首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Uniculm wheat (Triticum aestivum L.) was grown to maturity at four concentrations of nitrogen corresponding to 3 (N1), 6 (N2), 9 (N3) and 12 (N4) g m–2. Penultimate and flag leaves were examined throughout the ontogeny. Sub-optimal concentrations of N resulted in sharp decline in both area and dry mass of the leaves. Decline in leaf area was due to fewer mesophyll cells. Net photosynthetic rate (PN) increased up to full expansion, remained constant for about a week and then declined. PN, nitrogen, ribulose-1,5-bis-phosphate carboxylase/oxygenase (RuBPCO) amount and activity, chlorophyll and soluble protein contents were similar at all the N concentrations. Both amount and activity of RuBPCO in the flag leaf were about two fold higher as compared to penultimate leaf, but PN was similar. This indicates the presence of an excess amount of RuBPCO in the flag leaf.  相似文献   

2.
The activities of the carboxylating enzymes ribulose-1,5-biphosphate (RuBP) carboxylase and phosphoenolpyruvate (PEP) carboxylase in leaves of three-week old Zea mays plants grown under phytotron conditions were found to vary according to leaf position. In the lower leaves the activity of PEP carboxylase was lower than that of RuBP carboxylase, while the upper leaves exhibited high levels of PEP carboxylase. Carbon dioxide compensation points and net photosynthetic rates also differed in the lower and upper leaves. Differences in the fine structure of the lowermost and uppermost leaves are shown. The existence of both the C3 and C4 photosynthetic pathways in the same plant, in this and other species, is discussed.Abbreviations PEP phosphoenolpyruvate - RuBP ribulose-1,5-biphosphate  相似文献   

3.
Wang  Zhi-Min  Wei  Ai-Li  Zheng  Dan-Man 《Photosynthetica》2001,39(2):239-244
Chlorophyll content, photosystem 2 functioning (Fv/Fm, Fv/F0), activity of ribulose-1,5-bisphosphate carboxylase/oxygenase, and net photosynthetic rates (P N) of flag leaf blade, sheath, peduncle, and ear organs were assessed in large-ear type (Pin 7) and small-ear type (ND93) wheat cultivars. Some differences were found in photosynthetic properties between different green plant parts, the values of all studied parameters in ear parts being higher in Pin7 than in ND93. Furthermore, ear surface areas and ear P N in 26 wheat genotypes measured at anthesis showed highly significant positive correlation with grain mass per ear. Hence a greater capability of ear photosynthesis may result in a greater grain yield in large-ear type cultivars.  相似文献   

4.
The aim of this study was to investigate the interactions between cytokinin, sugar repression, and light in the senescence-related decline in photosynthetic enzymes of leaves. In transgenic tobacco (Nicotiana tabacum) plants that induce the production of cytokinin in senescing tissue, the age-dependent decline in NADH-dependent hydroxypyruvate reductase (HPR), ribulose-1,5-bisphosphate carboxylase/oxygenase, and other enzymes involved in photosynthetic metabolism was delayed but not prevented. Glucose (Glc) and fructose contents increased with leaf age in wild-type tobacco and, to a greater extent, in transgenic tobacco. To study whether sugar accumulation in senescing leaves can counteract the effect of cytokinin on senescence, discs of wild-type leaves were incubated with Glc and cytokinin solutions. The photorespiratory enzyme HPR declined rapidly in the presence of 20 mm Glc, especially at very low photon flux density. Although HPR protein was increased in the presence of cytokinin, cytokinin did not prevent the Glc-dependent decline. Illumination at moderate photon flux density resulted in the rapid synthesis of HPR and partially prevented the negative effect of Glc. Similar results were obtained for the photosynthetic enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase. It is concluded that sugars, cytokinin, and light interact during senescence by influencing the decline in proteins involved in photosynthetic metabolism.  相似文献   

