首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Tumor cell invasion is vital for cancer progression and metastasis. Adhesion, migration, and degradation of the extracellular matrix are important events involved in the establishment of cancer cells at a new site, and therefore molecular targets are sought to inhibit such processes. The effect of a plant proteinase inhibitor, Enterolobium contortisiliquum trypsin inhibitor (EcTI), on the adhesion, migration, and invasion of gastric cancer cells was the focus of this study. EcTI showed no effect on the proliferation of gastric cancer cells or fibroblasts but inhibited the adhesion, migration, and cell invasion of gastric cancer cells; however, EcTI had no effect upon the adhesion of fibroblasts. EcTI was shown to decrease the expression and disrupt the cellular organization of molecules involved in the formation and maturation of invadopodia, such as integrin β1, cortactin, neuronal Wiskott-Aldrich syndrome protein, membrane type 1 metalloprotease, and metalloproteinase-2. Moreover, gastric cancer cells treated with EcTI presented a significant decrease in intracellular phosphorylated Src and focal adhesion kinase, integrin-dependent cell signaling components. Together, these results indicate that EcTI inhibits the invasion of gastric cancer cells through alterations in integrin-dependent cell signaling pathways.  相似文献   

2.
17beta-Estradiol (E(2)) is a steroid hormone well known for its roles in the regulation of various cell functions. However, the precise role that E(2) plays in the proliferation of human mesenchymal stem cells (hMSCs) has not been completely elucidated. In the present study, we examined the effects of E(2) on cell proliferation and the related signaling pathways using hMSCs. We showed that E(2), at > or =10(-9) M, significantly increased [3H]thymidine incorporation after 24 h of incubation, and E(2) also increased [3H]thymidine incorporation at >6 h. Also, E(2) significantly increased the percentage of the cell population in the S phase based on FACS analysis. Moreover, E(2) increased estrogen receptor (ER), PKC, phosphatidylinositol 3-kinase (PI3K)/Akt, and MAPK phosphorylation. Subsequently, these signaling molecules were involved in an E(2)-induced increase of [3H]thymidine incorporation. E(2) also increased hypoxia-inducible factor (HIF)-1alpha and VEGF protein levels. These levels of protein expression were inhibited by ICI-182,780 (10(-6) M, an ER antagonist), staurosporine and bisindolylmaleimide I (10(-6) M, a PKC inhibitor), LY-294002 (10(-6) M, a PI3K inhibitor), Akt inhibitor (10(-5) M), SP-600125 (10(-6) M, a SAPK/JNK inhibitor), and PD-98059 (10(-5) M, a p44/42 MAPKs inhibitor). In addition, HIF-1alpha small interfering (si)RNA and ICI-182,780 inhibited E(2)-induced VEGF expression and cell proliferation. VEGF siRNA also significantly inhibited E(2)-induced cell proliferation. In conclusion, E(2) partially stimulated hMSC proliferation via HIF-1alpha activation and VEGF expression through PKC, PI3K/Akt, and MAPK pathways.  相似文献   

3.
4.
In the presence of cycloheximide, tumor necrosis factor or interleukin-1 initiates caspase activation, loss of mitochondrial membrane potential (DeltaPsi), DNA degradation, and nuclear condensation and fragmentation characteristic of apoptotic cell death in human vascular endothelial cells (EC). Inhibition of phosphatidylinositol 3-kinase (PI3K) by LY294002, but not inhibition of Akt by dominant-negative mutation, also sensitizes EC to cytokine-initiated apoptosis. Cytokine-initiated caspase activation is slower and comparatively less with LY294002 than with cycloheximide. Cycloheximide but not LY294002 decreases expression of c-FLIP (cellular FLICE inhibitory protein), an inhibitor of caspase-8 activation. The caspase inhibitor zVADfmk completely blocks caspase activation, DNA degradation, and nuclear fragmentation in both cases but only prevents loss of DeltaPsi and cell death for cytokine plus cycloheximide treatment. In contrast, overexpression of Bcl-2 protects EC treated with cytokine plus LY294002 but not EC treated with cytokine plus cycloheximide. The cathepsin B inhibitor CA-074-Me prevents loss of DeltaPsi, caspase activation, and cell death for EC treated with cytokine plus LY294002 but has no effect on EC treated with cytokine plus cycloheximide. Cathepsin B translocates from lysosomes to cytosol following treatment with LY294002 prior to the activation of caspases. These results suggest that inhibition of PI3K allows cytokines to activate a cathepsin-dependent, mitochondrial death pathway in which caspase activation is secondary, is not inhibited by c-FLIP, and is not essential for cell death.  相似文献   

