首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
In this study, we show that it is possible to increase the performance over PSI-BLAST by using evolutionary information for both query and target sequences. This information can be used in three different ways: by sequence linking, profile-profile alignments, and by combining sequence-profile and profile-sequence searches. If only PSI-BLAST is used, 16% of superfamily-related protein domains can be detected at 90% specificity, but if a sequence-profile and a profile-sequence search are combined, this is increased to 20%, profile-profile searches detects 19%, whereas a linking procedure identifies 22% of these proteins. All three methods show equal performance, but the best combination of speed and accuracy seems to be obtained by the combined searches, because this method shows a good performance even at high specificity and the lowest computational cost. In addition, we show that the E-values reported by all these methods, including PSI-BLAST, underestimate the true rate of false positives. This behavior is seen even if a very strict E-value cutoff and a limited number of iterations are used. However, the difference is more pronounced with a looser E-value cutoff and more iterations.  相似文献   

2.
Searches using position specific scoring matrices (PSSMs) have been commonly used in remote homology detection procedures such as PSI-BLAST and RPS-BLAST. A PSSM is generated typically using one of the sequences of a family as the reference sequence. In the case of PSI-BLAST searches the reference sequence is same as the query. Recently we have shown that searches against the database of multiple family-profiles, with each one of the members of the family used as a reference sequence, are more effective than searches against the classical database of single family-profiles. Despite relatively a better overall performance when compared with common sequence-profile matching procedures, searches against the multiple family-profiles database result in a few false positives and false negatives. Here we show that profile length and divergence of sequences used in the construction of a PSSM have major influence on the performance of multiple profile based search approach. We also identify that a simple parameter defined by the number of PSSMs corresponding to a family that is hit, for a query, divided by the total number of PSSMs in the family can distinguish effectively the true positives from the false positives in the multiple profiles search approach.  相似文献   

3.
Detection of homologous proteins by an intermediate sequence search   总被引:2,自引:0,他引:2  
We developed a variant of the intermediate sequence search method (ISS(new)) for detection and alignment of weakly similar pairs of protein sequences. ISS(new) relates two query sequences by an intermediate sequence that is potentially homologous to both queries. The improvement was achieved by a more robust overlap score for a match between the queries through an intermediate. The approach was benchmarked on a data set of 2369 sequences of known structure with insignificant sequence similarity to each other (BLAST E-value larger than 0.001); 2050 of these sequences had a related structure in the set. ISS(new) performed significantly better than both PSI-BLAST and a previously described intermediate sequence search method. PSI-BLAST could not detect correct homologs for 1619 of the 2369 sequences. In contrast, ISS(new) assigned a correct homolog as the top hit for 121 of these 1619 sequences, while incorrectly assigning homologs for only nine targets; it did not assign homologs for the remainder of the sequences. By estimate, ISS(new) may be able to assign the folds of domains in approximately 29,000 of the approximately 500,000 sequences unassigned by PSI-BLAST, with 90% specificity (1 - false positives fraction). In addition, we show that the 15 alignments with the most significant BLAST E-values include the nearly best alignments constructed by ISS(new).  相似文献   

