首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proteomic approaches on lipid bodies have led to the identification of proteins associated with this compartment, showing that, rather than the inert fat depot, lipid droplets appear as complex dynamic organelles with roles in metabolism control and cell signaling. We focused our investigations on caleosin [ Arabidopsis thaliana caleosin 1 (AtClo1)], a minor protein of the Arabidopsis thaliana seed lipid body. AtClo1 shares an original triblock structure, which confers to the protein the capacity to insert at the lipid body surface. In addition, AtClo1 possesses a calcium-binding domain. The study of plants deficient in caleosin revealed its involvement in storage lipid degradation during seed germination. Using Saccharomyces cerevisiae as a heterologous expression system, we investigated the potential role of AtClo1 in lipid body biogenesis and filling. The green fluorescent protein-tagged protein was correctly targeted to lipid bodies. We observed an increase in the number and size of lipid bodies. Moreover, transformed yeasts accumulated more fatty acids (+46.6%). We confirmed that this excess of fatty acids was due to overaccumulation of lipid body neutral lipids, triacylglycerols and steryl esters. We showed that the original intrinsic properties of AtClo1 protein were sufficient to generate a functional lipid body membrane and to promote overaccumulation of storage lipids in yeast oil bodies.  相似文献   

2.
Oilseed germination is characterized by the mobilization of storage lipids as a carbon and energy source for embryonic growth. In addition to storage lipid degradation in germinating oilseeds via the direct action of a triacylglycerol lipase (TGL) on the storage lipids, a second degradation pathway that is dependent on a specific lipid body trilinoleate 13-lipoxygenase (13-LOX) has been proposed in several plant species. The activity of this specific 13-LOX leads first to the formation of ester lipid hydroperoxides. These hydroperoxy fatty acids are then preferentially cleaved off by a TGL and serve as a substrate for glyoxysomal β-oxidation. As a prerequisite for triacylglycerol (TAG) mobilization, a partial degradation of the phospholipid monolayer and/or membrane proteins of the oil body has been discussed. Evidence has now been found for both processes: partial degradation of the proteins caleosin and oleosin was observed and simultaneously a patatin-like protein together with transient phospholipase (PLase) activity could be detected at the oil body membranes during germination. Moreover, in vitro experiments with isolated oil bodies from mature seeds revealed that the formation of 13-LOX-derived lipid peroxides in lipid body membranes is increased after incubation with the purified recombinant patatin-like protein. These experiments suggest that in vivo the degradation of storage lipids in cucumber cotyledons is promoted by the activity of a specific oil body PLase, which leads to an increased decomposition of the oil body membrane by the 13-LOX and thereby TAGs may be better accessible to LOX and TGL.  相似文献   

3.
Oil bodies are lipid storage organelles which have been analyzed biochemically due to the economic importance of oil seeds. Although oil bodies are structurally simple, the mechanisms involved in their formation and degradation remain controversial. At present, only two proteins associated with oil bodies have been described, oleosin and caleosin. Oleosin is thought to be important for oil body stabilization in the cytosol, although neither the structure nor the function of oleosin has been fully elucidated. Even less is known about caleosin, which has only recently been described [Chen et al. (1999) Plant Cell Physiol 40: 1079–1086; Næsted et al. (2000) Plant Mol Biol 44: 463–476]. Caleosin and caleosin-like proteins are not unique to oil bodies and are associated with an endoplasmatic reticulum subdomain in some cell types. Here we review the synthesis and degradation of oil bodies as they relate to structural and functional aspects of oleosin and caleosin.  相似文献   

