首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
—Pig brain glutaminase (EC 3.5.1.2 L-glutamine amidohydrolase) has been purified about 5000-fold from acetone powder. Glutaminase exists in different molecular forms, dependent on the ionic composition of the buffer. The three main forms are similar to those of kidney glutaminase and therefore called the tris-HCl enzyme, the phosphate enzyme, and the phosphate-borate enzyme. The sedimentation coefficients, as estimated by sucrose gradient technique, are 7·3, 8·7, and 53, respectively. Glutaminase has a pH optimum of about 9, but the pH curves of the tris-HCl enzyme and the phosphate-borate enzyme have different shapes. The apparent pK1 of the tris-HCl enzyme-substrate complex is similar to pK2 of inorganic phosphate, the apparent pK2 of both the tris-HCl and the phosphateborate enzyme complexes is similar to pK2 of glutamine. By use of the electron microscope we were able to see the phosphate-borate enzyme.  相似文献   

2.
Glutaminase is an enzyme that catalyzes the hydrolysis of l-glutamine to l-glutamate, and it plays an important role in the production of fermented foods by enhancing the umami taste. By using the genome sequence and expressed sequence tag data available for Aspergillus oryzae RIB40, we cloned a novel glutaminase gene (AsgahA) from Aspergillus sojae, which was similar to a previously described gene encoding a salt-tolerant, thermostable glutaminase of Cryptococcus nodaensis (CnGahA). The structural gene was 1,929 bp in length without introns and encoded a glutaminase, AsGahA, which shared 36% identity with CnGahA. The introduction of multiple copies of AsgahA into A. oryzae RIB40 resulted in the overexpression of glutaminase activity. AsGahA was subsequently purified from the overexpressing transformant and characterized. While AsGahA was located at the cell surface in submerged culture, it was secreted extracellularly in solid-state culture. The molecular mass of AsGahA was estimated to be 67 kDa and 135 kDa by SDS-PAGE and gel filtration chromatography, respectively, indicating that the native form of AsGahA was a dimer. The optimal pH of the enzyme was 9.5, and its optimal temperature was 50°C in sodium phosphate buffer (pH 7.0). Analysis of substrate specificity revealed that AsGahA deamidated not only free l-glutamine and l-asparagine but also C-terminal glutaminyl or asparaginyl residues in peptides. Collectively, our results indicate that AsGahA is a novel peptidoglutaminase-asparaginase. Moreover, this is the first report to describe the gene cloning and purification of a peptidoglutaminase-asparaginase.  相似文献   

3.
Marine Micrococcus luteus K-3 constitutively produced two salt-tolerant glutaminases, designated glutaminase I and II. Glutaminase I was homogeneously purified about approximately, 1620-fold with a 4% yield, and was a dimer with a molecular weight of about 86,000. Glutaminase II was partially purified about 190-fold with a 0.04% yield. The molecular weight of glutaminase II was also 86,000. Maximum activity of glutaminase I was observed at pH 8.0, 50°C and 8–16% NaCl. The optimal pH and temperature of glutaminase II were 8.5 and 50°C. The activity of glutaminase II was not affected by the presence of 8 to 16% NaCl. The presence of 10% NaCl enhanced thermal stability of glutaminase I. Both enzymes catalyzed the hydrolysis of l-glutamine, but not its hydroxylaminolysis. The Km values for l-glutamine were 4.4 (glutaminase I) and 6.5 mM (glutaminase II). Neither of the glutaminases were activated by the addition of 2 mM phosphate or 2 mM sulfate. p-Chloromercuribenzoate (0.01 mM) significantly inhibited glutaminase I, but not glutaminase II. The conserved sequences LA**V and V**GGT*A were observed in the N-terminal amino acid sequences of glutaminase I, similar to that for other glutaminases.  相似文献   