4.
Sequence alignment programs such as BLAST and PSI-BLAST are used routinely in pairwise, profile-based, or intermediate-sequence-search (ISS) methods to detect remote homologies for the purposes of fold assignment and comparative modeling. Yet, the sequence alignment quality of these methods at low sequence identity is not known. We have used the CE structure alignment program (Shindyalov and Bourne, Prot Eng 1998;11:739) to derive sequence alignments for all superfamily and family-level related proteins in the SCOP domain database. CE aligns structures and their sequences based on distances within each protein, rather than on interprotein distances. We compared BLAST, PSI-BLAST, CLUSTALW, and ISS alignments with the CE structural alignments. We found that global alignments with CLUSTALW were very poor at low sequence identity (<25%), as judged by the CE alignments. We used PSI-BLAST to search the nonredundant sequence database (nr) with every sequence in SCOP using up to four iterations. The resulting matrix was used to search a database of SCOP sequences. PSI-BLAST is only slightly better than BLAST in alignment accuracy on a per-residue basis, but PSI-BLAST matrix alignments are much longer than BLAST's, and so align correctly a larger fraction of the total number of aligned residues in the structure alignments. Any two SCOP sequences in the same superfamily that shared a hit or hits in the nr PSI-BLAST searches were identified as linked by the shared intermediate sequence. We examined the quality of the longest SCOP-query/ SCOP-hit alignment via an intermediate sequence, and found that ISS produced longer alignments than PSI-BLAST searches alone, of nearly comparable per-residue quality. At 10-15% sequence identity, BLAST correctly aligns 28%, PSI-BLAST 40%, and ISS 46% of residues according to the structure alignments. We also compared CE structure alignments with FSSP structure alignments generated by the DALI program. In contrast to the sequence methods, CE and structure alignments from the FSSP database identically align 75% of residue pairs at the 10-15% level of sequence identity, indicating that there is substantial room for improvement in these sequence alignment methods. BLAST produced alignments for 8% of the 10,665 nonimmunoglobulin SCOP superfamily sequence pairs (nearly all <25% sequence identity), PSI-BLAST matched 17% and the double-PSI-BLAST ISS method aligned 38% with E-values <10.0. The results indicate that intermediate sequences may be useful not only in fold assignment but also in achieving more complete sequence alignments for comparative modeling.  相似文献   

5.
Protein homology detection by HMM-HMM comparison   总被引:22,自引:4,他引:18  
MOTIVATION: Protein homology detection and sequence alignment are at the basis of protein structure prediction, function prediction and evolution. RESULTS: We have generalized the alignment of protein sequences with a profile hidden Markov model (HMM) to the case of pairwise alignment of profile HMMs. We present a method for detecting distant homologous relationships between proteins based on this approach. The method (HHsearch) is benchmarked together with BLAST, PSI-BLAST, HMMER and the profile-profile comparison tools PROF_SIM and COMPASS, in an all-against-all comparison of a database of 3691 protein domains from SCOP 1.63 with pairwise sequence identities below 20%.Sensitivity: When the predicted secondary structure is included in the HMMs, HHsearch is able to detect between 2.7 and 4.2 times more homologs than PSI-BLAST or HMMER and between 1.44 and 1.9 times more than COMPASS or PROF_SIM for a rate of false positives of 10%. Approximately half of the improvement over the profile-profile comparison methods is attributable to the use of profile HMMs in place of simple profiles. Alignment quality: Higher sensitivity is mirrored by an increased alignment quality. HHsearch produced 1.2, 1.7 and 3.3 times more good alignments ('balanced' score >0.3) than the next best method (COMPASS), and 1.6, 2.9 and 9.4 times more than PSI-BLAST, at the family, superfamily and fold level, respectively.Speed: HHsearch scans a query of 200 residues against 3691 domains in 33 s on an AMD64 2GHz PC. This is 10 times faster than PROF_SIM and 17 times faster than COMPASS.  相似文献   

6.
The BLAST programs are widely used tools for searching protein and DNA databases for sequence similarities. For protein comparisons, a variety of definitional, algorithmic and statistical refinements described here permits the execution time of the BLAST programs to be decreased substantially while enhancing their sensitivity to weak similarities. A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original. In addition, a method is introduced for automatically combining statistically significant alignments produced by BLAST into a position-specific score matrix, and searching the database using this matrix. The resulting Position-Specific Iterated BLAST (PSI-BLAST) program runs at approximately the same speed per iteration as gapped BLAST, but in many cases is much more sensitive to weak but biologically relevant sequence similarities. PSI-BLAST is used to uncover several new and interesting members of the BRCT superfamily.  相似文献   