4.
Plant seed oil bodies comprise a matrix of triacylglycerols surrounded by a monolayer of phospholipids embedded with abundant oleosins and some minor proteins. Three minor proteins, temporarily termed Sops 1-3, have been identified in sesame oil bodies. A cDNA sequence of Sop1 was obtained by PCR cloning using degenerate primers derived from two partial amino acid sequences, and subsequently confirmed via immunological recognition of its over-expressed protein in Escherichia coli. Alignment with four published homologous sequences suggests Sop1 as a putative calcium-binding protein. Immunological cross-recognition implies that this protein, tentatively named caleosin, exists in diverse seed oil bodies. Caleosin migrated faster in SDS-PAGE when incubated with Ca2+. A single copy of caleosin gene was found in sesame genome based on Southern hybridization. Northern hybridization revealed that both caleosin and oleosin genes were concurrently transcribed in maturing seeds where oil bodies are actively assembled. Hydropathy plot and secondary structure analysis suggest that caleosin comprises three structural domains, i.e., an N-terminal hydrophilic calcium-binding domain, a central hydrophobic anchoring domain, and a C-terminal hydrophilic phosphorylation domain. Compared with oleosin, a conserved proline knot-like motif is located in the central hydrophobic domain of caleosin and assumed to involve in protein assembly onto oil bodies.  相似文献   

5.
Oleosin, caleosin and steroleosin are normally expressed in developing seed cells and are targeted to oil bodies. In the present work, the cDNA of each gene tagged with fluorescent proteins was transiently expressed into tobacco protoplasts and the fluorescent patterns observed by confocal laser scanning microscopy. Our results indicated clear differences in the endocellular localization of the three proteins. Oleosin and caleosin both share a common structure consisting of a central hydrophobic domain flanked by two hydrophilic domains and were correctly targeted to lipid droplets (LD), whereas steroleosin, characterized by an N-terminal oil body anchoring domain, was mainly retained in the endoplasmic reticulum (ER). Protoplast fractionation on sucrose gradients indicated that both oleosin and caleosin-green fluorescent protein (GFP) peaked at different fractions than where steroleosin-GFP or the ER marker binding immunoglobulin protein (BiP), were recovered. Chemical analysis confirmed the presence of triacylglycerols in one of the fractions where oleosin-GFP was recovered. Finally, only oleosin- and caleosin-GFP were able to reconstitute artificial oil bodies in the presence of triacylglycerols and phospholipids. Taken together, our results pointed out for the first time that leaf LDs can be separated by the ER and both oleosin or caleosin are selectively targeted due to the existence of selective mechanisms controlling protein association with these organelles.  相似文献   

6.
Soybean (Glycine max) lipoxygenase (LOX) has been proposed to be involved in reserve lipid mobilization during germination. Here, subcellular fractionation studies show that LOX1, -2, -3, -4, -5, and -6 isozymes were associated with the soluble fraction but not with purified oil bodies. The purified oil bodies contained small amounts of LOX1 (<0.01% total activity), which apparently is an artifact of the purification process. Immunogold labeling indicated that, in cotyledon parenchyma cells of LOX wild-type seeds that had soaked and germinated for 4 d, the majority of LOX protein was present in the cytoplasm. In 4-d-germinated cotyledons of a LOX1/2/3 triple null mutant (L0), a small amount of label was found in the cytoplasm. In epidermal cells, LOX appeared in vacuoles of both wild-type and L0 germinated seeds. No LOXs cross-reacting with seed LOX antibodies were found to be associated with the cell wall, plasma membrane, oil bodies, or mitochondria. Lipid analysis showed that degradation rates of total lipids and triacylglycerols between the wild type and L0 were not significantly different. These results suggest that LOX1, -2, -3, -4, -5, and -6 are not directly involved in reserve lipid mobilization during soybean germination.  相似文献   

