes: BODIPY493/503 (lipid content), 2',7'-dihydrodichlorofluorescein diacetate (reactive oxygen species [ROS] generation), tetramethyl rhodamine methyl ester (mitochondrial membrane potential), propidium iodide (cell viability), and Hoechst 33342 (nuclei staining). A total of 16 drugs previously reported to induce liver steatosis through different mechanisms (positive controls) and six nonsteatotic compounds (negative controls) were included in the study. All the steatosis-positive compounds significantly increased BODIPY493/503 fluorescence in HepG2 cells, whereas none of the negative controls induced lipid accumulation. In addition to effects on fat levels, increased ROS generation was produced by certain compounds, which could be indicative of increased risk of liver damage. Our results suggest that this in vitro approach is a simple, rapid, and sensitive screening tool for steatosis-inducing drugs. This conclusion should be confirmed by testing a larger number of steatosis-positive and -negative inducers.  相似文献   

9.
When the fluorescence signal of a dye is being quantified, the staining protocol is an important factor in ensuring accuracy and reproducibility. Increasingly, lipophilic dyes are being used to quantify cellular lipids in microalgae. However, there is little discussion about the sensitivity of these dyes to staining conditions. To address this, microalgae were stained with either the lipophilic dyes often used for lipid quantification (Nile Red and BODIPY) or a lipophilic dye commonly used to stain neuronal cell membranes (DiO), and fluorescence was measured using flow cytometry. The concentration of the cells being stained was found not to affect the fluorescence. Conversely, the concentration of dye significantly affected the fluorescence intensity from either insufficient saturation of the cellular lipids or formation of dye precipitate. Precipitates of all three dyes were detected as events by flow cytometry and fluoresced at a similar intensity as the chlorophyll in the microalgae. Prevention of precipitate formation is, therefore, critical to ensure accurate fluorescence measurement with these dyes. It was also observed that the presence of organic solvents, such as acetone and dimethyl sulfoxide (DMSO), were not required to increase penetration of the dyes into cells and that the presence of these solvents resulted in increased cellular debris. Thus, staining conditions affected the fluorescence of all three lipophilic dyes, but Nile Red was found to have a stable fluorescence intensity that was unaffected by the broadest range of conditions and could be correlated to cellular lipid content.  相似文献   

10.
The ability of mesenchymal stromal cells (MSCs) to differentiate into adipocytes provides a cellular model of human origin to study adipogenesis in vitro. One of the major challenges in studying adipogenesis is the lack of tools to identify and monitor the differentiation of various subpopulations within the heterogeneous pool of MSCs. Cluster of differentiation (CD)36 plays an important role in the formation of intracellular lipid droplets, a key characteristic of adipocyte differentiation/maturation. The objective of this study was to develop a reproducible quantitative method to study adipocyte differentiation by comparing two lipophilic dyes [Nile Red (NR) and Bodipy 493/503] in combination with CD36 surface marker staining. We identified a subpopulation of adipose-derived stromal cells that express CD36 at intermediate/high levels and show that combining CD36 cell surface staining with neutral lipid-specific staining allows us to monitor differentiation of adipose-derived stromal cells that express CD36intermediate/high during adipocyte differentiation in vitro. The gradual increase of CD36intermediate/high/NRpositive cells during the 21 day adipogenesis induction period correlated with upregulation of adipogenesis-associated gene expression.  相似文献   

11.
Deformation of lipid droplets in fixed samples   总被引:6,自引:5,他引:1  
Nile red, Sudan III, and oil red O have been used to stain lipid droplets (LDs) for fluorescence microscopy. We noticed that LDs labeled by Nile red are different in appearance from those stained by the latter two dyes. To understand the cause of the difference, we used sequential labeling procedures (first LD stain-photography-quenching-second LD stain-photography), and examined the effect of several factors. Immunofluorescence labeling for adipose differentiation-related protein (ADRP), an LD marker, was also observed comparatively with the lipid stains. As a result, we found that ethanol and isopropanol used for Sudan III and oil red O staining, respectively, and glycerol used for mounting, cause fusion of adjacent LDs even in glutaraldehyde-fixed samples. By the same treatment, immunofluorescence labeling for ADRP was dislocated to the rim of large LDs that were formed as a result of the artifactual fusion. The result indicates that the LD structure can be better observed with Nile red than with Sudan III or oil red O.  相似文献   