7.
Distant homologies between proteins are often discovered only after three-dimensional structures of both proteins are solved. The sequence divergence for such proteins can be so large that simple comparison of their sequences fails to identify any similarity. New generation of sensitive alignment tools use averaged sequences of entire homologous families (profiles) to detect such homologies. Several algorithms, including the newest generation of BLAST algorithms and BASIC, an algorithm used in our group to assign fold predictions for proteins from several genomes, are compared to each other on the large set of structurally similar proteins with little sequence similarity. Proteins in the benchmark are classified according to the level of their similarity, which allows us to demonstrate that most of the improvement of the new algorithms is achieved for proteins with strong functional similarities, with almost no progress in recognizing distant fold similarities. It is also shown that details of profile calculation strongly influence its sensitivity in recognizing distant homologies. The most important choice is how to include information from diverging members of the family, avoiding generating false predictions, while accounting for entire sequence divergence within a family. PSI-BLAST takes a conservative approach, deriving a profile from core members of the family, providing a solid improvement without almost any false predictions. BASIC strives for better sensitivity by increasing the weight of divergent family members and paying the price in lower reliability. A new FFAS algorithm introduced here uses a new procedure for profile generation that takes into account all the relations within the family and matches BASIC sensitivity with PSI-BLAST like reliability.  相似文献   

8.
Goonesekere NC  Lee B 《Proteins》2008,71(2):910-919
The sequence homology detection relies on score matrices, which reflect the frequency of amino acid substitutions observed in a dataset of homologous sequences. The substitution matrices in popular use today are usually constructed without consideration of the structural context in which the substitution takes place. Here, we present amino acid substitution matrices specific for particular polar-nonpolar environment of the amino acid. As expected, these matrices [context-specific substitution matrices (CSSMs)] show striking differences from the popular BLOSUM62 matrix, which does not include structural information. When incorporated into BLAST and PSI-BLAST, CSSM outperformed BLOSUM matrices as assessed by ROC curve analyses of the number of true and false hits and by the accuracy of the sequence alignments to the hit sequences. These findings are also of relevance to profile-profile-based methods of homology detection, since CSSMs may help build a better profile. Profiles generated for protein sequences in PDB using CSSM-PSI-BLAST will be made available for searching via RPSBLAST through our web site http://lmbbi.nci.nih.gov/.  相似文献   

9.
MOTIVATION: Two proteins can have a similar 3-dimensional structure and biological function, but have sequences sufficiently different that traditional protein sequence comparison algorithms do not identify their relationship. The desire to identify such relations has led to the development of more sensitive sequence alignment strategies. One such strategy is the Intermediate Sequence Search (ISS), which connects two proteins through one or more intermediate sequences. In its brute-force implementation, ISS is a strategy that repetitively uses the results of the previous query as new search seeds, making it time-consuming and difficult to analyze. RESULTS: Saturated BLAST is a package that performs ISS in an efficient and automated manner. It was developed using Perl and Perl/Tk and implemented on the LINUX operating system. Starting with a protein sequence, Saturated BLAST runs a BLAST search and identifies representative sequences for the next generation of searches. The procedure is run until convergence or until some predefined criteria are met. Saturated BLAST has a friendly graphic user interface, a built-in BLAST result parser, several multiple alignment tools, clustering algorithms and various filters for the elimination of false positives, thereby providing an easy way to edit, visualize, analyze, monitor and control the search. Besides detecting remote homologies, Saturated BLAST can be used to maintain protein family databases and to search for new genes in genomic databases.  相似文献   

10.
Pattern matches for each of the sequence patterns in PROSITE, a database of sequence patterns, were searched in all protein sequences in the Brookhaven Protein Data Bank (PDB). The three-dimensional structures of the pattern matches for the 20 patterns with the largest numbers of hits were analysed. We found that the true positives have a common three-dimensional structure for each pattern; the structures of false positives, found for six of the 20 patterns, were clearly different from those of the true positives. The results suggest that the true pattern matches each have a characteristic common three-dimensional structure, which could be used to create a template to define a three-dimensional functional pattern.  相似文献   

