首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neonatal treatment with diethylstilbestrol (DES) induces ovary-independent vaginal epithelial changes in mice. The response of vaginal epithelial cells from intact prepuberal BALB/cCrgl mice treated neonatally with 2 micrograms of DES for 5 days to growth-stimulatory and -inhibitory factors was studied using a serum-free collagen gel culture system that sustains the growth of normal vaginal epithelial cells. Cells from control and DES-exposed mice at 21 days of age showed about a 5-fold increase in number during 10 days in a serum-free medium supplemented with transferrin, bovine serum albumin fraction V, insulin, and epidermal growth factor. Epidermal growth factor and insulin stimulated dose-related proliferation of vaginal epithelial cells from both control and DES-exposed mice; however, cells from DES-exposed mice showed a reduced growth response to epidermal growth factor and an increased growth response to insulin, compared with control cells. Insulin-like growth factor I (1-100 ng/ml) tested in the absence of insulin failed to stimulate cell growth. Transforming growth factor-beta (0.05-5 ng/ml) consistently inhibited cell growth in a dose-dependent manner.  相似文献   

2.
目的探讨复方861对大鼠肝脏卵圆细胞分化的影响,了解其在肝纤维化治疗过程中促进肝细胞再生的可能机制。方法不同浓度(1.95,3.90,7.81,15.62,31.25,62.50,125,250,500,1000μg/mL)的复方861在无血清培养条件下作用于WB-F344细胞24 h,MTT法分析法检测细胞生长情况。500μg/mL复方861在无血清条件下作用WB-F344细胞72 h后,通过RT-PCR观察CK-19、AFP、ALB、αmRNA表达的变化。以同期未作处理的WB-F344作为空白对照组。结果 WB-F344细胞经过不同复方861作用后,除1000μg/mL外,各组细胞生长均未受到抑制,500μg/mL时细胞生存活性最佳。无血清条件下作用72 h后,半定量RT-PCR发现861组AFP mRNA的表达显著增加,CK-19 mRNA的表达显著减少,同时发现861组有ALB mRNA的表达。结论复方861可能诱导WB-F344细胞主要向肝细胞方向分化。  相似文献   

3.
Summary Mouse vaginal epithelial cells were isolated from intact 21-day-old BALB/cCrgl mice and cultured in a serum-free medium (SF20: basal medium supplemented with insulin, epidermal growth factor, transferrin, and bovine serum albumin—fraction V) to examine the proliferation, differentiation, and specificity of estrogen-induced growth retardation in vitro. Histologic and ultrastructural studies showed that vaginal epithelial cells undergo differentiative changes in vitro in the absence of estrogen, and that these changes are similar to those induced in vivo by estrogen. Addition of 17β-estradiol inhibited cellular proliferation in a dose-dependent manner. Whereas other estrane derivatives (17α-estradiol and estriol) also significantly retarded cellular proliferation, cholesterol, testosterone, and progesterone had no effect. Keoxifene, an antiestrogen, significantly reversed estrogen-induced growth inhibition, resulting in proliferation of estrogen-treated cells equivalent to that of the untreated control. The results suggest that both proliferation and differentiation of prepubertal mouse vaginal epithelial cells in vitro are estrogen-independent, and that the growth inhibition is a specific estrogen-induced response. This work was supported by grants CA-05388 and CA-09041 from the National Institutes of Health, Bethesda, MD.  相似文献   

4.
5.
Serum-free mouse embryo cells cultured in medium supplemented with insulin, transferrin, high-density lipoprotein, and fibronectin are dependent on epidermal growth factor for survival. Cycloheximide or actinomycin D prevented cell death caused by growth factor deprivation, suggesting that cell death required the synthesis of RNA and protein, a phenomenon similar to that reported for neuronal cell death in the absence of nerve growth factor. Orthovanadate, an inhibitor of phosphotyrosine phosphatases, and 12-O-tetradecanoylphorbol-13-acetate, an activator of protein kinase C, also prevented serum-free mouse embryo cell death in the absence of epidermal growth factor.  相似文献   

