首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Subbian E  Yabuta Y  Shinde U 《Biochemistry》2004,43(45):14348-14360
Subtilisin E (SbtE) is a member of the ubiquitous superfamily of serine proteases called subtilases and serves as a model for understanding propeptide-mediated protein folding mechanisms. Unlike most proteins that adopt thermodynamically stable conformations, the native state of SbtE is trapped into a kinetically stable conformation. While kinetic stability offers distinct functional advantages to the native state, the constraints that dictate the selection between kinetic and thermodynamic folding and stability remain unknown. Using highly conserved subtilases, we demonstrate that adaptive evolution of sequence dictates selection of folding pathways. Intracellular and extracellular serine proteases (ISPs and ESPs, respectively) constitute two subfamilies within the family of subtilases that have highly conserved sequences, structures, and catalytic activities. Our studies on the folding pathways of subtilisin E (SbtE), an ESP, and its homologue intracellular serine protease 1 (ISP1), an ISP, show that although topology, contact order, and hydrophobicity that drive protein folding reactions are conserved, ISP1 and SbtE fold through significantly different pathways and kinetics. While SbtE absolutely requires the propeptide to fold into a kinetically trapped conformer, ISP1 folds to a thermodynamically stable state more than 1 million times faster and independent of a propeptide. Furthermore, kinetics establish that ISP1 and SbtE fold through different intermediate states. An evolutionary analysis of folding constraints in subtilases suggests that observed differences in folding pathways may be mediated through positive selection of specific residues that map mostly onto the protein surface. Together, our results demonstrate that closely related subtilases can fold through distinct pathways and mechanisms, and suggest that fine sequence details can dictate the choice between kinetic and thermodynamic folding and stability.  相似文献   

2.
The subtilisin propeptide functions as an intramolecular chaperone (IMC) that facilitates correct folding of the catalytic domain while acting like a competitive inhibitor of proteolytic activity. Upon completion of folding, subtilisin initiates IMC degradation to complete precursor maturation. Existing data suggest that the chaperone and inhibitory functions of the subtilisin IMC domain are interdependent during folding. Based on x-ray structure of the IMC-subtilisin complex, we introduce a point mutation (E112A) to disrupt three hydrogen bonds that stabilize the interface between the protease and its IMC domain. This mutation within subtilisin does not alter the folding kinetics but dramatically slows down autoprocessing of the IMC domain. Inhibition of E112A-subtilisin activity by the IMC added in trans is 35-fold weaker than wild-type subtilisin. Although the IMC domain displays substantial loss of inhibitory function, its ability to chaperone E112A-subtilisin folding remains intact. Our results show that (i) the chaperone activity of the IMC domain is not obligatorily linked with its ability to bind with and inhibit active subtilisin; (ii) degradation and not autoprocessing of the IMC domain is the rate-limiting step in precursor maturation; and (iii) the Glu(112) residue within the IMC-subtilisin interface is not crucial for initiating folding but is important in maintaining the IMC structure capable of binding subtilisin.  相似文献   

3.
Propeptides of several proteases directly catalyze the protein folding reaction. Uncatalyzed folding traps these proteases into inactive molten-globule-like conformers that switch into active enzymes only when their cognate propeptides are added in trans. Although tight binding and proteolytic susceptibility forces propeptides to function as single turnover catalysts, the significance of their inhibitory function and the mechanism of activation remain unclear. Using pro-subtilisin as a model, we establish that precursor activation is a highly coordinated process that involves synchronized folding, autoprocessing, propeptide release, and protease activation. Our results demonstrate that activation is controlled by release of the first free active protease molecule. This triggers an exponential cascade that selectively targets the inhibitory propeptide in the autoprocessed complex as its substrate. However, a mutant precursor that enhances propeptide release can drastically reduce the folding efficiency by altering the synergy between individual stages. Our results represent the first demonstration that propeptide release, not precursor folding, is the rate-determining step and provides the basis for the proposed model for precise spatial and temporal activation that allows proteases to function as regulators of biological function.  相似文献   

