首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ADAMTS1 is a secreted protein that belongs to the recently described ADAMTS (a disintegrin and metalloprotease with thrombospondin repeats) family of proteases. Evaluation of ADAMTS1 catalytic activity on a panel of extracellular matrix proteins showed a restrictive substrate specificity which includes some proteoglycans. Our results demonstrated that human ADAMTS1 cleaves aggrecan at a previously shown site by its mouse homolog, but we have also identified additional cleavage sites that ultimately confirm the classification of this protease as an 'aggrecanase'. Specificity of ADAMTS1 activity was further verified when a point mutation in the zinc-binding domain abolished its catalytic effects, and latency conferred by the prodomain was also demonstrated using a furin cleavage site mutant. Suppression of ADAMTS1 activity was accomplished with a specific monoclonal antibody and some metalloprotease inhibitors, including tissue inhibitor of metalloproteinases 2 and 3. Finally, we developed an activity assay using an artificial peptide substrate based on the interglobular domain cleavage site (E(373)-A) of rat aggrecan.  相似文献   

2.
ADAMTS9 is a secreted, cell-surface-binding metalloprotease that cleaves the proteoglycans versican and aggrecan. Unlike most precursor proteins, the ADAMTS9 zymogen (pro-ADAMTS9) is resistant to intracellular processing. Instead, pro-ADAMTS9 is processed by furin at the cell surface. Here, we investigated the role of the ADAMTS9 propeptide in regulating its secretion and proteolytic activity. Removal of the propeptide abrogated secretion of the ADAMTS9 catalytic domain, and secretion was inefficiently restored by expression of the propeptide in trans. Substitution of Ala for Asn residues within each of three consensus N-linked glycosylation sites in the propeptide abrogated ADAMTS9 secretion. Thus, the propeptide is an intramolecular chaperone whose glycosylation is critical for secretion of the mature enzyme. In addition to two previously identified furin-processing sites (Arg74 downward arrow and Arg287 downward arrow) the ADAMTS9 propeptide was also furin-processed at Arg209. Substitution of Ala for Arg74, Arg209, and Arg287 resulted in secretion of an unprocessed zymogen. Unexpectedly, versican incubated with cells expressing this pro-ADAMTS9 was processed to a greater extent than when incubated with cells expressing wild-type, furin-processable ADAMTS9. Moreover, cells and medium treated with the proprotein convertase inhibitor decanoyl-Arg-Val-Lys-Arg-chloromethyl ketone had greater versican-cleaving activity than untreated cells. Following furin processing of pro-ADAMTS9, propeptide fragments maintained a non-covalent association with the catalytic domain. Collectively, these observations suggest that, unlike other metalloproteases, furin processing of the ADAMTS9 propeptide reduces its catalytic activity. Thus, the propeptide is a key functional domain of ADAMTS9, mediating an unusual regulatory mechanism that may have evolved to ensure maximal activity of this protease at the cell surface.  相似文献   

3.
We studied the properties of various fused combinations of the components of the mitochondrial cholesterol side-chain cleavage system including cytochrome P450scc, adrenodoxin (Adx), and adrenodoxin reductase (AdR). When recombinant DNAs encoding these constructs were expressed in Escherichia coli, both cholesterol side-chain cleavage activity and sensitivity to intracellular proteolysis of the three-component fusions depended on the species of origin and the arrangement of the constituents. To understand the assembly of the catalytic domains in the fused molecules, we analyzed the catalytic properties of three two-component fusions: P450scc-Adx, Adx-P450scc, and AdR-Adx. We examined the ability of each fusion to carry out the side-chain cleavage reaction in the presence of the corresponding missing component of the whole system and examined the dependence of this reaction on the presence of exogenously added individual components of the double fusions. This analysis indicated that the active centers in the double fusions are either unable to interact or are misfolded; in some cases they were inaccessible to exogenous partners. Our data suggest that when fusion proteins containing P450scc, Adx, and AdR undergo protein folding, the corresponding catalytic domains are not formed independently of each other. Thus, the correct folding and catalytic activity of each domain is determined interactively and not independently.  相似文献   