5.
M. Weidner  A. Franz  K. Napp-Zinn 《Planta》1985,163(2):164-174
The ultrastructural and biochemicalphysiological aspects of postfloral greening have been studied in hypsophylls of Heliconia aurantiaca Ghiesbr., Guzmania cf. x magnifica Richter and Spathiphyllum wallisii Regel. In all three species the greening of the hypsophylls is due to plastid transformation, chloroplast formation proceeding from the initially different types of plastids. The degradation process of the original plastid structures and the mode of thylakoid formation are distinct in each case. In none of the species do the transformed plastids look identical to the chloroplasts of the corresponding foliage leaves. On a chlorophyll basis, the rate of photosynthesis of the greened hypsophylls surpasses the rate of the leaves considerably in Spathiphyllum, but is much lower in Heliconia (no data for Guzmania). In all species, anatomy, plastid structure, pigments, 77° K-fluorescence emission, ribulose-1,5-bis-phosphate carboxylase activities and short-term photosynthesis 14CO2-assimilation patterns prove the greened hypsophylls to be capable of providing additional carbon to the developing fruits, thus supplementing the import of organic matter from the foliage leaves.Abbreviations MDH malate dehydrogenase (EC 1.1.1.37) - PEPCase phosphoenolpyruvate carboxylase (EC 4.1.1.31) - RuBPCase ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39)  相似文献   

6.
Bertamini  M.  Muthuchelian  K.  Grando  M.S.  Nedunchezhian  N. 《Photosynthetica》2002,40(1):157-160
The contents of chlorophyll (Chl), leaf biomass, and soluble proteins were markedly decreased in phytoplasma infected apple leaves. Similar results were also observed for ribulose-1,5-bisphosphate carboxylase, 14CO2 fixation, and nitrate reductase activity. In contrast, the contents of sugars, starch, amino acids, and total saccharides were significantly increased in phytoplasma infected leaves. In isolated chloroplasts, phytoplasma infection caused marked inhibition of whole photosynthetic electron chain and photosystem 2 (PS2) activity. The artificial exogenous electron donor, diphenyl carbazide, significantly restored the loss of PS2 activity in infected leaves. Similar results were obtained when Fv/Fm was evaluated by in vivo Chl a fluorescence kinetic measurements.  相似文献   

7.
At the grain-filling stage, net photosynthetic rate (P N), stomatal conductance (g s), and ribulose-1,5-bisphosphate carboxylation efficiency (CE) were correlated in order to find the determinant of photosynthetic capacity in rice leaves. For a flag leaf, P N in leaf middle region was higher than in its upper region, and leaf basal region had the lowest P N value. The differences in g s and CE were similar. P N, g s, and CE gradually declined from upper to basal leaves, showing a leaf position gradient. The correlation coefficient between P N and CE was much higher than that between P N and g s in both cases, and P N was negatively correlated with intercellular CO2 concentration (C i). Hence the carboxylation activity or activated amount of ribulose-1,5-bisphosphate carboxylase/oxygenase rather than gs was the determinant of the photosynthetic capacity in rice leaves. In addition, in flag leaves of different tillers P N was positively correlated with g s, but negatively correlated with C i. Thus g s is not the determinant of the photosynthetic capacity in rice leaves.The study was supported by the State Key Basic Research and Development Plan (No.G1998010100).  相似文献   

8.
The systemic induction of expression of the gene for proteinase inhibitor II after wounding different parts of potato (Solanum tuberosum L.) plants was analysed at the RNA level. Wounding of either leaves or tubers led to an induction of expression of this gene in non-wounded upper and lower leaves as well as in the upper stem segment, whereas no expression was observed in nonwounded roots or in the lower stem segment. The signal mediating the systemic induction in nonwounded tissue must therefore be able to move both acropetally and basipetally. The systemic wound response is specific for the expression of the proteinase-inhibitor-II gene as no influence was observed for the expression of genes encoding the small subunit of ribulose-1,5-bisphosphate carboxylase and the tuber storage protein patatin which were examined in parallel with the proteinase-inhibitor-II gene.Abbreviation ssRubisco small subunit of ribulose-1,5-bis-phosphate carboxylase  相似文献   

9.
He  Ping  Osaki  Mitsuru  Takebe  Masako  Shinano  Takuro 《Photosynthetica》2002,40(4):547-552
A field experiment was conducted to investigate the changes in chlorophyll (Chl) and nitrogen (N) contents, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) and phosphoenolpyruvate carboxylase (PEPC) contents and PEPC activity, and the photon-saturated net photosynthetic rate (P Nsat), and their relationships with leaf senescence in two maize hybrids with different senescent appearance. One stay-green (cv. P3845) and one earlier senescent (cv. Hokkou 55) hybrid were used in this study, and we found that Chl and N contents and the P Nsat in individual leaves of P3845 were greater than those in corresponding leaves of Hokkou 55 at the successive growth stages. In addition, larger contents of RuBPCO and PEPC, and a greater activity of PEPC were observed in P3845. Due to the lower rates of decrease of Chl, RuBPCO, and PEPC amounts per unit of N, and the lower net C translocation rate per unit of N in the stay-green hybrid, leaf senescence was delayed in comparison to the earlier senescent hybrid.  相似文献   

