首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 473 毫秒
1.
The distribution of spleen colony diameters was determined 5.5, 8.0, 10.5 and 13.0 days after injection of normal bone marrow cells to lethally irradiated recipients. A relative lack of small colonies on day 8.0, as compared with days 5.5, 10.5 and 13.0, argued against a time continuum in colony appearance. The spleen colonies observed after 10 days or more probably represented a mixture of colonies which developed from the originally transplanted CFU-S and those arising from secondary CFU-S. Thus, late appearing spleen colonies may not necessarily identify a different, less mature, population of CFU-S. Administration of increasing amounts of bone marrow cells was used for comparing the linearity of the CFU-S assay for colonies observed after 8 days or after 12 to 13 days. The influence of overlapping colonies on the results was considerably augmented if large spleen colonies were observed after 12 or 13 days. Subsequently the CFU-S assay lost much of its quantitative character. We believe that some previously published data might have been misinterpreted by neglecting the important differences between 'early' and 'late' CFU-S assays.  相似文献   

2.
Erythroid colony formation in agar cultures of CBA bone marrow cells was stimulated by the addition of pokeweed mitogen-stimulated spleen conditioned medium (SCM). Optimal colony numbers were obtained when cultures contained 20% fetal calf serum and concentrated spleen conditioned medium. By 7 days of incubation, large burst or unicentric erythroid colonies occurred at a maximum frequency of 40–50 per 105 bone marrow cells. In CBA mice the cells forming erythroid colonies were also present in the spleen, peripheral blood, and within individual spleen colonies. A marked strain variation was noted with CBA mice having the highest levels of erythroid colony-forming cells. In CBA mice erythroid colony-forming cells were mainly non-cycling (12.5% reduction in colony numbers after incubation with hydroxyurea or 3H-thymidine). Erythroid colony-forming cells sedimented with a peak of 4.5 mm/hr, compared with CFU-S, which sedimented at 4.25 mm/hr. The addition of erythropoietin (up to 4 units) to cultures containing SCM did not alter the number or degree of hemoglobinisation of erythroid colonies. Analysis of the total number of erythroid colony-forming cells and CFU-S in 90 individual spleen colonies gave a correlation coefficient of r = 0.93 for these two cell types. In addition to benzidine-positive erythroid cells, up to 40% of the colonies contained, in addition, varying proportions of neutrophils, macrophages, eosinophils, and megakaryocytes. Taken together with the close correlation between the numbers of CFU-S in different adult hemopoietic tissues, including individual spleen colonies, the data indicate that the erythroid colony-forming cells expressing multiple hemopoietic differentiation are members of the hemopoietic multipotential stem cell compartment.  相似文献   

3.
Recovery of erythropoiesis was fast in Balb/c mice irradiated 700 R 5 days after initiation of phenylhydrazine treatment and took place predominantly in the spleen, which showed numerous large frequently confluent endogenous colonies. Post irradiation phenylhydrazine induced anaemia did not accelerate recovery of erythropoiesis; it did, however, produce a slight but significant rise in endogenous colony formation.
Radiosensitivity of spleen CFU-S from phenylhydrazine treated mice was similar to that of CFU-S in normal mouse spleen.
Spleen CFU-S in mice 5 days after initiation of phenylhydrazine treatment were sensitive to the lethal action of Hydroxyurea, while bone marrow CFU-S were not.
The self-renewal capacity of CFU-S in the endogenously repopulated spleen of phenylhydrazine pretreated 700 R X-irradiated mice was low when compared to that of spleen exogenously repopulated by cells from normal mouse bone marrow, normal and phenylhydrazine treated mouse spleen. CFU circulating in blood of phenylhydrazine treated mice had a low self-renewal capacity.
The marked strain differences in self-renewal capacity of spleen CFU-S, and of the capacity of spleen CFU-S to increase by proliferation are discussed.  相似文献   

4.
Mouse bone marrow, obtained from donors three days after treatment with 5-fluorouracil, had a very low ability to form macroscopic spleen colonies in irradiated mice at 10 days after transplantation of the cells (CFU-S10); such marrow also had no detectable erythropoiesis repopulating ability but did have near normal marrow repopulating ability and spleen megakaryocyte repopulating ability. Incubation of this marrow in vitro for 7 days with medium containing growth factor preparations (a) pregnant mouse uterus extract plus human spleen conditioned medium or (b) mouse spleen conditioned medium, resulted in marked increases in CFU-S10 and in cells with erythropoietic repopulating ability together with maintenance of cells with marrow repopulating ability. These responses were not observed in cultures with control medium alone. Spleen megakaryocyte repopulating ability was also maintained in the presence of the factor preparations.  相似文献   