4.
The cleavage of the A2 domain of von Willebrand factor (VWF) by the metalloprotease ADAMTS13 regulates VWF size and platelet thrombosis rates. Reduction or inhibition of this enzyme activity leads to thrombotic thrombocytopenic purpura (TTP). We generated a set of novel molecules called VWF-A2 FRET (fluorescence/F?rster resonance energy transfer) proteins, where variants of yellow fluorescent protein (Venus) and cyan fluorescent protein (Cerulean) flank either the entire VWF-A2 domain (175 amino acids) or truncated fragments (141, 113, and 77 amino acids) of this domain. These proteins were expressed in Escherichia coli in soluble form, and they exhibited FRET properties. Results show that the introduction of Venus/Cerulean itself did not alter the ability of VWF-A2 to undergo ADAMTS13-mediated cleavage. The smallest FRET protein, XS-VWF, detected plasma ADAMTS13 activity down to 10% of normal levels. Tests of acquired and inherited TTP could be completed within 30 min. VWF-A2 conformation changed progressively, and not abruptly, on increasing urea concentrations. Although proteins with 77 and 113 VWF-A2 residues were cleaved in the absence of denaturant, 4M urea was required for the efficient cleavage of larger constructs. Overall, VWF-A2 FRET proteins can be applied both for the rapid diagnosis of plasma ADAMTS13 activity and as a tool to study VWF-A2 conformation dynamics.  相似文献   

5.
The "A Disintegrin And Metalloproteinase" (ADAM) protein family and the "A Disintegrin-like And Metalloproteinase with ThromboSpondin motifs" (ADAMTS) protein family are two related families of human proteins. The similarities and differences between these two families have been investigated using phylogenetic trees and homology modeling. The phylogenetic analysis indicates that the two families are well differentiated, even when only the common metalloprotease domain is taken into account. Within the ADAM family, several proteins are lacking the binding motif for the catalytic zinc in the active site and thus presumably lack any catalytic activity. These proteins tend to cluster within the ADAM phylogenetic tree and are expressed in specific tissues, suggesting a functional differentiation. The present analysis allows us to propose the following: (i) ADAMTS proteins have a conserved role in the human organism as proteases, with some differentiation in terms of substrate specificity; (ii) ADAM proteins can act as proteases and/or mediators of intermolecular interactions; (iii) proteolytically active ADAMs tend to be more ubiquitously expressed than the inactive ones.  相似文献   

6.
The cleavage of the A2 domain of von Willebrand factor (VWF) by the metalloprotease ADAMTS13 regulates VWF size and platelet thrombosis rates. Reduction or inhibition of this enzyme activity leads to thrombotic thrombocytopenic purpura (TTP). We generated a set of novel molecules called VWF-A2 FRET (fluorescence/Förster resonance energy transfer) proteins, where variants of yellow fluorescent protein (Venus) and cyan fluorescent protein (Cerulean) flank either the entire VWF-A2 domain (175 amino acids) or truncated fragments (141, 113, and 77 amino acids) of this domain. These proteins were expressed in Escherichia coli in soluble form, and they exhibited FRET properties. Results show that the introduction of Venus/Cerulean itself did not alter the ability of VWF-A2 to undergo ADAMTS13-mediated cleavage. The smallest FRET protein, XS-VWF, detected plasma ADAMTS13 activity down to 10% of normal levels. Tests of acquired and inherited TTP could be completed within 30 min. VWF-A2 conformation changed progressively, and not abruptly, on increasing urea concentrations. Although proteins with 77 and 113 VWF-A2 residues were cleaved in the absence of denaturant, 4 M urea was required for the efficient cleavage of larger constructs. Overall, VWF-A2 FRET proteins can be applied both for the rapid diagnosis of plasma ADAMTS13 activity and as a tool to study VWF-A2 conformation dynamics.  相似文献   

7.
Enteropeptidase (synonym: enterokinase, EC 3.4.21.9) is a heterodimeric serine protease of the intestinal brush border that activates trypsinogen by highly specific cleavage of the trypsinogen activation peptide following the sequence (Asp)(4)-Lys. It has also great biotechnological interest because of the unique substrate specificity of the serine protease domain. The high degree of specificity exhibited by enteropeptidase makes it a suitable reagent for cleaving recombinant proteins to remove affinity or other tags. However often unwanted cleavages elsewhere in the protein occurred during cleavage of fusions when high amount of enzyme is required. In this study we have improved the efficiency of fusion proteins cleavage by enteropeptidase by substitution of the Lys residue by Arg in specific cleavage sequence (Asp)(4)-Lys. We have demonstrated that 3-6-fold lower amounts of the catalytic subunit of human and bovine enteropeptidase is required for 95% cleavage of Trx/TRAIL and Trx/FGF-2 fusions with (Asp)(4)-Arg cleavage sequence in comparison to native sequence (Asp)(4)-Lys. As a result, reduced amount of non-specifically cleaved peptide fragments were observed during cleavage of (Asp)(4)-Lys/Arg mutated fusions. These findings overcome limitations of enteropeptidase in tag removal processes during recombinant proteins purification and extend its commercial benefit in the biopharmaceutical industry.  相似文献   