6.
Adult rat hepatocytes multiply in primary cultures when incubated in arginine-free MX-83 medium supplemented with dialyzed fetal calf serum, insulin, glucagon, hydrocortisone, epidermal growth factor, and transferrin. In the absence of mitogens, the fraction of the cells engaged in DNA synthesis dropped sharply. However, cells initiated DNA synthesis in response to the mitogenic mixture indicating that hepatocyte proliferation is controlled by G1----S transition rates. In contrast, rat hepatoma line DTH-3, derived from Morris 7777 "minimal deviation" hepatoma, required only insulin for proliferation in chemically defined MX-83 medium. The lengths of their cell cycle phases varied with the growth rate. The phases of the growth cycle were proportionately shortened (expanded) when the growth rate was increased (decreased). It is concluded that DTH-3 hepatoma cells, which display a decreased growth factor requirement as compared with adult rat hepatocytes differ from normal hepatocytes by fundamental alterations in the mechanisms controlling the progression of the cell cycle.  相似文献   

7.
We studied the effect of murine epidermal growth factor on cell proliferation and DNA synthesis in macronuclei of ciliate Tetrahymena pyriformis G1. Mitogenic effect of epidermal growth factor on proliferation-induced tetrahymena cells has been revealed. This effect is due to the induced progression of cells at G1 and, consequently, their earlier entering DNA synthesis phase of the first cell cycle. Epidermal growth factor had no mitogenic effect on the resting cells from stationary culture (G0 phase) whose development is independent of the growth factors in the medium.  相似文献   

8.
Rat renal glomerular epithelial cells (SGE1 cell line) can be maintained and grown continuously in serum-free medium supplemented with insulin, iron-saturated transferrin (Tr), selenium, bovine serum albumin (BSA), linoleic acid, and epidermal growth factor (EGF). Of the growth supplements used, Tr is essential for proliferation of the cells. In the present study, we describe the use of a unique iron-chelate complex, ferric cacodylate (Fe-Cac), positively charged molecules in neutral buffer, that could almost replace Tr in serum-free culture. It even stimulated the growth of SGE1 cells more efficiently than ferric chloride (FeCl3) and other iron-chelate complexes, such as ferric nitrilotriacetate (Fe-NTA) and ferric citrate (Fe-Cit). The growth-stimulatory activity of Fe-Cac was exerted at iron concentrations of more than 0.01 g/ml, whereas a 10-fold excess of iron concentration was required with FeCl3, Fe-NTA and Fe-Cit. We observed that SGE1 cells grew until confluent, then formed hemicysts (domes) in serum-free medium containing Fe-Cac, suggesting that Fe-Cac did not merely permit cell growth but also supported polarization and organization of the cells into a functional epithelial architecture. Moreover, since the stimulatory activity of Fe-Cac was completely abolished by desferrioxamine, a strong iron chelator, it is suggested that iron is crucial for growth of SGE1 cells. When the cells were treated with suramin, an inhibitor of cellular pinocytosis and endocytosis of a large spectrum of ligands including receptor-bound growth factors, growth-stimulatory activity of Tr was inhibited, whereas the activity of Fe-Cac was not affected. These results, taken together, strongly suggest that the growth-stimulatory activity of Fe-Cac is associated with iron delivery into the cells through the cell membrane by diffusion, which is different from Tr receptor-mediated endocytosis. The use of Fe-Cac for investigating iron-regulated cell proliferation is suggested.  相似文献   

9.
The purpose of the present investigation was to evaluate the in vitro requirements for rat placental cell DNA synthesis. A cell line established from the labyrinth region of midgestation rat chorioallantoic placentas was used to examine the actions of various agents. Transferrin was found to stimulate rat placental cell DNA synthesis and cell proliferation. The effects of transferrin on rat placental cell growth paralleled those observed with fetal bovine serum. Rat placental cells were responsive to both rat and human transferrin. Iron-saturated (holo-) transferrin was a more potent stimulator of rat placental cell DNA synthesis than was iron-free (apo-) transferrin. Addition of insulin, epidermal growth factor, or insulin-like growth factor-II to serum-free medium supplemented with rat transferrin did not significantly enhance rat placental cell DNA synthesis beyond that observed with only transferrin. The results demonstrate that a population of cells exists within the rat chorioallantoic placenta that are highly responsive to transferrin.  相似文献   