4.
Physiological role of glutaminase activity in Saccharomyces cerevisiae   总被引:1,自引:0,他引:1  
The participation of glutaminase activity in glutamine degradation was studied in a wild-type strain (S288C) of Saccharomyces cerevisiae. Evidence is presented that this strain has two glutaminase activities, a readily extractable form (glutaminase B) and a membrane-bound enzyme (glutaminase A). Glutaminase A and B activities could also be distinguished by their thermostability, pyruvate sensitivity and pH optimum. Glutaminase B activity was negatively modulated by some 2-oxo acids, and in vivo pyruvate accumulation inhibited this activity. A mutant strain (CN10) with an altered glutaminase B activity was isolated and partially characterized. Its glutaminase B activity was more sensitive to inhibition by pyruvate and 2-oxoglutarate than the wild type, thus resulting in inactivation of this enzyme in vivo. The physiological role of glutaminase activity is discussed with regard to the phenotype shown by the mutant strain.  相似文献   

5.
Glutaminase or L-glutamine aminohydrolase (EC 3.5.1.2) is an enzyme that catalyzes the formation of glutamic acid and ammonium ion from glutamine. This enzyme functions in cellular metabolism of every organism by supplying nitrogen required for the biosynthesis of a variety of metabolic intermediates, while glutamic acid plays a role in both sensory and nutritional properties of food. So far there have been only a few reports on cloning, expression and characterization of purified glutaminases. Microbial glutaminases are enzymes with emerging potential in both the food and the pharmaceutical industries. In this research a recombinant glutaminase from Bacillus licheniformis (GlsA) was expressed in Escherichia coli, under the control of a ptac promoter. The recombinant enzyme was tagged with decahistidine tag at its C-terminus and could be conveniently purified by one-step immobilized metal affinity chromatography (IMAC) to apparent homogeneity. The enzyme could be induced for efficient expression with IPTG, yielding approximately 26,000 units from 1-l shake flask cultures. The enzyme was stable at 30°C and pH 7.5 for up to 6h, and could be used efficiently to increase glutamic acid content when protein hydrolysates from soy and anchovy were used as substrates. The study demonstrates an efficient expression system for the production and purification of bacterial glutaminase. In addition, its potential application for bioconversion of glutamine to flavor-enhancing glutamic acid has been demonstrated.  相似文献   

6.
L-Glutaminase (L-glutamine amidohydrolase, EC 3.5.1.2) is the important enzyme that catalyzes the deamination of L-glutamine to L-glutamic acid and ammonium ions. Recently, L-glutaminase has received much attention with respect to its therapeutic and industrial applications. It acts as a potent antileukemic agent and shows flavor-enhancing capacity in the production of fermented foods. Glutaminase activity is widely distributed in plants, animal tissues, and microorganisms, including bacteria, yeasts, and fungi. This study presents microbial production of glutaminase enzyme from Hypocrea jecorina pure culture and determination of optimum conditions and calculation of kinetic parameters of the produced enzyme. The optimum values were determined by using sa Nesslerization reaction for our produced glutaminase enzyme. The optimum pH value was determined as 8.0 and optimum temperature as 50°C for the glutaminase enzyme. The Km and Vmax values, the kinetic parameters, of enzyme produced from Hypocrea jecorina, pure culture were determined as 0.491 mM for Km and 13.86 U/L for Vmax by plotted Lineweaver–Burk graphing, respectively. The glutaminase enzyme from H. jecorina microorganism has very high thermal and storage stability.  相似文献   

7.
An enzyme that catalyzes the hydrolysis of both glutamine and asparagine has been purified to homogeneity from extracts of Pseudomonas acidovorans. The enzyme having a ratio of glutaminase to asparaginase of 1.45:1.0 can be purified by a relatively simple procedure and is stable upon storage. The glutaminase-asparaginase has a relatively high affinity for L-asparagine (Km=1.5 X 10(-5) M) and L-glutamine (Km=2.2 X 10(-5) M) and has a molecular weight of approximately 156,000 the subunit molecular weight being approximately 39,000. Injections of the enzyme produced only slight increases in the survival time of C3H/HE mice carrying the asparagine-requiring 6C2HED Gardner lymphoma and of white Swiss mice carrying the glutamine-requiring Ehrlich lymphoma.  相似文献   