5.
CFU-S differentiation and regeneration kinetics in the spleen and femur was studied after treatment of bone marrow cells with RAMB serum. The effect of thymocytes on the rate of CFU-S regeneration was also investigated. It was found that CFU-S regeneration in the spleen was similar in RAMBS-treated and intact cell populations on days 4-14 after transplantation. On the contrary, the rate of CFU-S regeneration in the femur was slower in RAMBS-treated than in intact bone marrow cells. However, the growth rate in the femur could be restored to the normal level by the administration of freshly isolated syngeneic thymocytes to mice pre-injected with RAMBS-treated CFU-S population. The treatment of bone marrow suspension with RAMB serum did not affect the differentiation of spleen colonies. It is suggested that RAMBS eliminates cell population regulating CFU-S proliferation, without affecting its differentiation.  相似文献   

6.
Summary The self-renewal capacity of murine pluripotent hemopoietic stem cells (CFU-S) of vertebral bone marrow was studied under conditions of short-term and long-term internal contamination with239Pu or241Am in female mice. Measurement of the CFU-S self-renewal capacity was carried out using double transplantation assay. To evaluate the production of differentiated progeny of stem cells average erythroblast numbers/visible spleen colony and59Fe-uptake/colony were computed. The marrow cellularity/vertebra and the number of CFU-S/vertebra were decreased and affected more by239Pu than by241Am. The production of erythroblasts per a single CFU-S and the59Fe-uptake/colony were reduced, similarly the numbers of secondary spleen colonies and of secondary CFU-S in primary colonies. The above changes resulting from impaired functions of surviving CFU-S were more serious with241Am than with239Pu. The biological effects of plutonium and americium appeared independent of the phase of contamination.  相似文献   

7.
N S Wolf 《Blood cells》1978,4(1-2):37-51
The 7-day colony types (E vs. G) formed in irradiated recipient spleens and bones by donor cells from adult bone marrow and spleen and early fetal liver were examined. Both direct and sequential transplant (retransplantation shortly after lodgment) experiments were carried out. It was found that recipient spleen receiving donor bone marrow, spleen or fetal liver developed significantly higher E/G ratios in that order, but that the E/G for colonies in recipient bones remained around 1. This led to the following conclusions concerning differences in the proportion of E or G colonies formed in recipient spleens and bones: (1) selective lodgment of 'committed' CFU-S does not occur; (2) selected repression or stimulation of 'committed' CFU-S does not occur; and (3) the findings are best explained by a condition of reversible directedness present in many or all transplantable pluripotent stem cells.  相似文献   

8.
Erythroid stem cells in Friend-virus infected mice   总被引:1,自引:0,他引:1  
The erythropoietic stem cell compartment was studied in Friend-virus (polycythemic strain, FV-P) infected DBA/2 and NMRI mice with the CFUE and BFUE technique. Early after infection there was a depression in CFUE number in bone marrow and spleen, followed by an increase of the CFUE concentration, earlier and more pronounced in the spleen than in the marrow. Three days after FV-P infection an erythropoietin (Ep) independent CFUE population started to grow and replaced the normal Ep-dependent population within 8 to 12 days. The shift to Ep independency was not gradual. CFUE colonies of FV-P infected bone marrow cells were two to three times larger than control colonies after three days in vitro incubation. BFUE colonies increased in number during the first days of infection, but were totally lost after more than ten days. After velocity sedimentation of bone marrow cells of FV-P infected animals, however, the BFUE containing fractions showed normal BFUE colony growth and normal Ep sensitivity. In unfractionated bone marrow cell cultures BFUE colony growth could be observed later than ten days post infection when the cultures were refed with medium. It was therefore concluded that the loss of BFUE colony growth after FV-P infection was an in vitro artefact due to inadequate culture conditions.  相似文献   