7.
Wang J  Li Y  Lo SW  Hillmer S  Sun SS  Robinson DG  Jiang L 《Plant physiology》2007,143(4):1628-1639
Plants accumulate and store proteins in protein storage vacuoles (PSVs) during seed development and maturation. Upon seed germination, these storage proteins are mobilized to provide nutrients for seedling growth. However, little is known about the molecular mechanisms of protein degradation during seed germination. Here we test the hypothesis that vacuolar sorting receptor (VSR) proteins play a role in mediating protein degradation in germinating seeds. We demonstrate that both VSR proteins and hydrolytic enzymes are synthesized de novo during mung bean (Vigna radiata) seed germination. Immunogold electron microscopy with VSR antibodies demonstrate that VSRs mainly locate to the peripheral membrane of multivesicular bodies (MVBs), presumably as recycling receptors in day 1 germinating seeds, but become internalized to the MVB lumen, presumably for degradation at day 3 germination. Chemical cross-linking and immunoprecipitation with VSR antibodies have identified the cysteine protease aleurain as a specific VSR-interacting protein in germinating seeds. Further confocal immunofluorescence and immunogold electron microscopy studies demonstrate that VSR and aleurain colocalize to MVBs as well as PSVs in germinating seeds. Thus, MVBs in germinating seeds exercise dual functions: as a storage compartment for proteases that are physically separated from PSVs in the mature seed and as an intermediate compartment for VSR-mediated delivery of proteases from the Golgi apparatus to the PSV for protein degradation during seed germination.  相似文献   

8.
大豆子叶细胞中由液泡发育成蛋白体的不同方式   总被引:4,自引:1,他引:4  
  相似文献   

9.
Until now, there has been no conclusive demonstration of any in vivo oleosin degradation at the early stages of oil body mobilization. The present work on sunflower (Helianthus annuus L.) has demonstrated limited oleosin degradation during seed germination. Seedling cotyledon homogenization in Tris-urea buffer, followed by SDS-PAGE, revealed three oleosins (16, 17.5 and 20 kDa). Incubation of oil bodies with total soluble protein from 4-day-old seedlings resulted in oleosin degradation. In vitro and in vivo degradation of the 17.5-kDa oleosin was faster than the other two, indicating its greater susceptibility to proteolysis. Oleosin degradation by the total soluble protein resulted in a transient 14.5-kDa polypeptide, followed by an 11-kDa protease-protected fragment, which appeared post-germinatively and accumulated corresponding to increased rate of lipid mobilization. A 65-kDa protease, active at pH 7.5-9.5, was zymographically detected in the total soluble protein. Its activity increased along with in vivo accumulation of the protease-protected fragment during seed germination and accompanying lipid mobilization. Protease-treated oil bodies were more susceptible to maize lipase action. Differential proteolytic sensitivity of different oleosins in the oil body membranes could be a determinant of oil body longevity during seed germination.  相似文献   

10.
Seed oil bodies comprise a triacylglycerol matrix shielded by a monolayer of phospholipids and proteins. These surface proteins include an abundant structural protein, oleosin, and at least two minor protein classes termed caleosin and steroleosin. Two steroleosin isoforms (41 and 39 kDa), one caleosin (27 kDa), and two oleosin isoforms (17 and 15 kDa) have been identified in oil bodies isolated from sesame seeds. The signal peptides responsible for targeting of these proteins to oil bodies have not been experimentally determined. Hydropathy analyses indicate that the hydrophobic domain putatively responsible for oil-body anchoring is located in the N-terminal region of steroleosin, but in the central region of caleosin or oleosin. Direct amino acid sequencing showed that both steroleosin isoforms possessed a free methionine residue at their N-termini while caleosin and oleosin isoforms were N-terminally blocked. Mass spectrometry analyses revealed that N-termini of both caleosin and 17 kDa oleosin were acetylated after the removal of the first methionine. In addition, deamidation was observed at a glutamine residue in the N-terminal region of 17 kDa oleosin.  相似文献   