10.
11.
Natural senescence of Cucurbita pepo (zucchini) cotyledons was accompanied by a gradual degradation of reserve proteins (globulins) and an intensive decrease in the content of both large subunit (LSU) and small subunit (SSU) of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). The net photosynthetic rate, the primary photochemical activity of PSII, estimated by the variable fluorescence (Fv)/maximal fluorescence (Fm) ratio (Fv/Fm) and the actual quantum yield of PSII electron transport in the light-adapted state (ΦPSII) also progressively decreased during natural senescence. In contrast, the fraction of the absorbed light energy, which is not used for photochemistry (LNU) increased with progression of senescence. The decline in the photosynthetic rate started earlier in ontogenesis compared with the down-regulation of the functional activity of PSII, thus suggesting the existence of protective mechanisms which maintain higher efficiency of the photochemical electron transport reactions of photosynthesis compared with the dark reactions of the Calvin cycle during earlier stages of natural senescence. Decapitation of the epicotyl above the senescing cotyledons resulted in full recovery of the polypeptide profile in the rejuvenated cotyledons. In addition, the photosynthetic rate increased reaching values that exceeded those measured in juvenile cotyledons. The photochemical efficiency of PSII also gradually recovered, although it did not reach the maximum values measured in the presenescent cotyledons.  相似文献   

12.
小麦开花后,随着旗叶的衰老,旗叶中1,5-二磷酸核酮糖羧化酶(RuBPC)、磷酸烯醇式丙酮酸羧化酶(PEPC)和乙醇酸氧化酶(GO)活性呈下降趋势。随着追施氮肥时期的推迟,光合酶活性呈增加趋势,这意味着氮肥追施时间后移有利于提高小麦光合速率。在旗叶衰老后期,大穗型品种小麦旗叶中光合酶活性略高于多穗型品种小麦。  相似文献   

13.
P. J. Ferrar  C. B. Osmond 《Planta》1986,168(4):563-570
We have compared the ability of shadegrown clones of Solamum dulcamara L. from shade and sun habitats to acclimate to bright light, as a function of nitrogen nutrition before and after transfer to bright light. Leaves of S. dulcamara grown in the shade with 0.6 mM NO 3 - have similar photosynthetic properties as leaves of plants grown with 12.0 mM NO 3 - . When transferred to bright light for 1–2 d the leaves of these plants show substantial photoinhibition which is characterized by about 50% decrease in apparent quantum yield and a reduction in the rate of photosynthesis in air at light saturation. Photoinhibition of leaf photosynthesis is associated with reduction in the variable component of low-temperature fluorescence emission, and with loss of in-vitro electron transport, especially of photosystem II-dependent processes.We find no evidence for ecotypic differentiation in the potential for photosynthetic acclimation among shade and sun clones of S. dulcamara, or of differentiation with respect to nitrogen requirements for acclimation. Recovery from photoinhibition and subsequent acclimation of photosynthesis to bright light only occurs in leaves of plants provided with 12.0 mM NO 3 - . In these, apparent quantum yield is fully restored after 14 d, and photosynthetic acclimation is shown by an increase in light-saturated photosynthesis in air, of light-and CO2-saturated photosynthesis, and of the initial slope of the CO2-response curve. The latter changes are highly correlated with changes in ribulose-bisphosphate-carboxylase activity in vitro. Plants supplied with 0.6 mM NO 3 - show incomplete recovery of apparent quantum yield after 14 d, but CO2-dependent leaf photosynthetic parameters return to control levels.Symbols and abbreviations Fo initial level of fluorescence at 77 K - Fm maximum level of fluorescence at 77 K - Fv variable components of fluorescence at 77 K (Fv=Fm-Fo) - PSI, PSII photosystem I and II, respectively - RuBP ribulose-1,5-bisphosphate - RuBPCase ribulose-1,5-bisphosphate carboxylase-oxygenase (EC 4.1.1.39)  相似文献   