4.
Jia Y  Liu H  Bao W  Weng M  Chen W  Cai Y  Zheng Z  Zou G 《FEBS letters》2010,584(23):4789-4796
Here, we show that during in vivo folding of the precursor, the propeptide of subtilisin nattokinase functions as an intramolecular chaperone (IMC) that organises the in vivo folding of the subtilisin domain. Two residues belonging to β-strands formed by conserved regions of the IMC are crucial for the folding of the subtilisin domain through direct interactions. An identical protease can fold into different conformations in vivo due to the action of a mutated IMC, resulting in different kinetic parameters. Some interfacial changes involving conserved regions, even those induced by the subtilisin domain, blocked subtilisin folding and altered its conformation. Insight into the interaction between the subtilisin and IMC domains is provided by a three-dimensional structural model.  相似文献   

5.
Protein folding is an essential prerequisite for proteins to execute nearly all cellular functions. There is a growing demand for a simple and robust method to investigate protein folding on a large‐scale under the same conditions. We previously developed a global folding assay system, in which proteins translated using an Escherichia coli‐based cell‐free translation system are centrifuged to quantitate the supernatant fractions. Although the assay is based on the assumption that the supernatants contain the folded native states, the supernatants also include nonnative unstructured proteins. In general, proteases recognize and degrade unstructured proteins, and thus we used a protease to digest the unstructured regions to monitor the folding status. The addition of Lon protease during the translation of proteins unmasked subfractions, not only in the soluble fractions but also in the aggregation‐prone fractions. We translated ~90 E. coli proteins in the protease‐inclusion assay, in the absence and presence of chaperones. The folding assay, which sheds light on the molecular mechanisms underlying the aggregate formation and the chaperone effects, can be applied to a large‐scale analysis.  相似文献   

6.
Conformational diversity within unique amino acid sequences is observed in diseases like scrapie and Alzheimer's disease. The molecular basis of such diversity is unknown. Similar phenomena occur in subtilisin, a serine protease homologous with eukaryotic pro-hormone convertases. The subtilisin propeptide functions as an intramolecular chaperone (IMC) that imparts steric information during folding but is not required for enzymatic activity. Point mutations within IMCs alter folding, resulting in structural conformers that specifically interact with their cognate IMCs in a process termed "protein memory." Here, we show a mechanism that mediates conformational diversity in subtilisin. During maturation, while the IMC is autocleaved and subsequently degraded by the active site of subtilisin, enzymatic properties of this site differ significantly before and after cleavage. Although subtilisin folded by Ile-48 --> Thr IMC (IMCI-48T) acquires an "altered" enzymatically active conformation (SubI-48T) significantly different from wild-type subtilisin (SubWT), both precursors undergo autocleavage at similar rates. IMC cleavage initiates conformational changes during which the IMC continues its chaperoning function subsequent to its cleavage from subtilisin. Structural imprinting resulting in conformational diversity originates during this reorganization stage and is a late folding event catalyzed by autocleavage of the IMC.  相似文献   

7.
In vivo, many proteases are synthesized as larger precursors. During the maturation process, the catalytically active protease domain is released from the larger polypeptide or pro-enzyme by one or more proteolytic processing steps. In several well studied cases, amino-terminal pro regions have been shown to play a fundamental role in the folding of the associated protease domains. The mechanism by which pro regions facilitate folding appears to be significantly different from that used by the molecular chaperones. Recent results suggest that the pro region assisted folding mechanism may be used by a wide variety of proteases, and perhaps even by non-proteases.  相似文献   

8.
Activation of the human immunodeficiency virus type 1 (HIV-1) protease is an essential step in viral replication. As is the case for all retroviral proteases, enzyme activation requires the formation of protease homodimers. However, little is known about the mechanisms by which retroviral proteases become active within their precursors. Using an in vitro expression system, we have examined the determinants of activation efficiency and the order of cleavage site processing for the protease of HIV-1 within the full-length GagPol precursor. Following activation, initial cleavage occurs between the viral p2 and nucleocapsid proteins. This is followed by cleavage of a novel site located in the transframe domain. Mutational analysis of the dimer interface of the protease produced differential effects on activation and specificity. A subset of mutations produced enhanced cleavage at the amino terminus of the protease, suggesting that, in the wild-type precursor, cleavages that liberate the protease are a relatively late event. Replacement of the proline residue at position 1 of the protease dimer interface resulted in altered cleavage of distal sites and suggests that this residue functions as a cis-directed specificity determinant. In summary, our studies indicate that interactions within the protease dimer interface help determine the order of precursor cleavage and contribute to the formation of extended-protease intermediates. Assembly domains within GagPol outside the protease domain also influence enzyme activation.  相似文献   