11.
西瓜种子发育和萌发过程中子叶细胞超微结构的变化   总被引:1,自引:0,他引:1  
王秀玲 《西北植物学报》2002,22(1):T001-T002
西瓜种子子叶内贮存物质开始积累时,细胞质内有大量核糖体、质体、线粒体,内质网片段和囊泡,种子脱水期至成熟期,细胞器的数量减少,成熟种子子叶细胞的细胞壁不连续,几乎观察不到细胞器的存在,种子萌发过程中内质网,线粒体,质体的数目逐渐增多,叶肉细胞的质体发育成叶绿体,种子形成过程中,在子叶细胞大液泡分隔的同时,膨胀的内质网囊泡内积累蛋白质(直径0.1-0.4μm),这些小的蛋白质球体最终进入液泡形成大的蛋白体(直径1-3μm);萌发种子贮存蛋白质被水解的同时,一些脂体进入液泡并被分解,同时液泡融合;脂类物质开始积累的时间早于蛋白质,积累的量较蛋白质多,但在萌发种子中被彻底水解的时间晚于蛋白质,淀粉粒的数量在种子形成时减少,种子萌发时在表皮细胞和叶肉细胞内都重新合成。  相似文献   

12.
Transmission electron microscopy was used in an examination of dormant and germinating oospores of Pythium aphanidermatum (Edson) Fitzp. Predominant cytoplasmic components of the dormant oospore were a single, centrally located globule and numerous storage bodies surrounding the globule. The lipid nature of the central globule and storage bodies was indicated by the examination of Br2-treated and untreated, fixed specimens. Three layers of the oospore wall were distinguished. During the early stages of oospore germination, the central globule developed incurvatures and became partially surrounded by vacuoles. The thick middle layer of the wall showed a change in staining properties and became thin in the region of germ tube emergence. Germlings incubated on corn meal agar differed substantially from those incubated in nutrient broth during the later stages of germination. The role of vacuoles and vesicles in the utilization of storage reserves during germination is discussed.  相似文献   

13.
For determination of the physiological role and mechanism of vacuolar proteolysis in the yeast Saccharomyces cerevisiae, mutant cells lacking proteinase A, B, and carboxypeptidase Y were transferred from a nutrient medium to a synthetic medium devoid of various nutrients and morphological changes of their vacuoles were investigated. After incubation for 1 h in nutrient-deficient media, a few spherical bodies appeared in the vacuoles and moved actively by Brownian movement. These bodies gradually increased in number and after 3 h they filled the vacuoles almost completely. During their accumulation, the volume of the vacuolar compartment also increased. Electron microscopic examination showed that these bodies were surrounded by a unit membrane which appeared thinner than any other intracellular membrane. The contents of the bodies were morphologically indistinguishable from the cytosol; these bodies contained cytoplasmic ribosomes, RER, mitochondria, lipid granules and glycogen granules, and the density of the cytoplasmic ribosomes in the bodies was almost the same as that of ribosomes in the cytosol. The diameter of the bodies ranged from 400 to 900 nm. Vacuoles that had accumulated these bodies were prepared by a modification of the method of Ohsumi and Anraku (Ohsumi, Y., and Y. Anraku. 1981. J. Biol. Chem. 256:2079-2082). The isolated vacuoles contained ribosomes and showed latent activity of the cytosolic enzyme glucose-6-phosphate dehydrogenase. These results suggest that these bodies sequestered the cytosol in the vacuoles. We named these spherical bodies "autophagic bodies." Accumulation of autophagic bodies in the vacuoles was induced not only by nitrogen starvation, but also by depletion of nutrients such as carbon and single amino acids that caused cessation of the cell cycle. Genetic analysis revealed that the accumulation of autophagic bodies in the vacuoles was the result of lack of the PRB1 product proteinase B, and disruption of the PRB1 gene confirmed this result. In the presence of PMSF, wild-type cells accumulated autophagic bodies in the vacuoles under nutrient-deficient conditions in the same manner as did multiple protease-deficient mutants or cells with a disrupted PRB1 gene. As the autophagic bodies disappeared rapidly after removal of PMSF from cultures of normal cells, they must be an intermediate in the normal autophagic process. This is the first report that nutrient-deficient conditions induce extensive autophagic degradation of cytosolic components in the vacuoles of yeast cells.  相似文献   

