首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
In this study, a method was developed to immobilize silver onto polypropylene (PP) membrane surfaces for improved anti-biofouling performance. A commercial PP membrane was first grafted with the thiol functional groups, and then silver ions were immobilized onto the PP membrane surface through coordinating with the thiol groups. The immobilized silver was found to be very stable, with only ~1.1% of the immobilized silver being leached out during a leaching test. The surface of the modified membrane (PPS-Ag) was examined with ATR-FTIR and XPS analysis, which verified the successful grafting of the thiol groups and the coordination of silver ions on the membrane surface. The surface properties of the membrane were also characterized by SEM, AFM and water contact angle measurements. The PPS-Ag membrane was found to have a smoother and more hydrophilic surface than the PP membrane. Both Gram-negative bacteria, Escherichia coli, and Gram-positive bacteria, Staphylococcus aureus, were used to evaluate the antibacterial and anti-biofouling performance of the PPS-Ag membrane. From disk diffusion experiments, the PPS-Ag membrane exhibited the capability of inhibiting the growth of both the Gram-negative and Gram-positive bacteria tested. The anti-biofouling performance of the membrane was assessed by immersion in a mixed suspension of E. coli and S. aureus and filtration tests. The PPS-Ag membrane showed a stable and significantly enhanced anti-biofouling performance as compared with the PP membrane. The results in this study demonstrate that biofouling of a PP membrane can be sufficiently overcome through immobilizing silver onto the membrane surface.  相似文献   

2.
Ma Y  Zhou T  Zhao C 《Carbohydrate research》2008,343(2):230-237
Chitosan-nylon-6 blended membranes were prepared by combining solvent evaporation and a phase inversion technique, and then used to chelate silver ions. Gram-positive bacteria (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli) were used to study the antibacterial properties of the membranes. Fourier-transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) indicated hydrogen-bond interactions between chitosan and nylon-6. From the scanning electron microscopy (SEM) pictures, it was observed that with the increase of nylon-6 content, the blended membrane gradually became a material with porous morphology. After chelating silver ions, the tensile strength of the membranes increased. The antibacterial activity with the variation of chitosan content, the pH value and the concentration of the silver nitrate solution used to prepare Ag(+)-loaded membranes were investigated systematically. The results indicated that the chitosan-nylon-6 blended membranes with Ag(+) were antibacterial to both Gram-positive bacteria and Gram-negative bacteria. The antibacterial activity improved with the increased chitosan content due to the larger amount of silver ions loaded. The antibacterial property of the chitosan-nylon-6 blended membranes could be primarily attributed to the content of chitosan and silver ions as well as the surface morphology of the membranes.  相似文献   

3.
The bactericidal activity of catechin-copper (II) complexes against Staphylococcus aureus compared with Escherichia coli was investigated in relation to the generation of hydrogen peroxide and the binding of Cu(II) ion onto the bacteria. The bactericidal activity of catechin-Cu(II) complexes against Staph. aureus (Gram-positive) was much lower than that against E. coli (Gram-negative), suggesting that the binding of copper ions to the surface of bacterial cells plays an important role in the bactericidal activity of catechin-Cu(II) complexes.  相似文献   

4.
Cadmium uptake by growing cells of gram-positive and gram-negative bacteria   总被引:1,自引:0,他引:1  
The present study evaluates the effect of the cadmium (Cd2+) on the growth and protein synthesis of some Gram-positive (Staphylococcus aureus, Bacillus subtilis and Streptococcus faecium) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria and the cadmium uptake by the same micro-organisms. The Gram-negative bacteria tested were less sensitive to metal ions than the Gram-positive, and P. aeruginosa was the most resistant. The Gram-negative bacteria were also able to accumulate higher amounts of cadmium during growth than the Gram-positive bacteria. The maximum values of specific metal uptake (microgram of Cd2+ incorporated per mg of protein) were: 0.52 for S. aureus, 0.65 for S. faecium, 0.79 for B. subtilis, 2.79 for E. coli and 24.15 for P. aeruginosa, respectively. The differences in the ability to accumulate metal found between Gram-negative and Gram-positive bacteria seems to account for different mechanisms of metal resistance.  相似文献   