12.
目的:探讨雷帕霉素(Rapamycin)对小鼠原代肝细胞脂滴形态和脂滴表面蛋白表达的影响。方法:采用胶原酶灌注方法分离和培养小鼠原代肝细胞,采用100μM油酸诱导肝细胞内脂肪的合成。采用0、10、20、50μM的雷帕霉素处理肝细胞12 hr后,利用中性脂肪染料Bodipy493/503对肝细胞内的脂滴进行染色,荧光显微镜下观察细胞脂滴形态和数量。定量试剂盒检测细胞内甘油三酯(TG)的含量利用Western blot检测不同浓度雷帕霉素处理的小鼠原代肝细胞脂滴表面蛋白ADRP的表达水平。结果:成功分离和培养了小鼠原代肝细胞,使用油酸处理能够明显增加原代肝细胞内脂滴的数量。随着体外雷帕霉素处理浓度的增加,荧光显微镜下观察发现原代肝细胞内脂滴的数量呈现明显的下降趋势,甘油三酯的含量也呈见明确的下降趋势,在20μM浓度下就表现出显著性差异。Western blot结果显示雷帕霉素能够在抑制肝细胞内脂肪储积的同时降低脂滴表面蛋白ADRP的表达水平,并且随着雷帕霉素处理浓度的增加,其对ADRP表达的抑制越明显。结论:雷帕霉素能够抑制肝细胞内中性脂肪的储积,同时降低脂滴表面蛋白ADRP的表达水平。也间接说明了mTOR信号通路能够影响肝细胞内脂肪的储积,也为脂肪肝的防治提供了一个新的实验基础。  相似文献   

13.
A simple reliable method with fast response for lipid detection and quantification is proposed, combining a new highly lipophilic fluorescent probe BODIPY BD-C12 and image analysis to determine the algal lipid content and the lipid production in the microalgae Nannochloropsis sp. Lipid bodies stained with BODIPY BD-C12 have a characteristic multicolor fluorescence, and their volumes were determined using a sphere volume approach. The method developed was applied in the evaluation of lipid accumulation by Nannochloropsis sp. under different cultivation conditions (varying nitrate and salinity concentrations and combined effect of these two variables). The results show an increase of lipid content in Nannochloropsis sp. cultivated in nitrogen replete and depleted conditions, from 9.4 to 40.8 μm3 cell?1 and 35.5 to 73.5%, respectively. The findings are also compared with conventional methods for determination of neutral lipids and with results obtained from the dyes Nile Red and BODIPY 505/515. A reasonable agreement between neutral lipid production measured by BODIPY BD-C12 and gravimetric methods (correlation coefficient of 0.98) was obtained. The neutral lipids production decreased from 964.6 to 244.8 mg L?1 and from 809.1 to 396.7 mg L?1, as the nitrate concentration increased from 0 to 0.3 g L?1. It is observed that, with the two commercially available dyes, lipid quantification using Nile Red leads to an overestimation of lipids, while the use of BODIPY 505/515 promoted unreliable measures due to rapid bleaching of the chromophore. The method proposed shows excellent potential to become a standard, yet advanced, strategy for rapid evaluation and quantification of intracellular lipids in microalgae, a crucial step of the scaling-up process involved in the production of biobased products.  相似文献   

14.
Lipid droplets (LDs) are highly dynamic organelles that perform multiple functions, including the regulated storage and release of cholesterol and fatty acids. Information on the molecular composition of individual LDs within their cellular context is crucial in understanding the diverse biological functions of LDs, as well as their involvement in the development of metabolic disorders such as obesity, type II diabetes, and atherosclerosis. Although ensembles of LDs isolated from cells and tissues were analyzed in great detail, quantitative information on the heterogeneity in lipid composition of individual droplets, and possible variations within single lipid droplets, is lacking. Therefore, we used a label-free quantitative method to image lipids within LDs in 3T3-L1 cells. The method combines submicron spatial resolution in three dimensions, using label-free coherent anti-Stokes Raman scattering microscopy, with quantitative analysis based on the maximum entropy method. Our method allows quantitative imaging of the chemistry (level of acyl unsaturation) and physical state (acyl chain order) of individual LDs. Our results reveal variations in lipid composition and physical state between LDs contained in the same cell, and even within a single LD.  相似文献   

15.
16.
A new vibrational imaging method based on coherent anti-Stokes Raman scattering (CARS) has been used for high-speed, selective imaging of neutral lipid droplets (LDs) in unstained live fibroblast cells. LDs have a high density of C-H bonds and show a high contrast in laser-scanning CARS images taken at 2,845 cm-1, the frequency for aliphatic C-H vibrations. The contrast from LDs was confirmed by comparing CARS and Oil Red O (ORO)-stained fluorescence images. The fluorescent labeling processes were examined with CARS microscopy. It was found that ORO staining of fixed cells caused aggregation of LDs, whereas fixing with formaldehyde or staining with Nile Red did not affect LDs. CARS microscopy was also used to monitor the 3T3-L1 cell differentiation process, revealing that there was an obvious clearance of LDs at the early stage of differentiation. After that, the cells started to differentiate and reaccumulate LDs in the cytoplasm in a largely unsynchronized manner. Differentiated cells formed small colonies surrounded by undifferentiated cells that were devoid of LDs. These observations demonstrate that CARS microscopy can follow dynamic changes in live cells with chemical selectivity and noninvasiveness. CARS microscopy, in tandem with other techniques, provides exciting possibilities for studying LD dynamics under physiological conditions without perturbation of cell functions.  相似文献   