8.
gamma-Glutamyl transpeptidase, present in various mammalian tissues, transfers the gamma-glutamyl moiety of glutathione to a variety of acceptor amino acids and peptides. This enzyme has been purified from human kidney cortex about 740-fold to a specific activity of 200 units/mg of protein. The purification steps involved incubation of the homogenate at 37 degrees followed by centrifugation and extraction of the sediment with 0.1 M Tris-HCl buffer, pH 8.0, containing 1% sodium deoxycholate; batchwise absorption on DEAE-cellulose; DEAE-cellulose (DE52) column chromatography; Sephadex G-200 gel filtration; and affinity chromatography using concanavalin A insolubilized on beaded Agarose. Detergents were used throughout the purification of the enzyme. The purified enzyme separated into three protein bands, all of which had enzyme activity, on polyacrylamide disc electrophoresis in the presence of Triton X-100. The enzyme has an apparent molecular weight of about 90,000 as shown by Sephadex G-200 gel filtration, and appears to be a tetramer with subunits of molecular weights of about 21,000. The Km for gamma-glutamyl transpeptidase using the artificial substrate, gamma-glutamyl-p-nitroanilide, with glycylglycine as the acceptor amino acid was found to be about 0.8 mM. The optimum pH for the enzyme activity is 8.2 and the isoelectric point is 4.5. Both GSH and GSSG competitively inhibited the activity of gamma-glutamyl transpeptidase when gamma-glutamyl-p-nitroanilide was used as the substrate. Treatment of the purified enzyme with papain has no effect on the enzyme activity or mobility on polyacrylamide disc electrophoresis. The purified gamma-glutamyl transpeptidase had no phosphate-independent glutaminase activity. The ratio of gamma-glutamyl transpeptidase to phosphate-independent glutaminase changed significantly through the initial steps of gamma-glutamyl transpeptidase purification. These studies indicate that the transpeptidase and phosphate-independent glutaminase activities are not exhibited by the same protein in human kidney.  相似文献   

9.
Partially purified rat liver mitochondrial glutaminase shows a sigmoidal dependence on glutamine concentration, and an absolute requirement for inorganic phosphate as activator. Reconstitution with a mitochondrial membrane fraction changes the kinetic properties of the enzyme making the glutamine dependence more hyperbolic and reducing the concentration of phosphate required for half-maximum activation. Glutaminase activity in isolated mitochondria is known to be increased as a result of mitochondrial swelling. In mitochondria suspended in isotonic medium, the properties of glutaminase resemble of the isolated enzyme while in swollen mitochondria the kinetic properties revert to those exhibited by the enzyme in association with the mitochondrial membrane. It is postulated that mitochondrial glutaminase is regulated in situ by reversible association with the inner mitochondrial membrane which is mediated by mitochondrial swelling. This mechanism may explain the short-term hormonally induced activation of the enzyme observed in isolated hepatocytes.  相似文献   

10.
Properties of glutamine-dependent glutamate synthase have been investigated using homogeneous enzyme from Escherichia coli K-12. In contrast to results with enzyme from E. coli strain B (Miller, R. E., and Stadtman, E. R. (1972) J. Biol. Chem. 247, 7407-7419), this enzyme catalyzes NH3-dependent glutamate synthase activity. Selective inactivation of glutamine-dependent activity was obtained by treatment with the glutamine analog. L-2-amino-4-oxo-5-chloropentanoic acid (chloroketone). Inactivation by chloroketone exhibited saturation kinetics; glutamine reduced the rate of inactivation and exhibited competitive kinetics. Iodoacetamide, other alpha-halocarbonyl compounds, and sulfhydryl reagents gave similar selective inactivation of glutamine-dependent activity. Saturation kinetics were not obtained for inactivation by iodoacetamide but protection by glutamine exhibited competitive kinetics. The stoichiometry for alkylation by chloroketone and iodoacetamide was approximately 1 residue per protomer of molecular weight approximately 188,000. The single residue alkylated with iodo [1-14C]acetamide was identified as cysteine by isolation of S-carboxymethylcysteine. This active site cysteine is in the large subunit of molecular weight approximately 153,000. The active site cysteine was sensitive to oxidation by H2O2 generated by autooxidation of reduced flavin and resulted in selective inactivation of glutamine-dependent enzyme activity. Similar to other glutamine amidotransferases, glutamate synthase exhibits glutaminase activity. Glutaminase activity is dependent upon the functional integrity of the active site cysteine but is not wholly dependent upon the flavin and non-heme iron. Collectively, these results demonstrate that glutamate synthase is similar to other glutamine amidotransferases with respect to distinct sites for glutamine and NH3 utilization and in the obligatory function of an active site cysteine residue for glutamine utilization.  相似文献   