5.
Many research groups have attained slow, persistent, continuous release of silver ions through careful experimental design using existing methods. Such methods effectively kill planktonic bacteria and therefore prevent surface adhesion of pathogens. However, the resultant modified coatings cannot provide long-term antibacterial efficacy due to sustained anti-microbial release. In this study, the anti-infection activity of AgNP immobilized biomaterials was evaluated, facilitated by argon plasma grafting technology and activated by bacterial colonization. The modified materials generated in this study showed excellent specificity and were active against both Gram-positive and Gram-negative biofilm forming bacteria, including methicillin-resistant Staphylococcus aureus, Staphylococcus epidermidis, and Escherichia coli. The anti-infection biomaterials developed in this study demonstrate several attractive advantages in comparison to traditional anti-bacterial surfaces loaded with antibiotics or other types of antibacterial agents and include (1) broad spectrum of activity against antibiotic resistant bacteria, (2) the unlikelihood of bacterial resistance, (3) specificity, (4) biocompatibility, and (5) stability.  相似文献   

6.
The PolC holoenzyme replicase of the Gram-positive Staphylococcus aureus pathogen has been reconstituted from pure subunits. We compared individual S. aureus replicase subunits with subunits from the Gram-negative Escherichia coli polymerase III holoenzyme for activity and interchangeability. The central organizing subunit, tau, is smaller than its Gram-negative homolog, yet retains the ability to bind single-stranded DNA and contains DNA-stimulated ATPase activity comparable with E. coli tau. S. aureus tau also stimulates PolC, although they do not form as stabile a complex as E. coli polymerase III.tau. We demonstrate that the extreme C-terminal residues of PolC bind to and function with beta clamps from different bacteria. Hence, this polymerase-clamp interaction is highly conserved. Additionally, the S. aureus delta wrench of the clamp loader binds to E. coli beta. The S. aureus clamp loader is even capable of loading E. coli and Streptococcus pyogenes beta clamps onto DNA. Interestingly, S. aureus PolC lacks functionality with heterologous beta clamps when they are loaded onto DNA by the S. aureus clamp loader, suggesting that the S. aureus clamp loader may have difficulty ejecting from heterologous clamps. Nevertheless, these overall findings underscore the conservation in structure and function of Gram-positive and Gram-negative replicases despite >1 billion years of evolutionary distance between them.  相似文献   

7.
The minimum inhibitory concentration values against Gram-negative and Gram-positive bacteria were determined and compared for a selected group of synthesized alpha-substituted 2-methyl-5-nitrofuran derivatives. In vitro oxidation of thiols to disulfides by 2-(iodomethyl)-5-nitrofuran indicated that oxidation of enzyme-thiol groups to disulfide bonds was a possible mode of action; but was discounted by noninhibition of thiol enzymes by these compounds. Electron-microscopic studies of the morphology of bacteria after treatment with these derivatives showed the formation of unusual elongation, branching and atypical rod shapes in E. coli, while S. aureus manifested multibud formation with some cytoplasmic protrusions. The possible mode of action of these compounds is discussed.  相似文献   

8.
Several critical mechanistic and phenomenological aspects of the microbicidal surface coatings based on immobilized hydrophobic polycations, previously developed by us, are addressed. Using Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) bacteria, remarkable bactericidal action (up to a 10(9)-fold reduction in live bacteria count in the surface-exposed solution and a 100% inactivation of the surface-adhered bacteria) of an amino-glass slide covalently derivatized with N-hexyl,methyl-polyethylenimine (PEI) is found to be due to rupturing bacterial cell membranes by the polymeric chains. The bacteria fail to develop noticeable resistance to this lethal action over the course of many successive generations. Finally, the immobilized N-alkyl-PEI, while deadly to bacteria, is determined to be harmless to mammalian (monkey kidney) cells.  相似文献   