9.
Several proteases, including the bacterial serine protease subtilisins, require the assistance of the N-terminal pro-sequence of precursors to produce active, mature enzymes. Upon completion of folding, the pro-sequence is autocatalytically degraded because it is not necessary for the activity or stability of folded, mature cognates of the original enzymes. Therefore, the pro-sequence functions as an intramolecular chaperone that guides correct folding of the protease domain. Interestingly, Shinde et al. proposed a new theory of "protein memory" in which an identical polypeptide can fold into an altered conformation with different secondary structure, stability and specificities through a mutated pro-sequence [Shinde et al. (1997) Nature 389:520–522]. We also showed that the autoprocessing efficiency was improved by modifications in the pro-sequence of mutant subtilisins with altered substrate specificity. Further, the pro-sequence from a subtilisin homologue was found to chaperone the intramolecular folding of denatured subtilisin. These results indicate that engineering of the pro-sequence, i.e., site-directed and/or random mutagenesis, chimeras and gene shuffling between members of the family, would be a useful method for improving the functions of autoprocessing proteases. Conventional protein engineering techniques have thus far employed mutagenesis in the protease domain to modify the enzymatic properties. This new approach, which we term "pro-sequence engineering", is not only an important tool for studying the mechanism of protein folding, but also a promising technology for creating unique proteases with various beneficial properties.  相似文献   

10.
m-AAA proteases exert dual functions in the mitochondrial inner membrane: they mediate the processing of specific regulatory proteins and ensure protein quality control degrading misfolded polypeptides to peptides. Loss of these activities leads to neuronal cell death in several neurodegenerative disorders. However, it is unclear how the m-AAA protease chooses between specific processing and complete degradation. A central and conserved function of the m-AAA protease is the processing of the ribosomal subunit MrpL32, which regulates ribosome biogenesis and the formation of respiratory complexes. Here, we demonstrate that the formation of a tightly folded domain harbouring a conserved CxxC-X(9)-CxxC sequence motif halts degradation initiated from the N-terminus and triggers the release of mature MrpL32. Oxidative stress impairs folding of MrpL32, resulting in its degradation by the m-AAA protease and decreased mitochondrial translation. Surprisingly, MrpL32 folding depends on its mitochondrial targeting sequence. Presequence-assisted folding of MrpL32 requires the complete import of the MrpL32 precursor before maturation occurs and therefore explains the need for post-translocational processing by the m-AAA protease rather than co-translocational cleavage by the general mitochondrial processing peptidase.  相似文献   

11.
Cholinesterase-like adhesion molecules (CLAMs) are a family of neuronal cell adhesion molecules with important roles in synaptogenesis, and in maintaining structural and functional integrity of the nervous system. Our earlier study on the cytoplasmic domain of one of these CLAMs, the Drosophila protein, gliotactin, showed that it is intrinsically unstructured in vitro. Bioinformatic analysis suggested that the cytoplasmic domains of other CLAMs are also intrinsically unstructured, even though they bear no sequence homology to each other or to any known protein. In this study, we overexpress and purify the cytoplasmic domain of human neuroligin 3, notwithstanding its high sensitivity to the Escherichia coli endogenous proteases that cause its rapid degradation. Using bioinformatic analysis, sensitivity to proteases, size exclusion chromatography, fluorescence correlation spectroscopy, analytical ultracentrifugation, small angle x-ray scattering, circular dichroism, electron spin resonance, and nuclear magnetic resonance, we show that the cytoplasmic domain of human neuroligin 3 is intrinsically unstructured. However, several of these techniques indicate that it is not fully extended, but becomes significantly more extended under denaturing conditions.  相似文献   