11.
Phosphate activated glutaminase comprises two kinetically distinguishable enzyme forms in cultures of cerebellar granule cells, of cortical neurons and of astrocytes. Specific activity of glutaminase is higher in cultured neurons compared with astrocytes. Glutaminase is activated by phosphate in all cell types investigated, however, glutaminase in astrocytes reguires a much higher concentration of phosphate for half maximal activation. One of the products, glutamate, inhibits the enzyme strongly, whereas the other product ammonia has only a slight inhibitory action on the enzyme.  相似文献   

12.
13.
A new homogeneous enzyme which is capable of catalyzing the hydrolysis of both glutamine and asparaginase has been purified from extracts of Pseudomonas boreopolis 526 by the improved method. Purification involves few stages. The ratio of glutaminase to asparaginase activity is approximately 1.5:1.0. The enzyme is stable on storage and has a wide pH optimum of action (6-8.5). The molecular weight is about 134 000-145 000 D and the subunit molecular weight is about 34 000 D. No free SH-groups have been detected in the enzyme molecule.  相似文献   

14.
The distribution of theanine-degrading activity in Wistar rats was examined and this activity was detected only in the kidney. Judging from polyacrylamide gel electrophoresis, theanine-degrading enzyme from rat kidney was purified almost to homogeneity. Theanine-degrading activity was co-purified with glutaminase activity, and the relative activity for theanine was about 85% of that for L-glutamine throughout purification. Substrate specificity of purified enzyme preparation coincided well with the data of phosphate-independent glutaminase [EC 3.5.1.2], which had been previously reported. It was very curious that gamma-glutamyl methyl and ethyl esters were more effectively hydrolyzed than theanine and L-glutamine, in view of relative activity and K(m) value. It was suggested that gamma-glutamyl moiety in theanine molecule was transferred to form gamma-glutamylglycylglycine with relative ease in the presence of glycylglycine. On the other hand, purified phosphate-dependent glutaminase did not show theanine-degrading activity at all. Thus, it was concluded that theanine was hydrolyzed by phosphate-independent glutaminase in kidney and suggested that, as for the metabolic fate of theanine, its glutamyl moiety might be transferred by means of gamma-glutamyl transpeptidase reaction to other peptides in vivo.  相似文献   

15.
Glutaminases belong to the large superfamily of serine-dependent beta-lactamases and penicillin-binding proteins, and they catalyze the hydrolytic deamidation of L-glutamine to L-glutamate. In this work, we purified and biochemically characterized four predicted glutaminases from Escherichia coli (YbaS and YneH) and Bacillus subtilis (YlaM and YbgJ). The proteins demonstrated strict specificity to L-glutamine and did not hydrolyze D-glutamine or L-asparagine. In each organism, one glutaminase showed higher affinity to glutamine ( E. coli YbaS and B. subtilis YlaM; K m 7.3 and 7.6 mM, respectively) than the second glutaminase ( E. coli YneH and B. subtilis YbgJ; K m 27.6 and 30.6 mM, respectively). The crystal structures of the E. coli YbaS and the B. subtilis YbgJ revealed the presence of a classical beta-lactamase-like fold and conservation of several key catalytic residues of beta-lactamases (Ser74, Lys77, Asn126, Lys268, and Ser269 in YbgJ). Alanine replacement mutagenesis demonstrated that most of the conserved residues located in the putative glutaminase catalytic site are essential for activity. The crystal structure of the YbgJ complex with the glutaminase inhibitor 6-diazo-5-oxo- l-norleucine revealed the presence of a covalent bond between the inhibitor and the hydroxyl oxygen of Ser74, providing evidence that Ser74 is the primary catalytic nucleophile and that the glutaminase reaction proceeds through formation of an enzyme-glutamyl intermediate. Growth experiments with the E. coli glutaminase deletion strains revealed that YneH is involved in the assimilation of l-glutamine as a sole source of carbon and nitrogen and suggested that both glutaminases (YbaS and YneH) also contribute to acid resistance in E. coli.  相似文献   