9.
家蝇幼虫抗菌肽MDL-2对细菌细胞渗透性及代谢功能影响   总被引:2,自引:0,他引:2  
研究了家蝇幼虫抗菌肽MDL-2与细菌相互作用时,抗菌肤MDL-2对细菌细胞壁的溶解作用、细胞膜渗透性和代谢的影响.抗菌肽MDL-2在抗菌过程中首先与细菌的细胞壁相互作用,使其破裂,抗菌肽对革兰氏阴性细菌大肠杆菌细胞壁的作用有浓度依赖性,而对革兰氏阳性细菌金黄色葡萄球菌MDL-2在较低的浓度时即可发生细胞壁破坏作用;抗菌...  相似文献   

10.
目的了解重庆地区儿童感染的分离至临床标本的首位革兰阴性细菌和阳性细菌对常用抗生素的耐药趋势,指导临床合理使用抗生素。方法常规方法分离、培养细菌,应用美国德灵公司WalkAway-40细菌鉴定仪对2000年至2004年我院细菌室分离至临床标本的首位革兰阴性细菌和阳性细菌共2854株进行细菌鉴定及药敏试验。结果2000年至2004年检出的首位革兰阴性细菌和阳性细菌分别为大肠埃希菌和金黄色葡萄球菌。2000年至2004年前5位革兰阴性菌5777株,革兰阳性菌1565株,其中大肠埃希菌2090株,金黄色葡萄球菌764株,分别占36.2%和48.8%;5年间大肠埃希菌对氨苄西林、头孢吡肟、头孢西丁、庆大霉素、亚胺培南、环丙沙星、头孢噻肟、头孢他啶的总耐药率分别为80.9%、37.5%、15.4%、54.0%、0.8%、34.0%、46.6%、46.2%;金黄色葡萄球菌对青霉素、红霉素、复方新诺明、万古霉素、阿莫西林/克拉维酸的总耐药率分别为95.6%、63.4%、5.8%、0%、11.0%。结论通过细菌耐药监测发现:大肠埃希菌对常用抗生素的总耐药率变化不大,金黄色葡萄球菌对常用抗生素的总耐药率有下降趋势,应引起临床医生重视。  相似文献   

11.
Group IIA secreted phospholipase A(2) (sPLA2) is known to display potent Gram-positive bactericidal activity in vitro and in vivo. We have analyzed the bactericidal activity of the full set of recombinant murine and human groups I, II, V, X, and XII sPLA2s on Listeria monocytogenes, Staphylococcus aureus, and Escherichia coli. The rank order potency among human sPLA2s against Gram-positive bacteria is group IIA > X > V > XII > IIE > IB, IIF (for murine sPLA2s: IIA > IID > V > IIE > IIC, X > IB, IIF), and only human group XII displays detectable bactericidal activity against the Gram-negative bacterium E. coli. These studies show that highly basic sPLA2s display potent bactericidal activity with the exception of the ability of the acidic human group X sPLA2 to kill Gram-positive bacteria. By studying the Bacillus subtilis and S. aureus bactericidal potencies of a large panel of human group IIA mutants in which basic residues were mutated to acidic residues, it was found that: 1) the overall positive charge of the sPLA2 is the dominant factor in dictating bactericidal potency; 2) basic residues on the putative membrane binding surface of the sPLA2 are modestly more important for bactericidal activity than are other basic residues; 3) relative bactericidal potency tracks well with the ability of these mutants to degrade phospholipids in the bacterial membrane; and 4) exposure of the bacterial membrane of Gram-positive bacteria by disruption of the cell wall dramatically reduces the negative effect of charge reversal mutagenesis on bactericidal potency.  相似文献   

12.
In the present study, a control methodology utilizing airborne silver nanoparticles is suggested and tested with respect to its potential to control Gram-positive Staphylococcus epidermidis and Bacillus subtilis, and Gram-negative Escherichia coli bacteria bioaerosols deposited on filters. As it is known that the Gram-negative bacteria are sensitive to airflow exposure, the main focus of this study for testing the airborne silver nanoparticles effect was the Gram-positive Staphylococcus epidermidis and Bacillus subtilis bacteria bioaerosols whereas Escherichia coli bioaerosols were utilized for comparison. Airborne bacteria and airborne silver nanoparticles were quantitatively generated in an experimental system. Bioaerosols deposited on the filter were exposed to airborne silver nanoparticles. The physical and biological properties of the airborne bacteria and airborne silver nanoparticles were measured via aerosol measurement devices. From the experimental results, it was demonstrated that this method utilizing airborne silver nanoparticles offers potential as a bioaerosol control methodology.  相似文献   