12.
The Notch ankyrin repeat domain contains seven ankyrin sequence repeats, six of which adopt very similar structures. To determine if folding proceeds along parallel pathways and the order in which repeats become structured during folding, we examined the effect of analogous destabilizing Ala-->Gly substitutions in each repeat on folding kinetics. We find that folding proceeds to an on-pathway kinetic intermediate through a transition state ensemble containing structure in repeats three through five. Repeats two, six, and seven remain largely unstructured in this intermediate, becoming structured in a second kinetic step that leads to the native state. These data suggest that the Notch ankyrin domain folds according to a discrete kinetic pathway despite structural redundancy in the native state and highlight the importance of sequence-specific interactions in controlling pathway selection. This centralized pathway roughly corresponds to a low energy channel through the experimentally determined energy landscape.  相似文献   

13.
Biological signaling generally involves the activation of a receptor protein by an external stimulus followed by protein-protein interactions between the activated receptor and its downstream signal transducer. The current paradigm for the relay of signals along a signal transduction chain is that it occurs by highly specific interactions between fully folded proteins. However, recent results indicate that many regulatory proteins are intrinsically unstructured, providing a serious challenge to this paradigm and to the nature of structure-function relationships in signaling. Here we study the structural changes that occur upon activation of the blue light receptor photoactive yellow protein (PYP). Activation greatly reduces the tertiary structure of PYP but leaves the level secondary structure largely unperturbed. In addition, activated PYP exposes previously buried hydrophobic patches and allows significant solvent penetration into the core of the protein. These traits are the distinguishing hallmarks of molten globule states, which have been intensively studied for their role in protein folding. Our results show that receptor activation by light converts PYP to a molten globule and indicate stimulus-induced unfolding to a partially unstructured molten globule as a novel theme in signaling.  相似文献   

14.
Abstract: Proteins are often classified in a binary fashion as either structured or disordered. However this approach has several deficits. Firstly, protein folding is always conditional on the physiochemical environment. A protein which is structured in some circumstances will be disordered in others. Secondly, it hides a fundamental asymmetry in behavior. While all structured proteins can be unfolded through a change in environment, not all disordered proteins have the capacity for folding. Failure to accommodate these complexities confuses the definition of both protein structural domains and intrinsically disordered regions. We illustrate these points with an experimental study of a family of small binding domains, drawn from the RNA polymerase of mumps virus and its closest relatives. Assessed at face value the domains fall on a structural continuum, with folded, partially folded, and near unstructured members. Yet the disorder present in the family is conditional, and these closely related polypeptides can access the same folded state under appropriate conditions. Any heuristic definition of the protein domain emphasizing conformational stability divides this domain family in two, in a way that makes no biological sense. Structural domains would be better defined by their ability to adopt a specific tertiary structure: a structure that may or may not be realized, dependent on the circumstances. This explicitly allows for the conditional nature of protein folding, and more clearly demarcates structural domains from intrinsically disordered regions that may function without folding.  相似文献   

15.
Truhlar SM  Agard DA 《Proteins》2005,61(1):105-114
Most secreted bacterial proteases, including alpha-lytic protease (alphaLP), are synthesized with covalently attached pro regions necessary for their folding. The alphaLP folding landscape revealed that its pro region, a potent folding catalyst, is required to circumvent an extremely large folding free energy of activation that appears to be a consequence of its unique unfolding transition. Remarkably, the alphaLP native state is thermodynamically unstable; a large unfolding free energy barrier is solely responsible for the persistence of its native state. Although alphaLP folding is well characterized, the structural origins of its remarkable folding mechanism remain unclear. A conserved beta-hairpin in the C-terminal domain was identified as a structural element whose formation and positioning may contribute to the large folding free energy barrier. In this article, we characterize the folding of an alphaLP variant with a more favorable beta-hairpin turn conformation (alphaLP(beta-turn)). Indeed, alphaLP(beta-turn) pro region-catalyzed folding is faster than that for alphaLP. However, instead of accelerating spontaneous folding, alphaLP(beta-turn) actually unfolds more slowly than alphaLP. Our data support a model where the beta-hairpin is formed early, but its packing with a loop in the N-terminal domain happens late in the folding reaction. This tight packing at the domain interface enhances the kinetic stability of alphaLP(beta-turn), to nearly the same degree as the change between alphaLP and a faster folding homolog. However, alphaLP(beta-turn) has impaired proteolytic activity that negates the beneficial folding properties of this variant. This study demonstrates the evolutionary limitations imposed by the simultaneous optimization of folding and functional properties.  相似文献   