5.
Nowadays, some evidences demonstrate that human mesenchymal stem cells (hMSCs) favor tumor growth; however, others show that hMSCs can suppress tumorigenesis and tumor growth. With the indeterminateness of the effect of hMSCs on tumors, we investigated the effect of hMSCs on lung cancer cell line A549 and esophageal cancer cell line Eca-109 in vitro and in vivo. Our results revealed that hMSCs inhibited the proliferation and invasion of A549 and Eca-109 cells, arrested tumor cells in the G1 phase of the cell cycle and induced the apoptosis of tumor cells in vitro by using a co-culture system and the hMSCs-conditioned medium. However, animal study showed that hMSCs enhanced tumor formation and growth in vivo. Western blotting and immunoprecipitation data showed that the expressions of proliferating cell nuclear antigen (PCNA), Cyclin E, phospho-retinoblastoma protein (pRb), B-cell lymphoma/leukemia-2 (Bcl-2), Bcl-xL, and matrix metalloproteinase 2 (MMP-2) were downregulated and the formation of Cyclin E-cyclin-dependent kinase 2 (CDK2) complexes was inhibited in the tumor cells treated with the hMSCs-conditioned medium. According to the observation of tumor mass and the result of microvessel density (MVD), we found that the promoting role of hMSCs on tumor growth was related with the increase of tumor vessel formation. Our present study suggests that hMSCs have a contradictory effect on tumor cell growth between in vitro and in vivo, and therefore, the exploitation of hMSCs in new therapeutic strategies should be cautious under the malignant conditions.  相似文献   

6.
The pathways involved in activation of the ERK1/2 cascade in Leydig cells were examined in MA-10 cells expressing the recombinant human LH receptor (hLHR) and in primary cultures of rat Leydig cell precursors. In MA-10 cells expressing the recombinant hLHR, human choriogonadotropin-induced activation of ERK1/2 is effectively inhibited by overexpression of a cAMP phosphodiesterase (a manipulation that blunts the human choriogonadotropin-induced cAMP response), by addition of H89 (a selective inhibitor of protein kinase A), or by overexpression of the heat-stable protein kinase A inhibitor, but not by overexpression of an inactive mutant of this inhibitor. Stimulation of hLHR did not activate Rap1, but activated Ras in an H89-sensitive fashion. Addition of H89 to MA-10 cells that had been cotransfected with a guanosine triphosphatase-deficient mutant of Ras almost completely inhibited the hLHR-mediated activation of ERK1/2. We also show that 8-bromo-cAMP activates Ras and ERK1/2 in MA-10 cells and in primary cultures of rat Leydig cells precursors in an H89-sensitive fashion, whereas a cAMP analog 8-(4-chloro-phenylthio)-2'-O-methyl-cAMP (8CPT-2Me-cAMP) that is selective for cAMP-dependent guanine nucleotide exchange factor has no effect. Collectively, our results show that the hLHR-induced phosphorylation of ERK1/2 in Leydig cells is mediated by a protein kinase A-dependent activation of Ras.  相似文献   