13.
原子力显微镜观测血卟啉单甲醚对细菌光动力杀伤作用   总被引:2,自引:0,他引:2  
[目的]探讨血卟啉单甲醚(Hematoporyrin monomethyl Ether,HMME)对革兰氏阳性(G )、阴性(G-)菌的光动力杀伤作用.[方法]通过平板菌落计数法和原子力显微镜(AFM),观察细菌与HMME作用前后形貌的变化.[结论]当HMME浓度为50 μg/mL,可见光(光功密度为200 mW/cm2)光照30min时90%以上的金黄色葡萄球菌(Staphyrlococcus aureus)能被杀死,无光照时对S.aureus杀灭效果显著.同等条件下,无论光照还是无光照,HMME对大肠杆菌(E.coli)无明显的杀伤作用.AFM图像显示,S.aureus细菌表面破坏严重,完全碎裂成鱼鳞状的片状堆积.对HMME作用后的E.coli扫描可见,菌体原来光滑的表面变成网格状的裂纹排列.[讨论]HMME对G 有明显的光失活效应,而对G-效果不明显.AFM的超微图像显示HMME对细菌细胞的攻击位点主要在细胞膜上.AFM为我们研究光敏剂对细菌的光动力损伤作用机制的可视化提供了依据.  相似文献   

14.
15.
Yan Mei  Chen Yao 《Biofouling》2014,30(3):313-322
In this work, antibacterial and anti-adhesive polymeric thin films were constructed on polyacrylonitrile (PAN) nanofibrous membranes in order to extend their applications. Polyhexamethylene guanidine hydrochloride (PHGH) as an antibacterial agent and heparin (HP) as an anti-adhesive agent have been successfully coated onto the membranes via a layer-by-layer (LBL) assembly technique confirmed by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), energy-dispersive spectroscopy (EDS) and scanning electron microscopy (SEM). The antibacterial properties of LBL-functionalized PAN nanofibrous membranes were evaluated using the Gram-positive bacterium Staphylococcus aureus and the Gram-negative Escherichia coli. Furthermore, the dependence of the antibacterial activity and anti-biofouling performance on the number of layers in the LBL films was investigated quantitatively. It was found that these LBL-modified nanofibrous membranes possessed high antibacterial activities, easy-cleaning properties and stability under physiological conditions, thus qualifying them as candidates for anti-biofouling coatings.  相似文献   

16.
17.
Silver-doped organic-inorganic hybrid coatings were prepared starting from tetraethoxysilane- and triethoxysilane-terminated poly(ethylene glycol)-block-polyethylene by the sol-gel process. They were applied as a thin layer (0.6-1.1 microm) to polyethylene (PE) and poly(vinyl chloride) (PVC) films and the antibacterial activity of the coated films was tested against Gram-negative (Escherichia coli ATCC 25922) and Gram-positive (Staphylococcus aureus ATCC 6538) bacteria. The effect of several factors (such as organic-inorganic ratio, type of catalyst, time of post-curing, silver ion concentration, etc.) was investigated. Measurements at different contact times showed a rapid decrease of the viable count for both tested strains. The highest antibacterial activity [more than 6 log reduction within 6 h starting from 106 colony-forming units (cfu) mL-1] was obtained for samples with an organic-inorganic weight ratio of 80:20 and 5 wt % silver salt with respect to the coating. For the coatings prepared by an acid-catalyzed process, a high level of permanence of the antibacterial activity of the coated films was demonstrated by repeatedly washing the samples in warm water or by immersion in physiological saline solution at 37 degrees C for 3 days. The release of silver ions per square meter of coating is very similar to that previously observed for polyamides filled with metallic silver nanoparticles; however, when compared on the basis of Ag content, the concentration of silver ions released from the coating is much higher than that released from 1 mm thick specimens of polyamide (PA) filled with silver nanoparticles. Transparency and good adhesion of the coating to PE and PVC plastic substrates without any previous surface treatment are further interesting features.  相似文献   