17.
Lipid droplets (LDs) function as intracellular storage depots of neutral lipids. Recently, we identified long-chain acyl-coenzyme A synthetase 3 (ACSL3) as a major LD-associated protein in the human hepatocyte cell line HuH7. In this study, we investigated whether droplet-associated ACSL is involved in lipid metabolism in LDs. Addition of oleic acid (OA) to culture medium was shown to enhance the intracellular accumulation of LDs in the cells, which was accompanied by an increase of droplet ACSL3. When LD-enriched cells induced by OA were further incubated without OA for 3 days, approximately 80% of LDs were retained in the cells. Conversely, cellular LD content was greatly decreased after the addition of an ACSL inhibitor, triacsin C. This was accompanied by a concomitant decrease of the droplet ACSL3. Incubation of isolated LD fractions with (14)C-labeled OA or palmitic acid resulted in [(14)C]acyl-CoA generation in vitro, indicating the presence of ACSL activity in LDs. The droplet ACSL activity varied according to the quantity of LDs in their emergence and disappearance in cells. Incubation of the LD fraction with [(14)C]oleoyl-CoA resulted in radioactive triacylglycerol and cholesteryl esters. These results suggest that LD ACSL activity is involved in local synthesis of neutral lipids and LD formation.  相似文献   

18.
The PAT family of lipid storage droplet proteins comprised five members, each of which has become an established regulator of cellular neutral lipid metabolism. Perilipin 5 (also known as lsdp-5, MLDP, PAT-1, and OXPAT), the most recently discovered member of the family, has been shown to localize to two distinct intracellular pools: the lipid storage droplet (LD), and a poorly characterized cytosolic fraction. We have characterized the denser of these intracellular pools and find that a population of perilipin 5 not associated with large LDs resides in complexes with a discrete density (~1.15 g/ml) and size (~575 kDa). Using immunofluorescence, western blotting of isolated sucrose density fractions, native gradient gel electrophoresis, and co-immunoprecipitation, we have shown that these small (~15 nm), perilipin 5-encoated structures do not contain the PAT protein perilipin 2 (ADRP), but do contain perilipin 3 and several other as of yet uncharacterized proteins. The size and density of these particles as well as their susceptibility to degradation by lipases suggest that like larger LDs, they have a neutral lipid rich core. When treated with oleic acid to promote neutral lipid deposition, cells ectopically expressing perilipin 5 experienced a reorganization of LDs in the cell, resulting in fewer, larger droplets at the expense of smaller ones. Collectively, these data demonstrate that a portion of cytosolic perilipin 5 resides in high density lipid droplet complexes that participate in cellular neutral lipid accumulation.  相似文献   

19.
The PAT family of lipid storage droplet proteins comprised five members, each of which has become an established regulator of cellular neutral lipid metabolism. Perilipin 5 (also known as lsdp-5, MLDP, PAT-1, and OXPAT), the most recently discovered member of the family, has been shown to localize to two distinct intracellular pools: the lipid storage droplet (LD), and a poorly characterized cytosolic fraction. We have characterized the denser of these intracellular pools and find that a population of perilipin 5 not associated with large LDs resides in complexes with a discrete density (~ 1.15 g/ml) and size (~ 575 kDa). Using immunofluorescence, western blotting of isolated sucrose density fractions, native gradient gel electrophoresis, and co-immunoprecipitation, we have shown that these small (~ 15 nm), perilipin 5-encoated structures do not contain the PAT protein perilipin 2 (ADRP), but do contain perilipin 3 and several other as of yet uncharacterized proteins. The size and density of these particles as well as their susceptibility to degradation by lipases suggest that like larger LDs, they have a neutral lipid rich core. When treated with oleic acid to promote neutral lipid deposition, cells ectopically expressing perilipin 5 experienced a reorganization of LDs in the cell, resulting in fewer, larger droplets at the expense of smaller ones. Collectively, these data demonstrate that a portion of cytosolic perilipin 5 resides in high density lipid droplet complexes that participate in cellular neutral lipid accumulation.  相似文献   

20.
Cells store excess lipids as two major compounds, triacylglycerols (TAGs) and cholesteryl esters (CEs), inside lipid droplets (LDs). The degree of lipid ordering is considered to play a major role in the mobility and enzymatic processing of lipids in LDs. Here, we provide evidence that polarized third-harmonic generation (THG) microscopy distinguishes between native TAG- and CE-enriched LDs in cells due to the different ordering of the two lipid species. We first demonstrate that the responses from synthetic TAG- and CE-enriched LDs using THG microscopy with linear and circular polarizations differ according to their different intrinsic ordering. We then employ simulations to dissect how polarization effects influence the THG from an isotropic LD. Finally, we induce TAG- and CE-enriched LDs in murine macrophages and demonstrate that polarized THG responses increase in a nonlinear fashion with increasing CE/TAG ratio. This suggests that with an increasing CE content, there is a rather sharp transition toward increased LD ordering. Our results demonstrate that polarized THG microscopy enables label-free quantitative analysis of LD ordering and discriminates between compositionally different LDs in intact mammalian cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号