8.
ADAMTS13 consists of a reprolysin-type metalloprotease domain followed by a disintegrin domain, a thrombospondin type 1 motif (TSP1), Cys-rich and spacer domains, seven more TSP1 motifs, and two CUB domains. ADAMTS13 limits platelet accumulation in microvascular thrombi by cleaving the Tyr1605-Met1606 bond in von Willebrand factor, and ADAMTS13 deficiency causes a lethal syndrome, thrombotic thrombocytopenic purpura. ADAMTS13 domains required for substrate recognition were localized by the characterization of recombinant deletion mutants. Constructs with C-terminal His6 and V5 epitopes were expressed by transient transfection of COS-7 cells or in a baculovirus system. No association with extracellular matrix or cell surface was detected for any ADAMTS13 variant by immunofluorescence microscopy or chemical modification. Both plasma and recombinant full-length ADAMTS13 cleaved von Willebrand factor subunits into two fragments of 176 kDa and 140 kDa. Recombinant ADAMTS13 was divalent metal ion-dependent and was inhibited by IgG from a patient with idiopathic thrombotic thrombocytopenic purpura. ADAMTS13 that was truncated after the metalloprotease domain, the disintegrin domain, the first TSP1 repeat, or the Cys-rich domain was not able to cleave von Willebrand factor, whereas addition of the spacer region restored protease activity. Therefore, the spacer region is necessary for normal ADAMTS13 activity toward von Willebrand factor, and the more C-terminal TSP1 and CUB domains are dispensable in vitro.  相似文献   

9.
The ADAMTS (a disintegrin-like and metalloproteinase domain with thrombospondin type I motifs) family of proteases plays a role in pathological conditions including arthritis, cancer, thrombotic thrombocytopenic purpura and the Ehlers-Danlos type VIIC and Weill-Marchesani genetic syndromes. Here, we report the first crystal structures for a member of the ADAMTS family, ADAMTS-1. Originally cloned as an inflammation-associated gene, ADAMTS-1 has been shown to be involved in tissue remodelling, wound healing and angiogenesis. The crystal structures contain catalytic and disintegrin-like domains, both in the inhibitor-free form and in complex with the inhibitor marimastat. The overall fold of the catalytic domain is similar to related zinc metalloproteinases such as matrix metalloproteinases and ADAMs (a disintegrin and metalloproteinases). The active site contains the expected organisation of residues to coordinate zinc but has a much larger S1' selectivity pocket than ADAM33. The structure also unexpectedly reveals a double calcium-binding site. Also surprisingly, the previously named disintegrin-like domain showed no structural homology to the disintegrin domains of other metalloproteinases such as ADAM10 but is instead very similar in structure to the cysteine-rich domains of other metalloproteinases. Thus, this study suggests that the D (for disintegrin-like) in the nomenclature of ADAMTS enzymes is likely to be a misnomer. The ADAMTS-1 cysteine-rich domain stacks against the active site, suggesting a possible regulatory role.  相似文献   

10.
The ADAMTS (a disintegrin-like and metalloproteinase domain with thrombospondin-type 1 motifs) protein superfamily includes 19 secreted metalloproteases and 7 secreted ADAMTS-like (ADAMTSL) glycoproteins. The possibility of functional linkage between ADAMTS proteins and fibrillin microfibrils was first revealed by a human genetic consilience, in which mutations in ADAMTS10, ADAMTS17, ADAMTSL2 and ADAMTSL4 were found to phenocopy rare genetic disorders caused by mutations affecting fibrillin-1 (FBN1), the major microfibril component in adults. The manifestations of these ADAMTS gene disorders in humans and animals suggested that they participated in the structural and regulatory roles of microfibrils. Whereas two such disorders, Weill–Marchesani syndrome 1 and Weill–Marchesani-like syndrome involve proteases (ADAMTS10 and ADAMTS17, respectively), geleophysic dysplasia and isolated ectopia lentis in humans involve ADAMTSL2 and ADAMTSL4, respectively, which are not proteases. In addition to broadly similar dysmorphology, individuals affected by Weill–Marchesani syndrome 1, Weill–Marchesani-like syndrome or geleophysic dysplasia each show characteristic anomalies suggesting molecule-, tissue-, or context-specific functions for the respective ADAMTS proteins. Ectopia lentis occurs in each of these conditions except geleophysic dysplasia, and is due to a defect in the ciliary zonule, which is predominantly composed of FBN1 microfibrils. Together, this strongly suggests that ADAMTS proteins are involved either in microfibril assembly, stability, and anchorage, or the formation of function-specific supramolecular networks having microfibrils as their foundation. Here, the genetics and molecular biology of this subset of ADAMTS proteins is discussed from the perspective of how they might contribute to fully functional or function-specific microfibrils.  相似文献   