10.
The mitogen requirement and proliferative response of Swiss 3T3 cells in serum-free, chemically defined culture medium were compared with those of early-passage human diploid fibroblasts. The effects of platelet-derived growth factor (PDGF), epidermal growth factor (EGF), insulin, transferrin, and dexamethasone on cell-cycle parameters were measured using 5'-bromo-deoxyuridine-Hoechst flow cytometry. Swiss 3T3 cells differ from human fibroblasts in several ways: (1) Swiss 3T3 cells showed a much higher dependence on PDGF than human fibroblasts; the growth of the latter, but not of the former, could be stimulated by the combination of EGF, insulin, and dexamethasone to the full extent of that when PDGF was present; (2) in the absence of PDGF, insulin was an absolute requirement for Swiss 3T3 cells to initiate DNA synthesis, while a substantial proportion of human fibroblasts could enter DNA synthesis without exogenous insulin or IGF-I; and (3) in the absence of PDGF, increasing insulin concentration increased the cycling fraction of Swiss 3T3 cells without an appreciable effect on the rate of cell exit from G0/G1, while under similar culture conditions, insulin showed its major effect on regulation of the G1 exit rate of human fibroblasts, without much effect on the cycling fraction. In addition, the proliferative response of high-density versus low-density, arrested Swiss 3T3 cells showed that the interaction of mitogens varied with cell density. At high cell density, the PDGF requirement was consistent with the "competence/progression" cell-cycle model. This growth response was not seen, however, when cells were plated at low density.  相似文献   

11.
Summary Four mouse B16 melanoma subclones representing distinct stages in the benign-to-malignant progression of that tumor (G3.15, G3.5, G3.12, and G3.26), and three phenotype conversion variants with enhanced malignancy (G3.15*, G3.5*, and G3.12*), were comparatively examined for exogenous mitogen and growth factor requirements and for responsiveness to exogenous and endogenous growth modulators in monolayer culture. Growth behavior in serum-free medium with or without mitogen or growth factor supplements, and in supplemented quiescent serum-containing medium, confirmed previous indications that the G3.5 and G3.15* phenotypes were identical, as were the G3.26 and G3.12* phenotypes. However, G3.12 differed from the closest conversion equivalent, G3.5*, and probably represents an aberrant phenotype within this sequence. There was a direct relationship between degree of malignancy (G3.15 → G3.5 → G3.5* → G3.26), growth capacity in serum-free medium, and responsiveness to transferrin. Only G3.5*, G3.26, and G3.12* cells were growth-autonomous in serum-free medium and also highly responsive to mitogens. The polypeptide growth factors epidermal growth factor, platelet-derived growth factor, basic fibroblast growth factor, transforming growth factor-α, and insulinlike growth factor-1 and -2 were generally stimulatory in quiescent medium, but the degree of growth promotion was unrelated to malignancy level. Transforming growth factor-β1 was inhibitory to the more benign populations (G3.15, G3.5, and G3.15*) but stimulated proliferation of other cells. All populations produced autocrine fibronectin, and G3.12, G3.5*, G3.26, and G3.12* cells also produced autocrine transferrin. Only G3.12 cells failed to utilize both of those factors. Reversible mitogen-stimulated G3.12 cell growth was accompanied by partial and reversible responsiveness to both autocrine transferrin and fibronectin, whereas permanent stimulation by both factors characterized all growth-autonomous populations.  相似文献   

12.
The effect of lithium on the growth of mammary epithelial cells from adult virgin and midpregnant BALB/c or BALB/cfC3H mice was tested in a serum-free collagen gel culture system. The serum-free medium consisted of a 1:1 mixture of Ham's F12 and Dulbecco's Modified Eagle's medium supplemented with insulin, transferrin, cholera toxin, epidermal growth factor (EGF), and bovine serum albumin fraction V (BSA V). A multifold increase in cell number occurred during 10–12 days of culture in this medium. In dose-response studies in which the concentration of each component of this serum-free medium was varied in turn, the addition of LiCL (10 mM) enhanced growth at most concentrations of each factor. However, LiCL could not enhance growth in the absence of insulin or BSA V, but could replace EGF. The optimal concentration of LiCl was 5–10 mM; higher concentrations (20–80 mM) were toxic. KCl (1–10 mM) when added to the serum-free medium slightly stimulated growth; the addition of NaCl to the medium had little effect on growth. LiCl did not enhance the growth of cells from spontaneous mammary tumors of BALB/cfC3H mice.  相似文献   

13.
Summary A monolayer culture system has recently been developed for the extended growth and serial passage of normal rat mammary epithelial (RME) cells. In this system the cells undergo greater than 20 population doublings when grown on type I collagen-coated tissue culture dishes in Ham's F12 medium supplemented with insulin, hydrocortisone, epidermal growth factor, prolactin, progesterone, cholera toxin, and 5% fetal bovine serum (FBS). The purpose of the present studies was to define additional growth factors that would allow equivalent RME cell proliferation in serum-free medium. Ethanolamine (EA) was effective at reducing the FBS requirements for RME cell proliferation and at its optimum concentration did so by greater than 20-fold. Even with optimum levels of EA there was essentially no cell proliferation in the absence of FBS. However, addition of bovine serum albumin (BSA) to the hormone, growth factor, and EA-supplemented medium resulted in substantial proliferation in the absence of serum, and the further addition of transferrin (T) potentiated this effect. Thus, in this culture system, replacement of FBS with EA, BSA, and T resulted in RME cell proliferation in primary culture which was equivalent to that obtained in the 5% FBS-containing medium. This work was supported by grant RR-05529 from the Division of Research Resources, National Institutes of Health, Bethesda, MD, and by Public Health Service grant CA40064-01 from the National Cancer Institute, Bethesda, MD.  相似文献   