9.
The number of spleen colonies produced by fetal liver cells of different gestational ages were compared after injection of the thymus cells into the irradiated recipients. It has been shown that thymocytes that lack influence on spleen colony formation by normal born marrow can increase the number of spleen colonies formed by 12-16 day fetal liver CFU-S. It can be concluded that the population of accessory T cells which have a role in spleen colony formation have been formed to the end of pregnancy.  相似文献   

10.
The syngeneic thymocytes increase the efficiency of spleen colony formation and proliferative activity of CFU-S derived from fetal liver on 13th-16th day of gestation and CFU-S from long term bone marrow culture. The thymocytes effect spleen colony cells. These data indicate that T-cell-CFU-S interaction in spleen colony formation have a physiological character.  相似文献   

11.
The paper is aimed at evaluating the quantity and quality of the haematopoietic stem cells, CFU-S, in the bone marrow and the functional effectiveness of the haematopoietic microenvironment of the spleen in two time intervals after repeated exposure of mice to doses of 0.5 Gy gamma-rays once a week (total doses of 12 and 24 Gy). After irradiation, bone marrow was cross-transplanted between fractionatedly irradiated and control mice. The parameter evaluated were numbers of spleen colonies classified into size categories. The data obtained provide evidence for a significant damage to the CFU-S, concerning both their number and proliferation ability, after both total doses used. The functional effectiveness of the haematopoietic microenvironment of the spleen was impaired only in bone marrow recipients receiving a transplant after having been exposed to a total dose of 24 Gy; this dose combined with subsequent pre-transplantation irradiation resulted in a marked suppression of cell production within the spleen colonies formed from a normal bone marrow on the spleens of fractionatedly irradiated mice.  相似文献   

12.
Compared to saline-injected mice 9 days after 6.5 Gy irradiation, there were twofold more Day 8 spleen colony-forming units (CFU-S) per femur and per spleen from B6D2F1 mice administered a radioprotective dose of human recombinant interleukin-1-alpha (rIL-1) 20 h prior to their irradiation. Studies in the present report compared the numbers of CFU-S in nonirradiated mice 20 h after saline or rIL-1 injection. Prior to irradiation, the number of Day 8 CFU-S was not significantly different in the bone marrow or spleens from saline-injected mice and rIL-1-injected mice. Also, in the bone marrow, the number of Day 12 CFU-S was similar for both groups of mice. Similar seeding efficiencies for CFU-S and percentage of CFU-S in S phase of the cell cycle provided further evidence that rIL-1 injection did not increase the number of CFU-S prior to irradiation. In a marrow repopulation assay, cellularity as well as the number of erythroid colony-forming units, erythroid burst-forming units, and granulocyte-macrophage colony-forming cells per femur of lethally irradiated mice were not increased in recipient mice of donor cells from rIL-1-injected mice. These results demonstrated that a twofold increase in the number of CFU-S at the time of irradiation was not necessary for the earlier recovery of CFU-S observed in mice irradiated with sublethal doses of radiation 20 h after rIL-1 injection.  相似文献   

13.
The radioadaptive survival response induced by a conditioning exposure to 0.45 Gy and measured as an increase in 30-day survival after mid-lethal X irradiation was studied in C57BL/6N mice. The acquired radioresistance appeared on day 9 after the conditioning exposure, reached a maximum on days 12-14, and disappeared on day 21. The conditioning exposure 14 days prior to the challenge exposure increased the number of endogenous spleen colonies (CFU-S) on days 12-13 after the exposure to 5 Gy. On day 12 after irradiation, the conditioning exposure also increased the number of endogenous CFU-S to about five times that seen in animals exposed to 4.25-6.75 Gy without preirradiation. The effect of the interval between the preirradiation and the challenge irradiation on the increase in endogenous CFU-S was also examined. A significant increase in endogenous CFU-S was observed when the interval was 14 days, but not 9 days. This result corresponded to the increase in survival observed on day 14 after the challenge irradiation. Radiation-inducted resistance to radiation-induced lethality in mice appears to be closely related to the marked recovery of endogenous CFU-S in the surviving hematopoietic stem cells that acquired radioresistance by preirradiation. Preirradiation enhanced the recovery of the numbers of erythrocytes, leukocytes and thrombocytes very slightly in mice exposed to a sublethal dose of 5 Gy, a dose that does not cause bone marrow death. There appears to be no correlation between the marked increase in endogenous CFU-S and the slight increase or no increase in peripheral blood cells induced by the radioadaptive response. The possible contribution by some factor, such as Il4 or Il11, that has been reported to protect irradiated animals without stimulating hematopoiesis is discussed.  相似文献   