7.
Transforming growth factor-beta stimulates the production of the extracellular matrix, whereas TNF-alpha has antifibrotic activity. Understanding the molecular mechanism underlying the antagonistic activities of TNF-alpha against TGF-beta is critical in the context of tissue repair and maintenance of tissue homeostasis. In the present study, we demonstrated a novel mechanism by which TNF-alpha blocks TGF-beta-induced gene and signaling pathways in human dermal fibroblasts. We showed that TNF-alpha prevents TGF-beta-induced gene trans activation, such as alpha2(I) collagen or tissue inhibitor of metalloproteinases 1, and TGF-beta signaling pathways, such as Smad3, c-Jun N-terminal kinase, and p38 mitogen-activated protein kinases, without inducing levels of inhibitory Smad7 in human dermal fibroblasts. TNF-alpha down-regulates the expression of type II TGF-beta receptor (TbetaRII) proteins, but not type I TGF-beta receptor (TbetaRI), in human dermal fibroblasts. However, neither TbetaRII mRNA nor TbetaRII promoter activity was decreased by TNF-alpha. TNF-alpha-mediated decrease of TbetaRII protein expression was not inhibited by the treatment of fibroblasts with either a selective inhibitor of I-kappaB-alpha phosphorylation, BAY 11-7082, or a mitogen-activated protein kinase/extracellular signal-regulated kinase inhibitor, PD98059. Calpain inhibitor I (ALLN), a protease inhibitor, inhibits TNF-alpha-mediated down-regulation of TbetaRII. We found that TNF-alpha triggered down-regulation of TbetaRII, leading to desensitization of human dermal fibroblasts toward TGF-beta. Furthermore, these events seemed to cause a dramatic down-regulation of alpha2(I) collagen and tissue inhibitor of metalloproteinases 1 in systemic sclerosis fibroblasts. These results indicated that TNF-alpha impaired the response of the cells to TGF-beta by regulating the turnover of TbetaRII.  相似文献   

8.
In spite of the extensive potential of human mesenchymal stem cells (hMSCs) in cell therapy, little is known about the molecular mechanisms that regulate their therapeutic properties. We aimed to identify microRNAs (miRNAs) involved in controlling the transition between the resting and reparative phenotypes of hMSCs, hypothesizing that these miRNAs must be present in the undifferentiated cells and downregulated to allow initiation of distinct activation/differentiation programs. Differential miRNA expression analyses revealed that miR-335 is significantly downregulated upon hMSC differentiation. In addition, hMSCs derived from a variety of tissues express miR-335 at a higher level than human skin fibroblasts, and overexpression of miR-335 in hMSCs inhibited their proliferation and migration, as well as their osteogenic and adipogenic potential. Expression of miR-335 in hMSCs was upregulated by the canonical Wnt signaling pathway, a positive regulator of MSC self-renewal, and downregulated by interferon-γ (IFN-γ), a pro-inflammatory cytokine that has an important role in activating the immunomodulatory properties of hMSCs. Differential gene expression analyses, in combination with computational searches, defined a cluster of 62 putative target genes for miR-335 in hMSCs. Western blot and 3'UTR reporter assays confirmed RUNX2 as a direct target of miR-335 in hMSCs. These results strongly suggest that miR-335 downregulation is critical for the acquisition of reparative MSC phenotypes.  相似文献   

9.
Gao N  Cheng S  Budhraja A  Liu EH  Chen J  Chen D  Yang Z  Luo J  Shi X  Zhang Z 《PloS one》2012,7(2):e31783
3,3'-Diindolylmethane (DIM), one of the active products derived from Brassica plants, is a promising antitumor agent. The present study indicated that DIM significantly induced apoptosis in U937 human leukemia cells in dose- and time-dependent manners. These events were also noted in other human leukemia cells (Jurkat and HL-60) and primary human leukemia cells (AML) but not in normal bone marrow mononuclear cells. We also found that DIM-induced lethality is associated with caspases activation, myeloid cell leukemia-1 (Mcl-1) down-regulation, p21(cip1/waf1) up-regulation, and Akt inactivation accompanied by c-jun NH2-terminal kinase (JNK) activation. Enforced activation of Akt by a constitutively active Akt construct prevented DIM-mediated caspase activation, Mcl-1 down-regulation, JNK activation, and apoptosis. Conversely, DIM lethality was potentiated by the PI3K inhibitor LY294002. Interruption of the JNK pathway by pharmacologic or genetic approaches attenuated DIM-induced caspases activation, Mcl-1 down-regulation, and apoptosis. Lastly, DIM inhibits tumor growth of mouse U937 xenograft, which was related to induction of apoptosis and inactivation of Akt, as well as activation of JNK. Collectively, these findings suggest that DIM induces apoptosis in human leukemia cell lines and primary human leukemia cells, and exhibits antileukemic activity in vivo through Akt inactivation and JNK activation.  相似文献   