14.
Stable oil bodies of smaller sizes and higher thermostability were isolated from mature cycad (Cycas revoluta) megagametophytes compared with those isolated from sesame seeds. Immunological cross-recognition revealed that cycad oil bodies contained a major protein of 27 kDa, tentatively identified as caleosin, while oleosin, the well-known structural protein, was apparently absent. Mass spectrometric analysis showed that the putative cycad caleosin possessed a tryptic fragment of 15 residues matching to that of a theoretical moss caleosin. A complete cDNA fragment encoding this putative caleosin was obtained by PCR cloning using a primer designed according to the tryptic peptide and another one designed according to a highly conservative region among diverse caleosins. The identification of this clone was subsequently confirmed by immunodetection and MALDI-MS analyses of its recombinant fusion protein over-expressed in Escherichia coli and the native form from cycad oil bodies. Stable artificial oil bodies were successfully constituted with triacylglycerol, phospholipid and the recombinant fusion protein containing the cycad caleosin. These results suggest that stable oil bodies in cycad megagametophytes are mainly sheltered by a unique structural protein caleosin.  相似文献   

15.
Seed lipid bodies constitute natural emulsions stabilized by specialized integral membrane proteins, among which the most abundant are oleosins, followed by the calcium binding caleosin. These proteins exhibit a triblock structure, with a highly hydrophobic central region comprising up to 71 residues. Little is known on their three-dimensional structure. Here we report the solubilization of caleosin and of two oleosins in aqueous solution, using various detergents or original amphiphilic polymers, amphipols. All three proteins, insoluble in water buffers, were maintained soluble either by anionic detergents or amphipols. Neutral detergents were ineffective. In complex with amphipols the oleosins and caleosin contain more beta and less alpha secondary structures than in the SDS detergent, as evaluated by synchrotron radiation circular dichroism. These are the first reported structural results on lipid bodies proteins maintained in solution with amphipols, a promising alternative to notoriously denaturing detergents.  相似文献   

16.
Typical organelles for protein storage occur in seeds, protein bodies are found in haploid, diploid or triploid tissues and are single membrane bound. In some plants, they exhibit inclusions (globoid and crystalloid), but not in Gramineae endosperm or in Leguminosae cotyledons. A relationship between species and protein body ultrastructure can be put forward. The chemical composition is based mainly on storage proteins and phytic acid but, hydrolytic enzymes(protease and phytase), cations and ribonucleic acids are also present. Other minor biochemical components include oxalic acid, carbohydrates (excluding starch) and lipids. The locations of the storage proteins, enzymes and phytin are described. Protein body ontogeny during seed maturation has given rise to much controversy: are they plastidic or vacuolar? Recent studies on the location of proteosynthesis show that protein bodies are probably synthesized in endoplasmic reticulum lumen and that the Golgi apparatus plays an important role in storage protein synthesis. During germination protein bodies swell and fuse, giving rise to the cell central vacuole, while the integrity of the membrane is maintained. Protein bodies may be considered as being an example of tonoplast origin from endo-plasmic reticulum.  相似文献   

17.
Colletotrichum graminicola, a pathogen of sorghum and corn, was investigated prior and during germination as to certain aspects of acid phosphatase activity and lipid mobilization. Ungerminated conidia cytoplasm was filled with lipid deposits, which were mobilized during the germination process. Cytochemical ultrastructural examination showed that conidia vacuoles exhibit acid phosphatase activity, which is suggestive of lytic activity. Lipid bodies, stored in the ungerminated conidia cytoplasm, were internalized by vacuoles in a process analogous to microautophagy and were apparently digested inside them. The lipid bodies disappeared and vacuoles became enlarged in conidial cells during germination. Appressoria also showed acid phosphatase activity in multiple heterogeneous vesicles which were, in most cases, juxtaposed with lipid bodies. These results suggest that the vacuolar system plays an important role during C. graminicola germination and that the initial stages of lipid metabolization are taking place inside the vacuoles.  相似文献   