18.
We have prepared potentially permanent antimicrobial films based on surface-modified microfibrillated cellulose (MFC). MFC, obtained by disintegration of bleached softwood sulfite pulp in a homogenizer, was grafted with the quaternary ammonium compound octadecyldimethyl(3-trimethoxysilylpropyl)ammonium chloride (ODDMAC) by a simple adsorption-curing process. Films prepared from the ODDMAC-modified MFC were characterized by Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) and tested for antibacterial activity against the Gram-positive bacterium Staphylococcus aureus and the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa. The films showed substantial antibacterial capacity even at very low concentrations of antimicrobial agent immobilized on the surface. A zone of inhibition test demonstrated that no ODDMAC diffused into the surroundings, verifying that the films were indeed of the nonleaching type.  相似文献   

19.
Separation of bacteria using agglutinins isolated from invertebrates   总被引:1,自引:1,他引:0  
The agglutination of a selection of Gram-positive and Gram-negative bacteria by the haemolymph and coelomic fluid from several invertebrates was studied. The haemolymph from Lumbricus terrestris and Limulus polyphemus caused the strongest agglutination of most of the bacteria studied. When the agglutinating fraction of Lim. Polyphemus was liganded to magnetic microspheres 53% of the cells in pure cultures of Listeria monocytogenes C200, 15% of Salmonella enteritidis 37782, 92% of Staphylococcus aureus NCDO 949, 19% of Escherichia coli E4936/76 and 65% of E. coli W2–2 were adsorbed to the beads. The immobilized haemolymph from Lumb. terrestris adsorbed 42% of Salm. enteritidis 37782, 64% of E. coli 4936/76 and 27% of Staph. aureus NCDO 1499 cells and the coelomic fluid from Haemopsis sanguisuga adsorbed 42, 48 and 50% of these cultures respectively. With immobilized Haem. sanguisuga agglutinins, 21–27% of Staph. aureus NCDO 2044 cells were recovered from full-fat pasteurized milk and 20–51% from braising steak. Immobilized Lim. polyphemus agglutinins recovered 17–34% of Staph. aureus cells from raw egg. The potential of agglutinins isolated from invertebrates for enhancing rapid microbiological assays of foods is discussed.  相似文献   

20.
LOX-1 supports adhesion of Gram-positive and Gram-negative bacteria   总被引:8,自引:0,他引:8  
Adhesion of bacteria to vascular endothelial cells as well as mucosal cells and epithelial cells appears to be one of the initial steps in the process of bacterial infection, including infective endocarditis. We examined whether lectin-like oxidized low-density lipoprotein receptor 1 (LOX-1), a member of scavenger receptor family molecules with C-type lectin-like structure, can support adhesion of Gram-positive and Gram-negative bacteria. Chinese hamster ovary-K1 (CHO-K1) cells stably expressing LOX-1 can support binding of FITC-labeled Staphylococcus aureus and Escherichia coli, which was suppressed by poly(I) and an anti-LOX-1 mAb. Adhesion of these bacteria to LOX-1 does not require divalent cations or serum factors and can be supported under both static and nonstatic conditions. Cultured bovine aortic endothelial cells (BAEC) can also support adhesion of FITC-labeled S. aureus, which was similarly suppressed by poly(I) and an anti-LOX-1 mAb. In contrast, binding of FITC-labeled E. coli to BAEC was partially inhibited by the anti-LOX-1 mAb, and poly(I) did not block FITC-labeled E. coli adhesion to BAEC, but, rather, enhanced it under a static condition. TNF-alpha increased LOX-1-dependent adhesion of E. coli, but not that of S. aureus, suggesting that S. aureus adhesion to BAEC may require additional molecules, which cooperate with LOX-1 and suppressed by TNF-alpha. Taken together, LOX-1 can work as a cell surface receptor for Gram-positive and Gram-negative bacteria, such as S. aureus and E. coli, in a mechanism similar to that of class A scavenger receptors; however, other unknown molecules may also be involved in the adhesion of E. coli to BAEC, which is enhanced by poly(I).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号