10.
The anti-inflammatory effects of theophylline have been reported to include inhibition of the release of proinflammatory mediators from macrophages and neutrophils. Overproduction of reactive nitrogen species (RNS) has been reported in the airways of patients with chronic obstructive pulmonary disease (COPD), and this causes tissue inflammation and injury. We investigated whether peroxynitrite stimulated the release of matrix metalloproteinases 2 and 9 (MMP-2 and -9; gelatinases) from human fetal lung fibroblasts (HFL-1 cell line) and whether theophylline inhibited the peroxynitrite-augmented release of MMPs. HFL-1 cells and primary lung fibroblasts were treated with peroxynitrite (an RNS), and gelatinases levels were evaluated by gelatin zymography. The inhibitory effect of theophylline on the peroxynitrite-augmented release of MMP-2 and MMP-9 was also investigated. To explore the cell signaling pathways involved in the peroxynitrite-induced gelatinases release and the inhibitory effect of theophylline, transforming growth factor-β(1) (TGF-β(1)), nuclear factor-κB (NF-κB), and histone deacetylase (HDAC) were measured. Peroxynitrite significantly augmented the release of MMP-2 and MMP-9 by fibroblasts (P < 0.01), as well as TGF-β(1) release (P < 0.01), NF-κB activation (P < 0.01), and HDAC2 inactivation (P < 0.01). An NF-κB inhibitor diminished the RNS-augmented release of MMPs and TGF-β(1) (P < 0.01), and a neutralizing TGF-β antibody also diminished MMP release (P < 0.01). Theophylline significantly inhibited the peroxynitrite-augmented release of MMP-2 and MMP-9 in HFL-1 cells and normal adult lung fibroblasts, and it also inhibited the peroxynitrite-mediated HDAC2 inactivation, NF-κB activation, and TGF-β(1) release in HFL-1 cells (all P < 0.01). These results suggest that peroxynitrite can influence tissue remodeling by promoting gelatinases release, while theophylline suppresses peroxynitrite-induced tissue remodeling via pathways involving NF-κB/TGF-β(1) and/or HDAC in the HFL-1 cell line.  相似文献   

11.
Bromodomain-containing protein 4 (BRD4) and phosphatidylinositol 3-kinase (PI3K) are both key oncogenic proteins in human prostate cancer. In the current study, we examined the anti-prostate cancer cell activity by SF2523, a BRD4 and PI3K dual inhibitor. We showed that SF2523 potently inhibited survival and proliferation of the primary human prostate cancer cells. SF2523 induced profound apoptosis activation in prostate cancer cells. The dual inhibitor was yet non-cytotoxic to the prostate epithelial cells. At the molecular level, SF2523 downregulated BRD4-regulated genes (cyclin D1, c-Myc and androgen receptor) and almost blocked AKT-S6K1 activation in prostate cancer cells. In vivo, SF2523 intraperitoneal administration at the well-tolerated dose inhibited human prostate cancer xenograft growth in severe combined immunodeficient (SCID) mice. BRD4-regulated genes (cyclin D1, c-Myc and androgen receptor) and AKT-S6K1 activation were inhibited in SF2523-treated tumors. Together, dual inhibition of BRD4 and PI3K by SF2523 suppresses human prostate cancer cell growth in vitro and in vivo.  相似文献   

12.
13.
The regulation of expression of cyclooxygenase 2 (COX-2) was investigated by treatment with PGE(2) in human endometrial adenocarcinoma cell line HEC-1B. One microM PGE(2) could stimulate the expression of COX-2 approximately twofold in this cell line. The same concentration of PGE(2) also stimulated activation of mitogen-activated protein kinase (MAP kinase) and protein kinase B (PKB). PGE(2)-induced MAP kinase activation was sensitive to a MAP kinase kinase (MEK) inhibitor, PD098059, and a protein kinase A inhibitor, H-89. PD098059 and H-89 also partially inhibited the expression of COX-2 stimulated by PGE(2). PGE(2) could stimulate the activation of PKB, which was sensitive to phosphatidylinositol-3-OH kinase (PI3K) inhibitor, wortmannin. Whereas wortmannin alone partially inhibited the expression of COX-2, a combination of wortmannin and PD098059 totally inhibited PGE(2)-mediated COX-2 expression. These results suggest that MAP kinase and PI3K pathways are stimulated with PGE(2), and that both of these pathways are involved in the expression of COX-2. In addition, they also suggest that protein kinase A remains upstream of PGE(2)-induced activation of MAP kinase in HEC-1B cells.  相似文献   