18.
Several proteins that play key roles in cholesterol synthesis, regulation, trafficking and signaling are united by sharing the phylogenetically conserved 'sterol-sensing domain' (SSD). The intracellular parasite Toxoplasma possesses at least one gene coding for a protein containing the canonical SSD. We investigated the role of this protein to provide information on lipid regulatory mechanisms in the parasite. The protein sequence predicts an uncharacterized Niemann-Pick, type C1-related protein (NPC1) with significant identity to human NPC1, and it contains many residues implicated in human NPC disease. We named this NPC1-related protein, TgNCR1. Mammalian NPC1 localizes to endo-lysosomes and promotes the movement of sterols and sphingolipids across the membranes of these organelles. Miscoding patient mutations in NPC1 cause overloading of these lipids in endo-lysosomes. TgNCR1, however, lacks endosomal targeting signals, and localizes to flattened vesicles beneath the plasma membrane of Toxoplasma. When expressed in mammalian NPC1 mutant cells and properly addressed to endo-lysosomes, TgNCR1 restores cholesterol and GM1 clearance from these organelles. To clarify the role of TgNCR1 in the parasite, we genetically disrupted NCR1; mutant parasites were viable. Quantitative lipidomic analyses on the ΔNCR1 strain reveal normal cholesterol levels but an overaccumulation of several species of cholesteryl esters, sphingomyelins and ceramides. ΔNCR1 parasites are also characterized by abundant storage lipid bodies and long membranous tubules derived from their parasitophorous vacuoles. Interestingly, these mutants can generate multiple daughters per single mother cell at high frequencies, allowing fast replication in vitro, and they are slightly more virulent in mice than the parental strain. These data suggest that the ΔNCR1 strain has lost the ability to control the intracellular levels of several lipids, which subsequently results in the stimulation of lipid storage, membrane biosynthesis and parasite division. Based on these observations, we ascribe a role for TgNCR1 in lipid homeostasis in Toxoplasma.  相似文献   

19.
A sunflower oleosin was expressed in yeast to study the in vivo insertion of the protein into the endoplasmic reticulum (ER) and subsequent transfer to lipid bodies. The oleosin cDNA was expressed in a range of yeast secretory (sec) mutants to determine the precise targeting pathway of the oleosin to the ER. Subcellular fractionation experiments indicated that the signal recognition particle (SRP) is required for oleosin targeting to the ER and hence subsequent deposition on the lipid bodies in vivo. The expression of oleosin in a range of sec61 mutant alleles confirmed the role of the SEC61 translocon in insertion of oleosin into the ER membrane, as well as indicating an unusual substrate/translocon interaction for one particular allele (sec61-3). Mistargeting of the oleosin due to impaired SRP function resulted in enhanced proteolysis of the plant protein in the transformed yeast, as determined by pulse-chase analysis. These data therefore provide the first in vivo evidence for the SRP-dependent targeting of the oleosin to the ER, and the subsequent requirement for a functional SEC61 translocon to mediate the correct insertion of the protein into the membrane.  相似文献   

20.
Plant Lipid-Transfer Proteins (LTPs) exhibit the ability to reversibly bind/transport lipids in vitro. LTPs have been involved in diverse physiological processes but conclusive evidence on their role has only been presented for a few members, none of them related to seed physiology. Arabidopsis seeds rely on storage oil breakdown to supply carbon skeletons and energy for seedling growth. Here, Arabidopsis ltp3 mutant was analyzed for its ability to germinate and for seedling establishment. Ltp3 showed delayed germination and reduced germination frequency. Seedling growth appeared reduced in the mutant but this growth restriction was rescued by the addition of an exogenous carbon supply, suggesting a defective oil mobilization. Lipid breakdown analysis during seedling growth revealed a differential profile in the mutant compared to the wild type. The involvement of LTP3 in germination and seedling growth and its relationship with the lipid transfer ability of this protein is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号