首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Tracheal and nervous system development are two model systems for the study of organogenesis in Drosophila. In two independent screens, we identified three alleles of a gene involved in tracheal, cuticle and CNS development. Here, we show that these alleles, and the previously identified cystic and mummy, all belong to the same complementation group. These are mutants of a gene encoding the UDP-N-acetylglucosamine diphosphorylase, an enzyme responsible for the production of UDP-N-acetylglucosamine, an important intermediate in chitin and glycan biosynthesis. cyst was originally singled out as a gene required for the regulation of tracheal tube diameter. We characterized the cyst/mmy tracheal phenotype and upon histological examination concluded that mmy mutant embryos lack chitin-containing structures, such as the procuticle at the epidermis and the taenidial folds in the tracheal lumen. While most of their tracheal morphogenesis defects can be attributed to the lack of chitin, when compared to krotzkopf verkehrt (kkv) chitin-synthase mutants, mmy mutants showed a stronger phenotype, suggesting that some of the mmy phenotypes, like the axon guidance defects, are chitin-independent. We discuss the implications of these new data in the mechanism of size control in the Drosophila trachea.  相似文献   

3.
The atypical cadherin Drosophila protein Flamingo and its vertebrate homologues play widespread roles in the regulation of both dendrite and axon growth. However, little is understood about the molecular mechanisms that underpin these functions. Whereas flamingo interacts with a well-defined group of genes in regulating planar cell polarity, previous studies have uncovered little evidence that the other core planar cell polarity genes are involved in regulation of neurite growth. We present data in this study showing that the planar cell polarity gene prickle interacts with flamingo in regulating sensory axon advance at a key choice point — the transition between the peripheral nervous system and the central nervous system. The cytoplasmic tail of the Flamingo protein is not required for this interaction. Overexpression of another core planar cell polarity gene dishevelled produces a similar phenotype to prickle mutants, suggesting that this gene may also play a role in regulation of sensory axon advance.  相似文献   

4.
The firing behaviour of an identified neurone in the cricket was studied using extracellular recording from the axon. In the last nympal instar (preadult developmental stage), the contralateral dorsal longitudinal motor neurone (CDLM) showed spontaneous activity and was excited by air puffs to the head and cerci and by single shocks to the anterior nerve cord. In the normal adult the CDLM did not exhibit these properties. However, responses which were characteristic of the last instar appeared in the adults which had been subjected to any one of the following surgical procedures: (1) central nervous system injuries which separated the CDLM arborization and axon from the soma; (2) operations which injured the central nervous system without cutting the CDLM; and (3) operations which damaged the cuticle only. Since cuticle damage alone was as effective as the more extensive operations, it is suggested that a sufficient cause for the appearance of nymphal firing behaviour in the adult CDLM is cuticle damage. The factor associated with cuticle damage which mediates the changes in activity of the CDLM neurone is not known, but its action does not require the mediation of the CDLM soma.  相似文献   

5.
The simple nervous system of the nematode C. elegans consists of 302 neurons with highly reproducible morphologies, suggesting a hard-wired program of axon guidance. Surprisingly, we show here that sensory activity shapes sensory axon morphology in C. elegans. A class of mutants with deformed sensory cilia at their dendrite endings have extra axon branches, suggesting that sensory deprivation disrupts axon outgrowth. Mutations that alter calcium channels or membrane potential cause similar defects. Cell-specific perturbations of sensory activity can cause cell-autonomous changes in axon morphology. Although the sensory axons initially reach their targets in the embryo, the mutations that alter sensory activity cause extra axon growth late in development. Thus, perturbations of activity affect the maintenance of sensory axon morphology after an initial pattern of innervation is established. This system provides a genetically tractable model for identifying molecular mechanisms linking neuronal activity to nervous system structure.  相似文献   

6.
K Zinn  L McAllister  C S Goodman 《Cell》1988,53(4):577-587
The fasciclin I, II, and III glycoproteins are expressed on different subsets of axon bundles (fascicles) in insect embryos and are thus candidates for surface recognition molecules involved in growth cone guidance. Here we present the sequence of grasshopper fasciclin I and the identification and sequence of the Drosophila fasciclin I homolog. In both species, fasciclin I appears to be an extrinsic membrane protein with a signal sequence but no transmembrane region; the protein comprises four homologous domains of approximately 150 amino acids each. Antibodies against Drosophila fasciclin I reveal that it is expressed on the surface of a subset of commissural axon pathways in the embryonic central nervous system and on all sensory axon pathways in the peripheral nervous system. This pattern of expression is similar to that in grasshopper.  相似文献   