11.
12.
Small interfering RNAs (siRNAs) have become a ubiquitous experimental tool for down-regulating mRNAs. Unfortunately, off-target effects are a significant source of false positives in siRNA experiments and an effective control for them has not previously been identified. We introduce two methods of mismatched siRNA design for negative controls based on changing bases in the middle of the siRNA to their complement bases. To test these controls, a test set of 20 highly active siRNAs (10 true positives and 10 false positives) was identified from a genome-wide screen performed in a cell-line expressing a simple, constitutively expressed luciferase reporter. Three controls were then synthesized for each of these 20 siRNAs, the first two using the proposed mismatch design methods and the third being a simple random permutation of the sequence (scrambled siRNA). When tested in the original assay, the scrambled siRNAs showed significantly reduced activity in comparison to the original siRNAs, regardless of whether they had been identified as true or false positives, indicating that they have little utility as experimental controls. In contrast, one of the proposed mismatch design methods, dubbed C911 because bases 9 through 11 of the siRNA are replaced with their complement, was able to completely distinguish between the two groups. False positives due to off-target effects maintained most of their activity when the C911 mismatch control was tested, whereas true positives whose phenotype was due to on-target effects lost most or all of their activity when the C911 mismatch was tested. The ability of control siRNAs to distinguish between true and false positives, if widely adopted, could reduce erroneous results being reported in the literature and save research dollars spent on expensive follow-up experiments.  相似文献   

13.

Background

In recent years real-time PCR has become a leading technique for nucleic acid detection and quantification. These assays have the potential to greatly enhance efficiency in the clinical laboratory. Choice of primer and probe sequences is critical for accurate diagnosis in the clinic, yet current primer/probe signature design strategies are limited, and signature evaluation methods are lacking.

Methods

We assessed the quality of a signature by predicting the number of true positive, false positive and false negative hits against all available public sequence data. We found real-time PCR signatures described in recent literature and used a BLAST search based approach to collect all hits to the primer-probe combinations that should be amplified by real-time PCR chemistry. We then compared our hits with the sequences in the NCBI taxonomy tree that the signature was designed to detect.

Results

We found that many published signatures have high specificity (almost no false positives) but low sensitivity (high false negative rate). Where high sensitivity is needed, we offer a revised methodology for signature design which may designate that multiple signatures are required to detect all sequenced strains. We use this methodology to produce new signatures that are predicted to have higher sensitivity and specificity.

Conclusion

We show that current methods for real-time PCR assay design have unacceptably low sensitivities for most clinical applications. Additionally, as new sequence data becomes available, old assays must be reassessed and redesigned. A standard protocol for both generating and assessing the quality of these assays is therefore of great value. Real-time PCR has the capacity to greatly improve clinical diagnostics. The improved assay design and evaluation methods presented herein will expedite adoption of this technique in the clinical lab.  相似文献   

14.
Kim S  Kang J  Chung YJ  Li J  Ryu KH 《Proteins》2008,71(3):1113-1122
The quality of orthologous protein clusters (OPCs) is largely dependent on the results of the reciprocal BLAST (basic local alignment search tool) hits among genomes. The BLAST algorithm is very efficient and fast, but it is very difficult to get optimal solution among phylogenetically distant species because the genomes with large evolutionary distance typically have low similarity in their protein sequences. To reduce the false positives in the OPCs, thresholding is often employed on the BLAST scores. However, the thresholding also eliminates large numbers of true positives as the orthologs from distant species likely have low BLAST scores. To rectify this problem, we introduce a new hybrid method combining the Recursive and the Markov CLuster (MCL) algorithms without using the BLAST thresholding. In the first step, we use InParanoid to produce n(n-1)/2 ortholog tables from n genomes. After combining all the tables into one, our clustering algorithm clusters ortholog pairs recursively in the table. Then, our method employs MCL algorithm to compute the clusters and refines the clusters by adjusting the inflation factor. We tested our method using six different genomes and evaluated the results by comparing against Kegg Orthology (KO) OPCs, which are generated from manually curated pathways. To quantify the accuracy of the results, we introduced a new intuitive similarity measure based on our Least-move algorithm that computes the consistency between two OPCs. We compared the resulting OPCs with the KO OPCs using this measure. We also evaluated the performance of our method using InParanoid as the baseline approach. The experimental results show that, at the inflation factor 1.3, we produced 54% more orthologs than InParanoid sacrificing a little less accuracy (1.7% less) than InParanoid, and at the factor 1.4, produced not only 15% more orthologs than InParanoid but also a higher accuracy (1.4% more) than InParanoid.  相似文献   

15.
16.