14.
To determine whether natural killer (NK) cells are involved in the regulation of hematopoiesis, well-characterized, cell sorter-purified NK cells were incubated with syngeneic bone marrow, and the effect of this interaction on the development of various hematopoietic progenitors was assessed. NK cells were obtained from the peritoneal exudates of CBA/J mice after i.p. infection with live Listeria monocytogenes (LM). These NK cells were nylon wool-nonadherent and were purified by using M1/70, a rat anti-murine macrophage monoclonal antibody, and a fluorescence-activated cell sorter (FACS). Syngeneic bone marrow was incubated overnight with these M1/70-purified NK cells. The cells were then assayed in vitro to determine the effect on the colony formation of the following hematopoietic progenitor cells: the myeloid progenitor that produces mixed granulocyte/macrophage colonies (CFU-G/M), the myeloid progenitor that is committed to macrophage differentiation (CFU-M), and the early erythroid progenitor that is known as the burst-forming unit-erythroid (BFU-E). The marrow cells, after incubation with NK cells, were also injected into lethally irradiated syngeneic recipients to assay for the splenic colony formation capacity of the trilineage myeloid stem cell (CFU-S). Although the formation of BFU-E-, CFU-G/M-, and CFU-M-derived colonies was not adversely affected by the exposure of syngeneic bone marrow to purified NK cells, there was a dramatic decrease in the number of CFU-S-derived colonies. Incubation with NK-depleted cells did not result in an inhibition of colony formation by the CFU-S. Mixing experiments showed that the M1/70-labeled NK cells exerted their effect directly on the CFU-S and not on any accessory cells. The effect of the NK cells on colony formation by the CFU-S could be blocked competitively and selectively by the addition, before incubation, of a classic murine NK tumor target, Yac-1. Another tumor line (WTS) that is poorly recognized by NK cells was less effective in blocking the inhibitory effect of NK cells on CFU-S. The demonstration that purified NK cells can selectively inhibit the development of the tripotential CFU-S may point to the importance of NK cells in the regulation of hematopoiesis, in the development of some types of marrow dysfunction, and in the failure of engraftment of transplanted bone marrow.  相似文献   

15.
Results of this study showed that lymphocytic choriomeningitis virus infection causes a marked activation of natural killer (NK) cells not only in the spleen but also in the bone marrow. This activity reached its peak at about day 3 of infection and declined after days 6 to 7. Enhanced NK cell activity was found to correlate with decreased receptivity for syngeneic stem cells in bone marrow and spleen, with the notable exception that decreased receptivity persisted longer in bone marrow. Treatment of infected recipients with anti-asialo GM1 (ganglio-N-tetraosylceramide) significantly increased the receptivity for syngeneic hemopoietic cells. These findings are consistent with the hypothesis that NK cell activation causes rejection of syngeneic stem cells, thus resulting in hemopoietic depression. To understand the mechanisms behind the prolonged decrease in bone marrow receptivity (and bone marrow function in the intact mouse) mentioned above, we followed the changes in the number of pluripotential stem cells (CFU-S) circulating in the peripheral blood and in endogenous spleen colonies in irradiated mice, the limbs of which were partially shielded. It was found that following a marked early decline, both parameters increased to normal or supranormal levels at about day 9 after infection. Because the bone marrow pool of CFU-S is only about 20% of normal at this time after infection, a marked tendency for CFU-S at this stage in the infection to migrate from the bone marrow to the spleen is suggested. It seems, therefore, that as NK cell activity declines, the spleen regains the ability to support growth of hemopoietic cells and the bone marrow resumes an elevated export of stem cells to the spleen. This diversion of hemopoiesis could explain both the long-standing deficiencies of the bone marrow compartment and the prolonged decrease in the receptivity of this organ.  相似文献   