7.
The Drosophila epidermal growth factor receptor (EGFR) may be activated by two ligands expressed in the embryonic nervous system, Spitz and Vein. Previous studies have established Spitz as an essential activator of EGFR signaling in nervous system development. Here, we report the pattern of expression of vein mRNA in the nervous system and characterize the contribution of vein to cell lineage and axonogenesis. The number of midline glia (MG) precursors is reduced in vein mutants before the onset of embryonic apoptosis. In contrast to spitz, mis-expression of vein does not suppress apoptosis in the MG. These data indicate that early midline EGFR signaling, requiring vein and spitz, establishes MG precursor number, whereas later EGFR signals, requiring spitz, suppress apoptosis in the MG. vein mutants show early irregularities during axon tract establishment, which resolve later to variable defasciculation and thinner intersegmental axon tracts. vein and spitz phenotypes act additively in the regulation of MG cell number, but show synergism in a midline neuronal cell number phenotype and in axon tract architecture. vein appears to act downstream of spitz to briefly amplify local EGFR activation.  相似文献   

8.
Ethyl methane sulfonate was used to induce a new class of heat-sensitive yellow (y: 1-0.0) alleles. A single cold-sensitive allele was discovered among the previously existing y mutants. An analysis of both temperature- and nontemperature-sensitive mutants has shown that y is a complex pattern forming gene. Although the y gene normally functions in every cell of the adult cuticle, it is expressed independently in each different cuticle structure. The need for this pattern of expression is revealed by the finding that y temperature sensitivity occurs at different times in each cuticle forming cell type. This observation suggests that the y gene functions at different times in the cells which form the various structures of the cuticle and therefore must be controlled independently in each cell type.  相似文献   

9.
10.
Dual leucine zipper kinase (DLK), a mitogen‐activated protein kinase kinase kinase, controls axon growth, apoptosis and neuron degeneration during neural development, as well as neurodegeneration after various insults to the adult nervous system. Interestingly, recent studies have also highlighted a role of DLK in promoting axon regeneration in diverse model systems. Invertebrates and vertebrates, cold‐ and warm‐blooded animals, as well as central and peripheral mammalian nervous systems all differ in their ability to regenerate injured axons. Here, we discuss how DLK‐dependent signalling regulates apparently contradictory functions during neural development and regeneration in different species. In addition, we outline strategies to fine‐tune DLK function, either alone or together with other approaches, to promote axon regeneration in the adult mammalian central nervous system.  相似文献   

11.
Chondroitin sulphate proteoglycans (CSPGs) are up-regulated in the central nervous system after injury, specifically around the lesion site where the glial scar forms. This structure contains astrocytes, oligodendrocyte precursor cells, microglia and meningeal cells, and forms an inhibitory substrate for axon re-growth. CSPGs have been shown to be closely involved in this neuronal growth inhibition, specifically through their sugar chains. These chains are composed of repeats of the same disaccharide unit carrying sulphate groups in different positions. The sulphation pattern directly influences the CSPG binding properties and function; the specific sulphation pattern required for the inhibitory activity of these molecules on axon growth is unknown at present. The expression of the chondroitin sulphotransferases, which sulphate the disaccharide residues of CSPGs and thus are responsible for the structural diversity of the chondroitin sulphate sugar chains, is regulated differently in central nervous system during development and after injury, suggesting the implication of a specific sulphation pattern in the inhibitory activity of CSPGs.  相似文献   

12.
13.
Axon guidance and target recognition depend on neuronal cell surface receptors that recognize and elicit selective growth cone responses to guidance cues in the environment. Contactin, a cell adhesion/recognition molecule of the immunoglobulin gene superfamily, regulates axon growth and fasciculation in vitro, but its role in vivo is unknown. To assess its function in the developing nervous system, we have ablated contactin gene expression in mice. Contactin-/- mutants displayed a severe ataxic phenotype consistent with defects in the cerebellum and survived only until postnatal day 18. Analysis of the contactin-/- mutant cerebellum revealed defects in granule cell axon guidance and in dendritic projections from granule and Golgi cells. These results demonstrate that contactin controls axonal and dendritic interactions of cerebellar interneurons and contributes to cerebellar microorganization.  相似文献   