11.
Aggrecanases have been characterized as proteinases that cleave the Glu373-Ala374 bond of the aggrecan core protein, and they are multidomain metalloproteinases belonging to the ADAMTS (adamalysin with thrombospondin type 1 motifs) family. The first aggrecanases discovered were ADAMTS-4 (aggrecanase 1) and ADAMTS-5 (aggrecanase 2). They contain a zinc catalytic domain followed by non-catalytic ancillary domains, including a disintegrin domain, a thrombospondin domain, a cysteine-rich domain, and a spacer domain. In the case of ADAMTS-5, a second thrombospondin domain follows the spacer domain. We previously reported that the non-catalytic domains of ADAMTS-4 influence both its extracellular matrix interaction and proteolytic abilities. Here we report the effects of these domains of ADAMTS-5 on the extracellular matrix interaction and proteolytic activities and compare them with those of ADAMTS-4. Although the spacer domain was critical for ADAMTS-4 localization in the matrix, the cysteine-rich domain influenced ADAMTS-5 localization. Similar to previous reports of other ADAMTS family members, very little proteolytic activity was detected with the ADAMTS-5 catalytic domain alone. The sequential inclusion of each carboxyl-terminal domain enhanced its activity against aggrecan, carboxymethylated transferrin, fibromodulin, decorin, biglycan, and fibronectin. Both ADAMTS-4 and -5 had a broad optimal activity at pH 7.0-9.5. Aggrecanolytic activities were sensitive to the NaCl concentration, but activities on non-aggrecan substrates, e.g. carboxymethylated transferrin, were not affected. Although ADAMTS-4 and ADAMTS-5 had similar general proteolytic activities, the aggrecanase activity of ADAMTS-5 was at least 1,000-fold greater than that of ADAMTS-4 under physiological conditions. Our studies suggest that ADAMTS-5 is a major aggrecanase in cartilage metabolism and pathology.  相似文献   

12.
ADAMTS proteases typically employ some combination of ancillary C-terminal disintegrin-like, thrombospondin-1, cysteine-rich, and spacer domains to bind substrates and facilitate proteolysis by an N-terminal metalloprotease domain. We constructed chimeric proteases and substrates to examine the role of C-terminal domains of ADAMTS13 and ADAMTS5 in the recognition of their physiological cleavage sites in von Willebrand factor (VWF) and aggrecan, respectively. ADAMTS5 cleaves Glu(373)-Ala(374) and Glu(1480)-Gly(1481) bonds in bovine aggrecan but does not cleave VWF. Conversely, ADAMTS13 cleaves the Tyr(1605)-Met(1606) bond of VWF, which is exposed by fluid shear stress but cannot cleave aggrecan. Replacing the thrombospondin-1/cysteine-rich/spacer domains of ADAMTS5 with those of ADAMTS13 conferred the ability to cleave the Glu(1615)-Ile(1616) bond of VWF domain A2 in peptide substrates or VWF multimers that had been sheared; native (unsheared) VWF multimers were resistant. Thus, by recombining exosites, we engineered ADAMTS5 to cleave a new bond in VWF, preserving physiological regulation by fluid shear stress. The results demonstrate that noncatalytic thrombospondin-1/cysteine-rich/spacer domains are principal modifiers of substrate recognition and cleavage by both ADAMTS5 and ADAMTS13. Noncatalytic domains may perform similar functions in other ADAMTS family members.  相似文献   