16.
The activity of rat liver glutaminase from sedimented fractions of freeze-thawed mitochondria is strongly affected by variation in pH over a physiologically relevant range at approximate physiological concentrations of activators. As pH increases from 7.1 to 7.7 at 0.7 mM ammonium and 10 mM phosphate, the S0.5 for glutamine decreases 3.5-fold, from 38 to 11 mM. This results in an 8-fold increase in reaction velocity at 10 mM glutamine. In addition, the M0.5 for phosphate activation decreases from 21 to 8.9 mM as pH increases from 7.1 to 7.7. This apparent effect of pH on the affinity of glutaminase for phosphate is similar to previous reports of the pH effect on activation by ammonium (Verhoeven, A. J., Van Iwaarden, J. F., Joseph, S. K., and Meijer, A. J. (1983) Eur. J. Biochem. 133, 241-244; McGivan, J. D., and Bradford, N. M. (1983) Biochim. Biophys. Acta 159, 296-302). Glutaminase does not respond to variation in pH between 7.1 and 7.7 when phosphate and ammonium are saturating. The effects of the two modifiers are additive. Each is still effective, as is pH, when the other is saturating. Therefore, it appears that the effects of pH on the apparent affinity of the enzyme for ammonium and phosphate account for the enzyme's response to pH. These results may help explain previous reports of minimal effects of pH on glutaminase at saturating concentrations of related substances (McGivan, J. D., Lacey, J. H., and Joseph, K. (1980) Biochim. J. 192, 537-542; Horowitz, M. L., and Knox, W. E. (1968) Enzymol. Biol. Clin. 9, 241-255; McGivan, J. D., and Bradford, N. M. (1983) Biochim. Biophys. Acta 759, 296-302). Glutaminase binds glutamine cooperatively with Hill coefficients ranging from 1.7 to 2.2, which suggests at least two and probably three or more interacting binding sites for glutamine. The strong response of liver glutaminase to pH and the fact that the reaction can supply metabolites for urea synthesis suggest a possible regulatory role of glutaminase in ureagenesis.  相似文献   

17.
Glutamine-dependent carbamyl phosphate synthetase (from Escherichia coli) was previously shown to be composed of a light subunit (molecular weight similar to 42,000) which has the binding site for glutamine and a heavy subunit (molecular weight similar to 130,000) which has binding sites for the other reactants and allosteric effectors. The subunits may be separated with retention of catalytic activities; only the separated light subunit exhibits glutaminase activity. The previous finding that storage of the native enzyme at pH 9 at 0 degrees increased its glutaminase activity by about 25-fold was further investigated; such storage markedly decreased the glutamine- and ammonia-dependent synthetase activities of the enzyme. Treatment of the enzyme with p-hydroxymercuribenzoate led to transient increase of glutaminase activity followed by inhibition. When the enzyme was treated with N-ethylmaleimide or with 5,5'-dithiobis-(2-nitrobenzoate), the glutaminase activity was increased by about 250-fold with concomitant loss of synthetase activities. The enhancement of glutaminase produced by storage of the enzyme at pH 9 was associated with intermolecular disulfide bond formation and aggregation of the enzyme. Aggregation also was observed after extensive treatment of the enzyme with 5,5'-dithiobis-(2-nitrobenzoate) or N-ethylmaleimide. However, a moderate increase of glutaminase activity (about 30-fold) was observed without aggregation under conditions in which one sulfhydryl group on the light subunit reacted with either reagent. The findings suggest that the increased glutaminase activities observed here are associated with structural changes in the enzyme in which the intersubunit relationship is altered so as to uncouple the catalytic functions of the enzyme and to facilitate access of water to the glutamine binding site on the light subunit.  相似文献   