16.
Changes in the kinetic state of pluripotent haemopoietic spleen colony forming cells (CFU-S) and of the CFU-S proliferation stimulator have been studied following whole-body X-irradiation. Rapid recruitment of CFU-S into cell cycle by 30 min after irradiation was observed following low doses (0.5 Gy) but a delay of 6 h occurred after higher doses (1.5 and 4.5 Gy). These changes in proliferative state correlated with the presence of the CFU-S proliferation stimulator. CFU-S irradiated in vitro in bone marrow plugs were also recruited into cycle illustrating directly the local nature of the feedback mechanism. CFU-S removed from 1.5 Gy irradiated recipients at a time when they were not in cycle were not responsive to the CFU-S proliferation stimulator. The CFU-S proliferation stimulator was produced by Ia positive cells in the irradiated bone marrow. The regulation changes occurring shortly after irradiation cannot simply be controlled by the size of the CFU-S compartment.  相似文献   

17.
The differentiated state of mouse erythropoietic progenitor cells (CFU-E), detected by their ability to form erythropoietin-dependent colonies in vitro, has been investigated. Transfusion-induced plethora was found to reduce the population size of CFU-E in both spleen and femoral marrow, which indicates that a significant number of CFU-E arise by differentiation processes that are themselves erythropoietin-dependent. Individual spleen colonies were found to be heterogeneous in their content of CFU-E, and the numbers of CFU-E per colony were not correlated either positively or negatively with the numbers of granulocyte-macrophage progenitors (CFU-C) present in the same colonies. The absence of a negative correlation between CFU-E and CFU-C indicates that the erythropoietic and granulopoietic pathways of differentiation are not mutually exclusive within individual spleen colonies. The numbers of CFU-E per spleen colony were also found to vary independently of the numbers of pluripotent stem cells (CFU-S) per colony; in contrast, as found previously, the numbers of CFU-C and CFU-S per colony were positively correlated. These results indicate that more randomizing events separate CFU-E from CFU-S than separate CFU-C from CFU-S, and are consistent with the view that CFU-E occupy a position on the erythropoietic pathway of differentiation that is more remote from the pluripotent stem cells than is the corresponding position of CFU-C on the granulopoietic pathway.  相似文献   

18.
Abstract Changes in the kinetic state of pluripotent haemopoietic spleen colony forming cells (CFU-S) and of the CFU-S proliferation stimulator have been studied following whole-body X-irradiation. Rapid recruitment of CFU-S into cell cycle by 30 min after irradiation was observed following low doses (0.5 Gy) but a delay of 6 h occurred after higher doses (1.5 and 4.5 Gy). These changes in proliferative state correlated with the presence of the CFU-S proliferation stimulator. CFU-S irradiated in vitro in bone marrow plugs were also recruited into cycle illustrating directly the local nature of the feedback mechanism. CFU-S removed from 1.5 Gy irradiated recipients at a time when they were not in cycle were not responsive to the CFU-S proliferation stimulator. The CFU-S proliferation stimulator was produced by Ia positive cells in the irradiated bone marrow. The regulation changes occurring shortly after irradiation cannot simply be controlled by the size of the CFU-S compartment.  相似文献   

19.
Spleen colonies produced by sublethally irradiated mouse bone marrow cells were compared to those produced by unirradiated marrow cells in lethally irradiated mice. Sublethally irradiated marrow cells gave rise to many fewer spleen colonies. At seven days of colony age, the ratio of erythroid colonies to granuloid colonies was lower (< 1) than for colonies formed by unirradiated marrow (2 to 3 or more). Delay of harvest of colonies to day 10 or 12 resulted in 6 to 11 fold increase in the ratio of erythroid to granuloid colonies due largely to the belated appearance of erythroid colonies.  相似文献   

20.
胡晓棠  徐有恒 《生理学报》1989,41(3):278-283
正常情况下处于S期的CFU-S比例低于10%。氨甲酰胆碱(Cach 10~(-13)—10~(-9)mol/L)和Impromidine(Impro 10~(-9)—10~(-4)mol/L)在体外与小鼠骨髓细胞短时培育后,增加了CFU-S对细胞毒剂羟基脲的敏感性。反应最大时,9d和13dCFU-S的减少率分别是32.8和60.6%(Cach)以及38.4和49.5%(Impro)。这种效应可分别被胆碱能N受体阻断剂筒箭毒(10~(-6)mol/L)和组胺H_2受体阻断剂甲氰咪呱(10~(-6)mol/L)所阻断,表明9d和13d CFU-S表面胆碱能N受体和组胺H_2受体的密度或活性存在差别,再次证实了CFU-S是一个不均一的细胞群。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号