14.
Net photosynthetic rate (P N) measured at the same CO2 concentration, the maximum in vivo carboxylation rate, and contents of ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (RuBPCO) and RuBPCO activase were significantly decreased, but the maximum in vivo electron transport rate and RuBP content had no significant change in CO2-enriched [EC, about 200 μmol mol−1 above the ambient CO2 concentration (AC)] wheat leaves compared with those in AC grown wheat leaves. Hence photosynthetic acclimation in wheat leaves to EC is largely due to RuBP carboxylation limitation.  相似文献   

15.
The proteolytic degradation of unassembled small subunit polypeptides of ribulose-1,5-bisphosphate carboxylase and of the δ-subunit of the coupling factor of photophosphorylation CF1 were analyzed and compared in vitro in the presence of stroma or membrane preparations from ribosome-deficient plastids isolated from 32°C-grown rye leaves (Secale cereale L.). Extracts obtained from 70S ribosome-deficient rye leaves after radioactive labeling were used as substrate source for the unassembled polypeptides. Soluble stroma as well as membrane preparations from isolated plastids contained proteolytic activities catalyzing the degradation of both the small subunits of ribulose-1,5-bisphosphate carboxylase and CF1in vitro. Maximal in vitro degradation was observed at pH 2–3 for the unassembled small subunits, but at pH 6–7 for the purified holoprotein of ribulose-1,5-bisphosphate carboxylase, and at pH 6.0 for unassembled CF1-δ. Degradation of unassembled small subunits of ribulose-1,5-bisphosphate carboxylase at pH 3.0 was stimulated by Cu2+ but not by Ca2+, Mg2+ or ATP. At pH 3.0 the degradation of unassembled small subunits of ribulose-1,5-bisphosphate carboxylase was not inhibited by various protease inhibitors but was even stimulated. At pH 7.0 its degradation was inhibited by HgCl2 and diazoacetyl nor-leucine methyl ester + Cu-acetate. The degradation of CF1-δ was markedly inhibited by phenylmethylsulphonyl fluoride (PMSF) and to a lesser extent by 1,10-phenanthroline. According to present results different proteolytic systems appear to be involved in the degradation of unassembled small subunits of ribulose-1,5-bisphosphate carboxylase and of unassembled CF1-δ.  相似文献   

16.
Plastids bear their own genome, organized into DNA–protein complexes (nucleoids). Recently, we identified a DNA-binding protease (CND41) in the chloroplast nucleoids of cultured tobacco (Nicotiana tabacum L.) cells. In this study, we examine the biochemical function of this novel DNA-binding protease, particularly in senescent leaves, because antisense tobacco with a reduced amount of CND41 showed retarded senescence. Nitrogen-depletion experiments clearly showed that CND41 antisense tobacco maintained green leaves and constant protein levels, especially ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), throughout the whole plant, whereas wild-type tobacco showed marked senescence and the reduction of protein levels in the lower leaves. In vitro analyses confirmed that CND41 showed proteolytic activity at physiological pH when denatured Rubisco was used as the substrate. These results suggest that CND41 is involved in Rubisco degradation and the translocation of nitrogen during senescence. The possible regulation of protease activity of CND41 through DNA-binding is discussed.Abbreviations CABP 2-Carboxyarabinitol-1,5-bisphosphate - CBB Coomassie Brilliant Blue - GS Glutamine synthetase - OEC33 The extrinsic 33-kDa protein in the oxygen-evolving complex - Rubisco Ribulose 1,5-bisphosphate carboxylase/oxygenase  相似文献   