18.
A carbamoyl-phosphate synthase has been purified from mycelia of Phycomyces blakesleeanus NRRL 1555 (-). The molecular weight of the enzyme was estimated to be 188,000 by gel filtration. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate showed that the enzyme consists of two unequal subunits with molecular weights of 130,000 and 55,000. The purified enzyme has been shown to be highly unstable. The carbamoyl-phosphate synthase from Phycomyces uses ammonia and not L-glutamine as a primary N donor and does not require activation by N-acetyl-L-glutamate, but it does require free Mg2+ for maximal activity. Kinetic studies showed a hyperbolic behavior with respect to ammonia (Km 6.34 mM), bicarbonate (Km 10.5 mM) and ATP.2 Mg2+ (Km 0.93 mM). The optimum pH of the enzyme activity was 7.4-7.8. The Phycomyces carbamoyl-phosphate synthase showed a transition temperature at 38.5 degrees C. It was completely indifferent to ornithine, cysteine, glycine, IMP, dithiothreitol, glycerol, UMP, UDP and UTP. The enzyme was inhibited by reaction with 5 mM N-ethylmaleimide.  相似文献   

19.
Green chillies(Capsicum annum L.) and tamarind (Tamarindus indica) contain appreciable amount of L-asparaginase. The enzyme was purified 400-fold from green chillies, by successive precipitations with ammonium sulphate and sodium sulphate, Sephadex-gel filtration and affinity chromatography and the purified enzyme was homogenous on gel electrophoresis. The enzyme exists in two forms, only one having antitumour activity. The purified enzyme has a molecular weight of 120,000 ±500. The N-terminal and the C-terminal amino acids are alanine and phenylalanine, respectively. The enzyme has a sharp optimum pH of 8.5 and a temperature optimum of 37‡C. It is stable upto 40‡C. The energy of activation is 3 kilo calories. The Km value for the enzyme is 3.3. mm. The enzyme has little action on D-asparagine, which is a strong inhibitor. The enzyme has inseparable glutaminase ctivity and is thus an asparaginase—glutaminase. In addition, it possesses urease activity.  相似文献   

20.
C E Caban  A Ginsburg 《Biochemistry》1976,15(7):1569-1580
The glutamine synthetase adenylyltransferase (EC 2.7.7.42), WHIch catalyzes the adenylylation and deadenylylation of glutamine synthetase in E. coli, has been stabilized and purified 2200-fold to apparent homogeneity. Sedimentation and electrophoresis studies show that the native enzyme is a single polypeptide chain of 115,000 +/- 5000 molecular weight with an isoelectric pH (PL) OF 4.98, a sedimentation coefficient (S20.w0) of 5.6S, and a molar frictional coefficient (f/f0) of 1.52. An alpha-helical content of approximately equal to 25% and approximately equal to 28% beta-pleated sheet and approximately equal to 47% random coil structures were estimated from circular dichroism measurements. The amino acid composition of the protein has been determined. The intrinsic tryptophanyl residue flourescence of adenylyltransferase is two fold greater than that of L-tryptophan; this property has been used to monitor ligand-induced conformational changes in the enzyme. Activators of the adenylylation reaction (ATP, L-glutamine, or the E. coli PII regulatory protein) produced an enhancement of fluorescence; alpha-ketoglutarate, an inhibitor of adenylylation and an activator of deadenulylation, caused a net decrease in fluorescence. The adenylytransferase has separate interaction sites for L-glutamine and the regulatory PII protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号