13.
Rapid, auxin-responsive degradation of multiple auxin/indole-3-acetic acid (Aux/IAA) proteins is essential for plant growth and development. Domain II residues were previously shown to be required for the degradation of several Arabidopsis thaliana Aux/IAA proteins. We examined the degradation of additional full-length family members and the proteolytic importance of N-terminal residues outside domain II using luciferase (LUC) fusions. Elimination of domain I did not affect degradation. However, substituting an Arg for a conserved Lys between domains I and II specifically impaired basal degradation without compromising the auxin-mediated acceleration of degradation. IAA8, IAA9, and IAA28 contain domain II and a conserved Lys, but they were degraded more slowly than previously characterized family members when expressed as LUC fusions, suggesting that sequences outside domain II influence proteolysis. We analyzed the degradation of IAA31, with a region somewhat similar to domain II but without the conserved Lys, and of IAA20, which lacks domain II and the conserved Lys. Both IAA20:LUC and epitope-tagged IAA20 were long-lived, and their longevity was not influenced by auxin. Epitope-tagged IAA31 was long-lived, like IAA20, but by contrast, it showed accelerated degradation in response to auxin. The existence of long-lived and auxin-insensitive Aux/IAA proteins suggeststhat they may play a novel role in auxin signaling.  相似文献   

14.
15.
A disintegrin-like and metalloprotease domain with thrombospondin type 1 motifs 9 (ADAMTS9) is a highly conserved metalloprotease that has been identified as a tumor suppressor gene and is required for normal mouse development. The secreted ADAMTS9 zymogen undergoes proteolytic excision of its N-terminal propeptide by the proprotein convertase furin. However, in contrast to other metalloproteases, propeptide excision occurs at the cell surface and leads to decreased activity of the zymogen. Here, we investigated the potential cellular mechanisms regulating ADAMTS9 biosynthesis and cell-surface processing by analysis of molecular complexes formed by a construct containing the propeptide and catalytic domain of pro-ADAMTS9 (Pro-Cat) in HEK293F cells. Cross-linking of cellular proteins bound to Pro-Cat followed by mass spectrometric analysis identified UDP-glucose:glycoprotein glucosyltransferase I, heat shock protein gp96 (GRP94), BiP (GRP78), and ERdj3 (Hsp40 homolog) as associated proteins. gp96 and BiP were present at the cell surface in an immunoprecipitable complex with pro-ADAMTS9 and furin. Treatment with geldanamycin, an inhibitor of the HSP90α family (including gp96), led to decreased furin processing of pro-ADAMTS9 and accumulation of the unprocessed pro-ADAMTS9 at the cell surface. gp96 siRNA down-regulated the levels of cell-surface pro-ADAMTS9 and furin, whereas the levels of cell-surface pro-ADAMTS9, but not of cell-surface furin, were decreased upon treatment with BiP siRNA. These data identify for the first time the cellular chaperones associated with secretion of an ADAMTS protease and suggest a role for gp96 in modulating pro-ADAMTS9 processing.  相似文献   

16.
We demonstrate that in humans, two metalloproteases, ADAMTS-9 (1935 amino acids) and ADAMTS-20 (1911 amino acids) are orthologs of GON-1, an ADAMTS protease required for gonadal morphogenesis in Caenorhabditis elegans. ADAMTS-9 and ADAMTS-20 have an identical modular structure, are distinct in possessing 15 TSRs and a unique C-terminal domain, and have a similar gene structure, suggesting that they comprise a new subfamily of human ADAMTS proteases. ADAMTS20 is very sparingly expressed, although it is detectable in epithelial cells of the breast and lung. However, ADAMTS9 is highly expressed in embryonic and adult tissues, and therefore we characterized the ADAMTS-9 protein further. Although the ADAMTS-9 zymogen has many proprotein convertase processing sites, pulse-chase analysis, site-directed mutagenesis, and amino acid sequencing demonstrated that maturation to the active form occurs by selective proprotein convertase (e.g. furin) cleavage of the Arg(287)-Phe(288) bond. Although lacking a transmembrane sequence, ADAMTS-9 is retained near the cell surface as well as in the ECM of transiently transfected COS-1 and 293 cells. COS-1 cells transfected with ADAMTS9 (but not vector-transfected cells) proteolytically cleaved bovine versican and aggrecan core proteins at the Glu(441)-Ala(442) bond of versican V1 and the Glu(1771)-Ala(1772) bond of aggrecan, respectively. In contrast, the ADAMTS-9 catalytic domain alone was neither localized to the cell surface nor able to confer these proteolytic activities on cells, demonstrating that the ancillary domains of ADAMTS-9, including the TSRs, are required both for specific extracellular localization and for its versicanase and aggrecanase activities.  相似文献   