17.
In spite of only slightly subnormal pigment contents, two plastome mutants of Oenothera (Vα, Iσ) were practically incapable of photosynthetic CO2 fixation and another one exhibited considerably reduced photosynthesis (IVβ). While other photosynthetic enzymes were present as far as investigated, ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) activity was very low or missing altogether. As shown by gel electrophoresis, mutant IVβ contained some, though little, fraction I protein. In the other two mutants fraction I protein could not be detected. Also, neither the small nor the large subunit of ribulose-1,5-bisphosphate carboxylase could be found in these mutants. In immunodiffusion experiments with a monospecific antiserum against rye ribulose-1,5-bisphosphate carboxylase, only extracts from wild-type Oenothera produced visible precipitation lines. Still, the presence of very low levels of immunochemically reactive antigen was indicated for all three mutants. The highest level was observed in mutant IVβ. The behaviour of the mutant extracts suggested that the antigens of mutant and wild type leaves reacting with the antiserum were not identical. All mutants appeared to have a coupled electron transport system as shown by ATP measurements, light scattering and 515 nm absorption changes. Linear electron transport was possible in the mutants. Still, the photoresponse of cytochrome f and fluorescence measurements suggested altered electron transport properties in the mutants. These are interpreted to be secondary lesions of the photosynthetic apparatus caused by primary deficiency in ribulose-1,5-bisphosphate carboxylase activity. From the absence in two mutants (Vα, Iσ) of the small subunit of ribulose-1,5-bisphosphate carboxylase, which is known to be coded for by nuclear DNA and to be synthesized on cytoplasmic ribosomes, it appears that the genetic system of the plastids is capable of interfering with the genome-controlled synthesis of plastid components.  相似文献   

18.
Two strains of marine Synechococcus possessed a much greater potential for photorespiration than other marine algae we have studied. This conclusion was based on the following physiological and biochemical characteristics: a) a light-dependent O2 inhibition of photosynthetic CO2 assimilation at atmospheric O2 concentrations. The degree of inhibition was dependent on the relative concentrations of dissolved O2 and CO2, being greatest at 100% O2 with no extra bicarbonate added to the medium; b) actively photosynthesizing cells had high levels of ribulose-1,5-bisphosphate carboxylase compared with phosphoenolpyruvate carboxylase; ribulose-1,5-bisphosphate oxygenase activities were three times greater than ribulose-1,5-bisphosphate carboxylase activities; c) cells photosynthesizing in 21% O2, showed significant 14C-labelling of phosphoglycolate and glycolate and the percentage of total carbon-14 incorporated into these two compounds increased when the O2 concentration was 100%; d) at 100% O2, there was a post-illumination enhanced rate of O2 consumption, which was three times greater than dark respiration, and the rate declined with increasing bicarbonate concentrations. The inhibitory effect of O2 on photosynthesis did not appear to be solely due to photorespiration, since O2 inhibition of photosynthetic O2 evolution was much greater than that of photosynthetic CO2 assimilation. Also, O2 inhibition of photosynthetic O2 evolution declined only slightly with decreasing light intensities, while the inhibition of CO2 assimilation declined rapidly with decreasing light intensity.  相似文献   

19.
Maize (Zea mays L.) seedlings were grown in nutrient solution culture containing 0, 5, and 20 μM cadmium (Cd) and the effects on various aspects of photosynthesis were investigated after 24, 48, 96 and 168 h of Cd treatments. Photosynthetic rate (P N) decreased after 48 h of 20 μM Cd and 96 h of 5μM Cd addition, respectively. Chl a and total Chl content in leaves declined under 48 h of Cd exposure. Chl b content decreased on extending the period of Cd exposure to 96 h. The maximum quantum efficiency and potential photosynthetic capacity of PSII, indicated by Fv/Fm and Fv/Fo, respectively, were depressed after 96 h onset of Cd exposure. After 48 h of 5μM Cd and 24 h of 20 μM Cd treatments, the activities of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.39) and phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) in the leaves started to decrease, respectively. We found that the limitation of photosynthetic capacity in Cd stressed maize leaves was associated with Cd toxicity on the light and the dark stages. However, Cd stress initially reduced the activities of Rubisco and PEPC and subsequently affected the PSII electron transfer, suggesting that the Calvin cycle reactions in maize plants are the primary target of the Cd toxic effect rather than PSII.  相似文献   

20.
Phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31) and ribulose-1,5-bisphospate (RuBP) carboxylase (EC 4.1.1.39) activities in leaves of different maize hybrids grown under field conditions (high light intensity) and in a growth chamber (low light intensity) were determined. Light intensity and leaf age affected PEP carboxylase activity, whereas RuBP carboxylase was affected by leaf age only at low light intensity. PEP carboxylase/RuBP carboxylase activity ratio decreased according to light intensity and leaf age. Results demonstrate that Zea mays grown under field conditions is a typical C4 species in all leaves independently from their position on the stem, whereas it may be a C3 plant when it is grown in a growth chamber at low light intensityAbbreviations PEP phosphoenolpyruvate - RuBP ribulose-1,5-bisphosphate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号