16.
The transient secondary structure and dynamics of an intrinsically unstructured linker domain from the 70 kDa subunit of human replication protein A was investigated using solution state NMR. Stable secondary structure, inferred from large secondary chemical shifts, was observed for a segment of the intrinsically unstructured linker domain when it is attached to an N-terminal protein interaction domain. Results from NMR relaxation experiments showed the rotational diffusion for this segment of the intrinsically unstructured linker domain to be correlated with the N-terminal protein interaction domain. When the N-terminal domain is removed, the stable secondary structure is lost and faster rotational diffusion is observed. The large secondary chemical shifts were used to calculate phi and psi dihedral angles and these dihedral angles were used to build a backbone structural model. Restrained molecular dynamics were performed on this new structure using the chemical shift based dihedral angles and a single NOE distance as restraints. In the resulting family of structures a large, solvent exposed loop was observed for the segment of the intrinsically unstructured linker domain that had large secondary chemical shifts.  相似文献   

17.
18.
The Plasmodium falciparum cysteine protease falcipain-2 is a trophozoite hemoglobinase and potential antimalarial drug target. Unlike other studied papain family proteases, falcipain-2 does not require its prodomain for folding to active enzyme. Rather, folding is mediated by an amino-terminal extension of the mature protease. As in related enzymes, the prodomain is a potent inhibitor of falcipain-2. We now report further functional evaluation of the domains of falcipain-2 and related plasmodial proteases. The minimum requirement for folding of falcipain-2 and four related plasmodial cysteine proteases was inclusion of a 14-15-residue amino-terminal folding domain, beginning with a conserved Tyr. Chimeras of the falcipain-2 catalytic domain with extensions from six other plasmodial proteases folded normally and had kinetic parameters (k(cat)/K(m) 124,000-195,000 M(-1) s(-1)) similar to those of recombinant falcipain-2 (k(cat)/K(m) 120,000 M(-1) s(-1)), indicating that the folding domain is functionally conserved across the falcipain-2 subfamily. Correct folding also occurred when the catalytic domain was refolded with a separate prodomain-folding domain construct but not with an isolated folding domain peptide. Thus, the prodomain mediated interaction between the other two domains when they were not covalently bound. The prodomain-catalytic domain interaction was independent of the active site, because it was blocked by free inactive catalytic domain but not by the active site-binding peptide leupeptin. The folded catalytic domain retained activity after purification from the prodomain-folding domain construct (k(cat)/K(m) 168,000 M(-1) s(-1)), indicating that the folding domain is not required for activity once folding has been achieved. Activity was lost after nonreducing gelatin SDS-PAGE but not native gelatin PAGE, indicating that correct disulfide bonds are insufficient to direct appropriate folding. Our results identify unique features of the falcipain-2 subfamily with independent mediation of activity, folding, and inhibition.  相似文献   

19.
Abstract

The transient secondary structure and dynamics of an intrinsically unstructured linker domain from the 70 kDa subunit of human replication protein A was investigated using solution state NMR. Stable secondary structure, inferred from large secondary chemical shifts, was observed for a segment of the intrinsically unstructured linker domain when it is attached to an N-terminal protein interaction domain. Results from NMR relaxation experiments showed the rotational diffusion for this segment of the intrinsically unstructured linker domain to be correlated with the N-terminal protein interaction domain. When the N-terminal domain is removed, the stable secondary structure is lost and faster rotational diffusion is observed. The large secondary chemical shifts were used to calculate phi and psidihedral angles and these dihedral angles were used to build a backbone structural model. Restrained molecular dynamics were performed on this new structure using the chemical shift based dihedral angles and a single NOE distance as restraints. In the resulting family of structures a large, solvent exposed loop was observed for the segment of the intrinsically unstructured linker domain that had large secondary chemical shifts.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号