14.
Caspases are a group of cysteine-related proteases that control the process of apoptosis and may also be involved in the control of lymphocyte activation. We show here that the broad-spectrum caspase inhibitor benzyloxycarbonyl (Cbz)-Val-Ala-Asp (Ome)-fluoromethylketone (zVAD-fmk) prevents the proliferation of resting human B tonsilar lymphocytes mediated by the B cell mitogen SAC or the combination of anti-mu Ab and IL-2. zVAD-fmk inhibits IL-2-induced phosphorylation of the retinoblastoma protein, and cyclin D2 expression. However, neither the IL-2-mediated proliferation of cycling activated B cells nor that of lymphoma cells were inhibited by zVAD-fmk, suggesting that only the early steps of SAC- or IL-2-mediated B cell activation were sensitive to the inhibitory properties of zVAD-fmk. Our data also demonstrated that the inhibitory effect of zVAD-fmk was not observed when B cells were activated with IL-4 in the presence of either anti-mu Ab or anti-CD40 Ab. Thus, our results suggest that caspase activation is required for the IL-2-mediated entry of primary B lymphocytes into the cell cycle and show that caspase activation plays different roles in IL-2- and IL-4-mediated B cell proliferation.  相似文献   

15.
Staurosporine (STS) induces apoptosis in various cell lines. We report in this study that primary cultured mouse hepatocytes are less sensitive to STS compared with Jurkat cells and Huh-7 cells. In contrast to the cell lines, no apparent release of cytochrome c or loss of mitochondrial transmembrane potential was detected in primary hepatocytes undergoing STS-induced apoptosis. Caspase-3 was activated in primary hepatocytes by STS treatment, but caspase-9 and -12 were not activated, and caspase-3 activation is not dependent on caspase-8. These findings point to a novel pathway for caspase-3 activation by STS in primary hepatocytes. Pretreatment with caspase inhibitor converted STS-induced apoptosis of hepatocytes to necrotic cell death without significantly changing total cell death. Thus STS causes hepatocytes to commit to death upstream of the activation of caspases. We also demonstrated that STS dramatically sensitized primary hepatocytes to tumor necrosis factor-alpha-induced apoptosis. STS activated I kappa B kinase and nuclear factor-kappa B (NF-kappa B) nuclear translocation and DNA binding but inhibited transactivation of I kappa B-alpha, inducible nitric oxide synthase, and inhibitor of apoptosis protein-1 in hepatocytes and NF-kappa B reporter in transfected Huh-7 cells.  相似文献   

16.
Invasion of distant tissues by tumor cells is the primary cause of therapeutic failure in the treatment of malignant lung cancer cells. Receptor activator of nuclear factor-κB ligand (RANKL) and its receptor, RANK, play a key role in osteoclastogenesis and tumor metastasis. Intercellular adhesion molecule-1 (ICAM-1, also called CD54), a member of the immunoglobulin supergene family, is an inducible surface glycoprotein that mediates adhesion-dependent cell-to-cell interactions. The effects of RANKL on cell migration and ICAM-1 expression in human lung cancer cells are largely unknown. We found that RANKL directed the migration and increased ICAM-1 expression in human lung cancer (A549) cells. Pretreatment of A549 cells with the MAPK kinase (MEK) inhibitor PD98059 or U0126 inhibited RANKL-mediated migration and ICAM-1 expression. Stimulation of cells with RANKL increased the phosphorylation of MEK and extracellular signal-regulating kinase (ERK). In addition, an NF-κB inhibitor (PDTC) and IκB protease inhibitor (TPCK) also inhibited RANKL-mediated cell migration and ICAM-1 up-regulation. Taken together, these results suggest that the RANKL and RANK interaction acts through MEK/ERK, which in turn activates NF-κB, resulting in the activation of ICAM-1 and contributing to the migration of human lung cancer cells.  相似文献   