17.
18.
In folded proteins, prolyl peptide bonds are usually thought to be either trans or cis because only one of the isomers can be accommodated in the native folded protein. For the N-terminal domain of the gene-3 protein of the filamentous phage fd (N2 domain), Pro161 resides at the tip of a beta hairpin and was found to be cis in the crystal structure of this protein. Here we show that Pro161 exists in both the cis and the trans conformations in the folded form of the N2 domain. We investigated how conformational folding and prolyl isomerization are coupled in the unfolding and refolding of N2 domain. A combination of single-mixing and double-mixing unfolding and refolding experiments showed that, in unfolded N2 domain, 7% of the molecules contain a cis-Pro161 and 93% of the molecules contain a trans-Pro161. During refolding, the fraction of molecules with a cis-Pro161 increases to 85%. This implies that 10.3 kJ mol(-1) of the folding free energy was used to drive this 75-fold change in the Pro161 cis/trans equilibrium constant during folding. The stabilities of the forms with the cis and the trans isomers of Pro161 and their folding kinetics could be determined separately because their conformational folding is much faster than the prolyl isomerization reactions in the native and the unfolded proteins. The energetic coupling between conformational folding and Pro161 isomerization is already fully established in the transition state of folding, and the two isomeric forms are thus truly native forms. The folding kinetics are well described by a four-species box model, in which the N2 molecules with either isomer of Pro161 can fold to the native state and in which cis/trans isomerization occurs in both the unfolded and the folded proteins.  相似文献   

19.
A multi-pronged strategy including extensive sequence searches, structuralmodeling, and analysis of contextual information extracted from domainarchitectures, genetic screens, and large-scale protein-protein interaction analyseswas employed to predict previously undetected components of the eukaryoticubiquitin signaling system. Two novel groups of proteins that are likely to function asde-ubiquitinating and de-SUMOylating peptidases (DUBs) were identified. The firstgroup of putative DUBs, designated PPPDE superfamily (after Permuted Papain foldPeptidases of DsRNA viruses and Eukaryotes), consists of predicted thiol peptidaseswith a circularly permuted papain-like fold. The inference of the likely DUB functionof the PPPDE superfamily proteins is based on the fusions of the catalytic domain toUb-binding PUG (PUB)/UBA domains and a novel alpha-helical Ub-associated domain(the PLAP, Ufd3p and Lub1p or PUL domain) amongst different members of thePPPDE supefamily. The presence of the PPPDE superfamily proteins in mosteukaryotic lineages, including basal ones, such as Giardia, suggest a role indeubiquitination of highly conserved proteins involved in key cellular functions, suchas cell cycle control. In addition to eukaryotic proteins, the PPPDE superfamilyincludes predicted proteases from several groups of double-stranded RNA virusesand one single-stranded DNA virus. The apparent recruitment of DUBs for viralpolyprotein processing seems to represent a common theme in evolution of viruses.The second group of putative DUBs identified in this study is the WLM (Wss1p-likemetalloproteases) family of Zincin-like superfamily of Zn-dependent peptidases,which are linked to the Ub -system by virtue of fusions with the UB-binding PUG(PUB), ubiquitin-like and Little Finger domains. More specifically on the basis ofgenetic evidence the WLM family is implicated in de-SUMOylation. If validatedexperimentally, the WLM family proteins will represent the first case of a Zincin-likemetalloprotease involvement in Ub-signaling.  相似文献   

20.
To cultivate the use of trans-splicing as a novel means to rapidly express various antibody fusion proteins, we tried to express antibody-reporter enzyme fusions in a COS-1 co-transfection model. When a vector designed to induce trans-splicing with IgH pre-mRNA was co-transfected with a vector encoding the mouse IgM locus, the expression of VH-secreted human placental alkaline phosphatase (SEAP) as well as Fab-SEAP were successfully expressed both in mRNA and protein levels. Especially, the vectors encoding complementary sequence to Sμ as a binding domain was accurate and efficient, producing trans-spliced mRNA of up to 2% of cis-spliced one. Since Sμ sequence should exist in every IgH pre-mRNA, our finding will lead to the rapid production and analysis of various antibody-enzyme fusions suitable for enzyme-linked immunosorbent assay (ELISA) or antibody-dependent enzyme prodrug therapy (ADEPT).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号