14.
Although several lines of evidence implicate cyclic AMP in the humoral control of liver growth, its precise role is still not clear. To explore further the role of cyclic AMP in hepatocyte proliferation, we have examined the effects of glucagon and other cyclic AMP-elevating agents on the DNA synthesis in primary cultures of adult rat hepatocytes, with particular focus on the temporal aspects. The cells were cultured in a serum-free, defined medium and treated with epidermal growth factor (EGF), insulin, and dexamethasone. Exposure of the hepatocytes to low concentrations (10 pM-1 nM) of glucagon in the early stages of culturing (usually within 6 h from plating) enhanced the initial rate of S phase entry without affecting the lag time from the plating to the onset of DNA synthesis, whereas higher concentrations inhibited it. In contrast, glucagon addition at later stages (24-45 h after plating) produced only the inhibition. Thus, if glucagon was added at a time when there was a continuous EGF/insulin-induced recruitment of cells to S phase, the rate of G1-S transition was markedly decreased within 1-3 h. This inhibitory effect occurred at low glucagon concentrations (ID50 less than 1 nM) and was mimicked by cholera toxin, forskolin, isobutyl methylxanthine, and 8-bromo cyclic AMP. The results indicate that cyclic AMP has dual effects on hepatocyte proliferation with a stimulatory modulation early in the prereplicative period (G0 or early G1), and a marked inhibition exerted immediately before the transition from G1 to S phase.  相似文献   

15.
Serum inhibition of proliferation of serum-free mouse embryo cells   总被引:3,自引:0,他引:3  
Serum-free mouse embryo (SFME) cells, derived in medium supplemented with insulin, transferrin, high density lipoprotein, epidermal growth factor, and fibronectin, do not undergo crisis, maintain a predominantly diploid karyotype with no detectable chromosomal abnormalities for well over 100 population doublings in vitro, and are growth inhibited by concentrations of serum that are growth-stimulatory for most cell lines in culture. Serum inhibition of SFME cell proliferation was reversible and was not prevented by addition of the supplements of the serum-free medium, even when added repeatedly during the culture period. The serum effect on SFME cell proliferation could be detected after incubation in serum-containing medium for as little as 8 h. SFME cells in serum-containing medium were arrested in the G1 phase of the cell cycle with a greatly reduced rate of incorporation of precursors into DNA and thymidine kinase activity, while a reduction in rate of incorporation of amino acids into protein was not observed. SFME cultures maintained for extended periods in serum-containing medium underwent a crisis-like period followed by the appearance of variant cells capable of growing in serum-supplemented medium. These cells exhibited abnormal karyotype and were resistant to several inhibitors of proliferation active on the parent SFME cell type.  相似文献   

16.
Glucocorticosteroids, when added two hours after cell plating to SV40-transformed, 3T3 mouse fibroblasts in low serum (0.3% v/v), biotin-supplemented medium, suppress cellular proliferation by 24 hours. While some cell death probably occurs, the growth inhibition is not primarily due to cytotoxicity and cytolysis. This conclusion is supported by the following: 1) both dead and viable cell numbers are suppressed, 2) little cell debris is evident in the medium, and 3) very high concentrations of glucocorticoids do not cause an increase in the dead cell count. Furthermore, this growth suppression, which is specific for glucocorticoids since several non-glucocorticoid steroids have no inhibitory effect, is not permanent nor irreversible. Removal of the glucocorticoid and replacement with 10% serum restore rapid proliferation. Although higher concentrations (1% and 10%) of serum afford some protection against glucocorticoid inhibition, this protection is not simply a consequence of faster growth rates. SV3T3 cells can be grown in serum-free medium supplemented with biotin, transferrin, insulin, and epidermal growth factor (EGF). Under these conditions growth rates are comparable to high serum media, yet glucocorticoids are still powerful inhibitors. However, the omission of insulin from serum-free, glucocorticoid cultures does result in observable cell death and lysis. Flow microfluorometry and autoradiographic studies have determined that glucocorticoid-inhibited cells are partially blocked in G1. The proportions of S phase and G2 + M cells are greatly reduced with an accompanying accumulation of G1 cells. These results suggest that glucocorticoids regulate a biochemical step(s) in G1 which is critical for DNA initiation.  相似文献   