Background  

Homology is a crucial concept in comparative genomics. The algorithm probably most widely used for homology detection in comparative genomics, is BLAST. Usually a stringent score cutoff is applied to distinguish putative homologs from possible false positive hits. As a consequence, some BLAST hits are discarded that are in fact homologous.  相似文献   

17.
MOTIVATION: Sequence alignment methods that compare two sequences (pairwise methods) are important tools for the detection of biological sequence relationships. In genome annotation, multiple methods are often run and agreement between methods taken as confirmation. In this paper, we assess the advantages of combining search methods by comparing seven pairwise alignment methods, including three local dynamic programming algorithms (PRSS, SSEARCH and SCANPS), two global dynamic programming algorithms (GSRCH and AMPS) and two heuristic approximations (BLAST and FASTA), individually and by pairwise intersection and union of their result lists at equal p-value cut-offs. RESULTS: When applied singly, the dynamic programming methods SCANPS and SSEARCH gave significantly better coverage (p=0.01) compared to AMPS, GSRCH, PRSS, BLAST and FASTA. Results ranked by BLAST p-values gave significantly better coverage compared to ranking by BLAST e-values. Of 56 combinations of eight methods considered, 19 gave significant increases in coverage at low error compared to the parent methods at an equal p-value cutoff. The union of results by BLAST (p-value) and FASTA at an equal p-value cutoff gave significantly better coverage than either method individually. The best overall performance was obtained from the intersection of the results from SSEARCH and the GSRCH62 global alignment method. At an error level of five false positives, this combination found 444 true positives, a significant 12.4% increase over SSEARCH applied alone.  相似文献   

18.
19.
Profile hidden Markov models (HMMs) are amongst the most successful procedures for detecting remote homology between proteins. There are two popular profile HMM programs, HMMER and SAM. Little is known about their performance relative to each other and to the recently improved version of PSI-BLAST. Here we compare the two programs to each other and to non-HMM methods, to determine their relative performance and the features that are important for their success. The quality of the multiple sequence alignments used to build models was the most important factor affecting the overall performance of profile HMMs. The SAM T99 procedure is needed to produce high quality alignments automatically, and the lack of an equivalent component in HMMER makes it less complete as a package. Using the default options and parameters as would be expected of an inexpert user, it was found that from identical alignments SAM consistently produces better models than HMMER and that the relative performance of the model-scoring components varies. On average, HMMER was found to be between one and three times faster than SAM when searching databases larger than 2000 sequences, SAM being faster on smaller ones. Both methods were shown to have effective low complexity and repeat sequence masking using their null models, and the accuracy of their E-values was comparable. It was found that the SAM T99 iterative database search procedure performs better than the most recent version of PSI-BLAST, but that scoring of PSI-BLAST profiles is more than 30 times faster than scoring of SAM models.  相似文献   

20.
In a wide range of contexts, including predator avoidance, medical decision-making and security screening, decision accuracy is fundamentally constrained by the trade-off between true and false positives. Increased true positives are possible only at the cost of increased false positives; conversely, decreased false positives are associated with decreased true positives. We use an integrated theoretical and experimental approach to show that a group of decision-makers can overcome this basic limitation. Using a mathematical model, we show that a simple quorum decision rule enables individuals in groups to simultaneously increase true positives and decrease false positives. The results from a predator-detection experiment that we performed with humans are in line with these predictions: (i) after observing the choices of the other group members, individuals both increase true positives and decrease false positives, (ii) this effect gets stronger as group size increases, (iii) individuals use a quorum threshold set between the average true- and false-positive rates of the other group members, and (iv) individuals adjust their quorum adaptively to the performance of the group. Our results have broad implications for our understanding of the ecology and evolution of group-living animals and lend themselves for applications in the human domain such as the design of improved screening methods in medical, forensic, security and business applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号