17.
Accumulating evidence suggests that progenitor cells may decrease destructive inflammation and reduce tissue loss by antiapoptotic mechanisms. However, they remain poorly characterized, and many questions remain regarding the mechanisms by which they may positively affect wound healing, tissue remodeling, or tissue regeneration. It has been speculated that various growth factors are responsible, but what components of the wound milieu stimulate progenitor cell production of growth factors and by what mechanisms? We hypothesized that tumor necrosis factor-alpha (TNF-alpha) stimulated progenitor cell secretion of vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), and insulin-like growth factor I (IGF-I) by a p38 mitogen-activated protein kinase (MAPK)-dependent mechanism. Human mesenchymal stem cells (hMSCs) and human adipose progenitor cells (hAPCs) were divided into four groups: control, p38 MAPK inhibitor (p38MKI), TNF, and TNF + p38MKI. After 24 h of incubation, supernatants were harvested for ELISA of VEGF, HGF, and IGF-I. Cells were collected for Western blot analysis of p38 MAPK activation. Secretion of VEGF, HGF, and IGF-I in hMSCs and hAPCs was significantly increased by stimulation with TNF and was associated with increased activation of p38 MAPK. The p38 MAPK inhibitor decreased production of TNF-stimulated VEGF, HGF, and IGF-I in hMSCs and hAPCs. However, p38 MAPK inhibitor alone had no effect on production of growth factors. These data demonstrate that progenitor cells are potent sources of VEGF, HGF, and IGF-I. TNF, a prominent tissue cytokine, strongly stimulated production of growth factors by hMSCs and hAPCs via a p38 MAPK-dependent mechanism.  相似文献   

18.
Although the cellular functions of TSC2 and its protein product, tuberin, are not known, somatic mutations in the TSC2 tumor suppressor gene are associated with tumor development in lymphangioleiomyomatosis (LAM). We found that ribosomal protein S6 (S6), which exerts translational control of protein synthesis and is required for cell growth, is hyperphosphorylated in the smooth muscle-like cell lesions of LAM patients compared with smooth muscle cells from normal human blood vessels and trachea. Smooth muscle (SM) cells derived from these lesions (LAMD-SM) also exhibited S6 hyperphosphorylation, constitutive activation of p70 S6 kinase (p70S6K), and increased basal DNA synthesis. In parallel, TSC2-/- smooth muscle cells (ELT3) and TSC2-/- epithelial cells (ERC15) also exhibited hyperphosphorylation of S6, constitutive activation of p70S6K, and increased basal DNA synthesis. Re-introduction of wild type tuberin into LAMD-SM, ELT3, and ERC15 cells abolished phosphorylation of S6 and significantly inhibited p70S6K activity and DNA synthesis. Rapamycin, an immunosuppressant, inhibited hyperphosphorylation of S6, p70S6K activation, and DNA synthesis in LAMD-SM cells. Interestingly, the basal levels of phosphatidylinositol 3-kinase, Akt/protein kinase B, and p42/p44 MAPK activation were unchanged in LAMD-SM and ELT3 cells relative to levels in normal human tracheal and vascular SM. These data demonstrate that tuberin negatively regulates the activity of S6 and p70S6K specifically, and suggest a potential mechanism for abnormal cell growth in LAM.  相似文献   

19.
20.
Fang J  Ding M  Yang L  Liu LZ  Jiang BH 《Cellular signalling》2007,19(12):2487-2497
PI3K pathway exerts its function through its downstream molecule AKT in regulating various cell functions including cell proliferation, cell transformation, cell apoptosis, tumor growth and angiogenesis. PTEN is an inhibitor of PI3K, and its loss or mutation is common in human prostate cancer. But the direct role and mechanism of PI3K/PTEN signaling in regulating angiogenesis and tumor growth in vivo remain to be elucidated. In this study, by using chicken chorioallantoic membrane (CAM) and in nude mice models, we demonstrated that inhibition of PI3K activity by LY294002 decreased PC-3 cells-induced angiogenesis. Reconstitution of PTEN, the molecular inhibitor of PI3K in PC-3 cells inhibited angiogenesis and tumor growth. Immunohistochemical staining indicated that PTEN expression suppressed HIF-1, VEGF and PCNA expression in the tumor xenographs. Similarly, expression of AKT dominant negative mutant also inhibited angiogenesis and tumor growth, and decreased the expression of HIF-1 and VEGF in the tumor xenographs. These results suggest that inhibition of PI3K signaling pathway by PTEN inhibits tumor angiogenesis and tumor growth. In addition, we found that AKT is the downstream target of PI3K in controlling angiogenesis and tumor growth, and PTEN could inhibit angiogenesis by regulating the expression of HIF-1 and VEGF expression through AKT activation in PC-3 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号