14.
Sibling neurons in the embryonic central nervous system (CNS) of Drosophila can adopt distinct states as judged by gene expression and axon projection. In the NB4-2 lineage, two even-skipped (eve)-expressing sibling neuronal cells, RP2 and RP2sib, are formed in each hemineuromere. Throughout embryogenesis, only RP2, but not RP2sib, maintains eve expression. In this report, we describe a P-element induced mutation that alters the expression pattern of EVE in RP2 motoneurons in the Drosophila embryonic CNS. The mutation was mapped to a Drosophila homolog of human AF10/AF17 leukemia fusion genes (alf), and therefore named Dalf. Like its human counterparts, Dalf encodes a zinc finger/leucine zipper nuclear protein that is widely expressed in embryonic and larval tissues including neurons and glia. In Dalf mutant embryos, the RP2 motoneuron no longer maintains EVE expression. The effect of the Dalf mutation on EVE expression is RP2-specific and does not affect other characteristics of the RP2 motoneuron. In addition to the embryonic phenotype, Dalf mutant larvae are retarded in their growth and this defect can be rescued by the ectopic expression of a Dalf transgene under the control of a neuronal GAL4 driver. This indicates a requirement for Dalf function in the nervous system for maintaining gene expression and the facilitation of normal growth.  相似文献   

15.
fasiclin II (fas II), a member of the immunoglobulin superfamily, was previously characterized and cloned in grasshopper. To analyze the function of this molecule, we cloned the Drosophila fas II homolog and generated mutants in the gene. In both grasshopper and Drosophila, fasciclin II is expressed on the MP1 fascicle and a subset of other axon pathways. In fas II mutant Drosophila embryos, the CNS displays no gross phenotype, but the MP1 fascicle fails to develop. The MP1, dMP2, and vMP2 growth cones fail to recognize one another or other axons that normally join the MP1 pathway. During their normal period of axon out-growth, these growth cones stall and do not join any other neighboring pathway. Thus, fasciclin II functions as a neuronal recognition molecule for the MP1 axon pathway. These studies serve as molecular confirmation for the existence of functional labels on specific axon pathways in the developing nervous system.  相似文献   

16.
17.
During gastrulation in Drosophila, ventral cells change shape, undergoing synchronous apical constriction, to create the ventral furrow (VF). This process is affected in mutant embryos lacking zygotic function of the folded gastrulation (fog) gene, which encodes a putative secreted protein. Fog is an essential autocrine signal that induces cytoskeletal changes in invaginating VF cells. Here we show that Fog is also required for nervous system development. Fog is expressed by longitudinal glia in the central nervous system (CNS), and reducing its expression in glia causes defects in process extension and axon ensheathment. Glial Fog overexpression produces a disorganized glial lattice. Fog has a distinct set of functions in CNS neurons. Our data show that reduction or overexpression of Fog in these neurons produces axon guidance phenotypes. Interestingly, these phenotypes closely resemble those seen in embryos with altered expression of the receptor tyrosine phosphatase PTP52F. We conducted epistasis experiments to define the genetic relationships between Fog and PTP52F, and the results suggest that PTP52F is a downstream component of the Fog signaling pathway in CNS neurons. We also found that Ptp52F mutants have early VF phenotypes like those seen in fog mutants.  相似文献   

18.
Cox GN  Laufer JS  Kusch M  Edgar RS 《Genetics》1980,95(2):317-339
Eighty-eight mutants of C. elegans that display a roller phenotype (a helically twisted body) have been isolated and characterized genetically and phenotypically. The mutations are located in 14 different genes. Most genes contain a number of alleles. Their distribution among the chromosomes appears nonrandom, with seven of the genes being located on linkage group II, some very closely linked. The phenotypes of the mutants suggest that there are five different classes of genes, each class representing a set of similar phenotypic effects: Left Roller (four genes), Right Roller (one gene), Left Squat (one gene), Right Squat (two genes) and Left Dumpy Roller (six genes). The classes of mutants differ with respect to a number of characteristics that include the developmental stages affected and the types of aberrations observed in cuticle structure. A variety of gene interactions were found, arguing that these genes are involved in a common developmental process. The presence of alterations in cuticle morphology strongly suggests that these genes are active in the formation of the nematode cuticle.  相似文献   

19.
20.
Mutations in the Drosophila gene giant lens (gil) affect ommatidial development, photoreceptor axon guidance and optic lobe development. We have cloned the gene using an enhancer trap line. Molecular analysis of gil suggests that it encodes a secreted protein with an epidermal-growth-factor-like motif. We have generated mutations at the gil locus by imprecise excision of the enhancer trap P-element. In the absence of gil, additional photoreceptors develop at the expense of pigment cells, suggesting an involvement of gil in cell determination during eye development. In addition, gil mutants show drastic effects on photoreceptor axon guidance and optic lobe development. In wildtype flies, photoreceptor axons grow from the eye disc through the optic stalk into the larval brain hemisphere, where retinal innervation is required for the normal development of the lamina and distal medulla. The projection pattern of these axons in the developing lamina and medulla is highly regular and reproducible. In gil, photoreceptor axons enter the larval brain but fail to establish proper connections in the lamina or medulla. We propose that gil encodes a new type of signalling molecule involved in the process of axon pathfinding and cell determination in the visual system of Drosophila.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号