17.
A cultured rat ovarian cell line (31 A-F(2)) was used to study the effect of growth factors (epidermal growth factor [EGF] and fibroblast growth factor [FGF]), a survival factor (ovarian growth factor [OGF]), a hormone (insulin), and an iron-binding protein (transferring) on cell proliferation and steroid production under defined culture conditions. EGF and insulin were shown to be mitogenic (half-maximal response at 0.12 nM and 0.11 muM, respectively) for 31A-F(2) cells incubated in serum-free medium. EGF induced up to three doublings in the cell population, whereas insulin induced an average of one cell population doubling. FGF, OGF, and transferrin were found not to have any prominent effect on cell division when incubated individually with 31A-F(2) cells in serum-free medium. However, a combination of EGF, OGF, insulin, and transferrin stimulated cell division to the same approximate extent as cells incubated in the presence of 5 percent fetal calf serum. EGF or insulin did not significantly affect total cell cholesterol levels (relative to cells incubated in serum-free medium) when incubated individually with 31A-F(2) cells. However, cell cholesterol levels were increased by the addition of OGF (250 percent), FGF (370 percent), or a combination of insulin and EGF (320 percent). Progesterone secretion from 31A-F(2) cells was enhanced by EGF (25 percent), FGF (80 percent), and insulin (115 percent). However, the addition of a mitogenic mixture of EGF, OGF, insulin, and transferrin suppressed progesterone secretion 150 percent) below that of control cultures. These studies have permitted us to determine that EGF and insulin are mitogenic factors that are required for the growth of 31A-F(2) cells and that OGF and transferrin are positive cofactors that enhance growth. Also, additional data suggest that cholesterol and progesterone production in 31A-F(2) cells can be regulated by peptide growth factors and the hormone insulin.  相似文献   

18.
A serum-free growth medium composed of MCDB-104 supplemented with platelet-derived growth factor (PDGF) (3 μg/ml), epidermal growth factor (EGF) (100 ng/ml), insulin (INS) (5 μg/ml), transferrin (TRS) (5 μg/ml), and dexamethasone (DEX) (55 ng/ml) supports the proliferation of WI38 cells at a rate and to a density similar to that of medium supplemented with 10% fetal bovine serum (FBS). EGF exerts its effect at moderate cell densities while PDGF appears to modulate cell proliferation at high densities. Cells seeded into EGF-, INS-, TRS-, and DEX-supplemented medium enter S phase approx. 3 h earlier than cells seeded into PDGF-, EGF-, INS-, TRS- and DEX-supplemented medium or FBS-supplemented medium.  相似文献   

19.
Summary Epithelial cells from mouse seminal vesicles were enzymatically dissociated enriched by gradient centrifugation, and maintained in collagen gel cultures with defined (serum-free) media. The epithelial origin of the cells was determined morhologically, immunocytochemically, and biochemically. Cells formed three-dimensional colonies with a lumen in collagen gels. Cell number was increased eight-fold within a 8 to 12-d culture period in a medium supplemented with epidermal growth factor (EGF) (10 ng/ml), insulin (10 μg/ml), transferrin (10 μg/ml), cholera toxin (10 ng/ml), and hydrocortisone (0.1 μg/ml). The cells required eGF and insulin; the growth-promoting effects of these two peptide hormones were optimized by transferrin, cholera toxin, and hydrocortisone. Fetal bovine serum did not support growth; rather, it suppressed the stimulated growth observed in serum-free media. A time-course study revealed that a lag period preceded rapi growth. The collagen gel, serum-free culture provides a powerful tool to study the effects of hormones on proliferation and differentiation of androgen sensitive cells.  相似文献   

20.
D A Gudkova  A B Sorokin 《Tsitologiia》1987,29(11):1309-1313
The Eagle medium containing the epidermal growth factor (EGF), insulin, transferrin and a source of iron is able to support proliferation of 3T6 cells in the absence of serum. The formation of 3T6 cell clones in the similar medium supplemented with non-essential amino acids confirms the usefulness of such a medium for cell cultivation. It has been found that the exclusion of EGF rather than other above components from the medium inhibits most highly the increase in cell number.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号