首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The control of hand equilibrium trajectories in multi-joint arm movements   总被引:10,自引:0,他引:10  
  相似文献   

2.
Sensory stimulation of wrist musculature can enhance stability in the proximal arm and may be a useful therapy aimed at improving arm control post-stroke. Specifically, our prior research indicates tendon vibration can enhance stability during point-to-point arm movements and in tracking tasks. The goal of the present study was to investigate the influence of forearm tendon vibration on endpoint stability, measured at the hand, immediately following forward arm movements in an unstable environment. Both proximal and distal workspaces were tested. Ten hemiparetic stroke subjects and 5 healthy controls made forward arm movements while grasping the handle of a two-joint robotic arm. At the end of each movement, the robot applied destabilizing forces. During some trials, 70 Hz vibration was applied to the forearm flexor muscle tendons. 70 Hz was used as the stimulus frequency as it lies within the range of optimal frequencies that activate the muscle spindles at the highest response rate. Endpoint position, velocity, muscle activity and grip force data were compared before, during and after vibration. Stability at the endpoint was quantified as the magnitude of oscillation about the target position, calculated from the power of the tangential velocity data. Prior to vibration, subjects produced unstable, oscillating hand movements about the target location due to the applied force field. Stability increased during vibration, as evidenced by decreased oscillation in hand tangential velocity.  相似文献   

3.
This paper describes a simple computational model of joint torque and impedance in human arm movements that can be used to simulate three-dimensional movements of the (redundant) arm or leg and to design the control of robots and human-machine interfaces. This model, based on recent physiological findings, assumes that (1) the central nervous system learns the force and impedance to perform a task successfully in a given stable or unstable dynamic environment and (2) stiffness is linearly related to the magnitude of the joint torque and increased to compensate for environment instability. Comparison with existing data shows that this simple model is able to predict impedance geometry well.  相似文献   

4.
The present study investigates how the CNS deals with the omnipresent force of gravity during arm motor planning. Previous studies have reported direction-dependent kinematic differences in the vertical plane; notably, acceleration duration was greater during a downward than an upward arm movement. Although the analysis of acceleration and deceleration phases has permitted to explore the integration of gravity force, further investigation is necessary to conclude whether feedforward or feedback control processes are at the origin of this incorporation. We considered that a more detailed analysis of the temporal features of vertical arm movements could provide additional information about gravity force integration into the motor planning. Eight subjects performed single joint vertical arm movements (45° rotation around the shoulder joint) in two opposite directions (upwards and downwards) and at three different speeds (slow, natural and fast). We calculated different parameters of hand acceleration profiles: movement duration (MD), duration to peak acceleration (D PA), duration from peak acceleration to peak velocity (D PA-PV), duration from peak velocity to peak deceleration (D PV-PD), duration from peak deceleration to the movement end (D PD-End), acceleration duration (AD), deceleration duration (DD), peak acceleration (PA), peak velocity (PV), and peak deceleration (PD). While movement durations and amplitudes were similar for upward and downward movements, the temporal structure of acceleration profiles differed between the two directions. More specifically, subjects performed upward movements faster than downward movements; these direction-dependent asymmetries appeared early in the movement (i.e., before PA) and lasted until the moment of PD. Additionally, PA and PV were greater for upward than downward movements. Movement speed also changed the temporal structure of acceleration profiles. The effect of speed and direction on the form of acceleration profiles is consistent with the premise that the CNS optimises motor commands with respect to both gravitational and inertial constraints.  相似文献   

5.
The possibility of muscle activation of passive arm during its cyclic movements, imposed by active movements of contralateral arm or by experimenter was studied, as well as the influence of lower extremities cyclic movements onto arm muscles activity. In addition to that the activity of legs muscles was estimated in dependence on motor task condition for arms. Ten healthy supine subjects carried out opposite movements of arms with and without stepping-like movements of both legs. The experiment included three conditions for arm movements: 1) the active movements of both arms; 2) the active movements of one arm, when other entirely passive arm participated in the movement by force; 3) passive arm movement caused by experimenter. In the condition 2) additional load on active arm was applied (30 N and 60 N). In all three conditions the experiment was carried out with arms movements only or together with legs movements. The capability of passive moving arm muscles activation depended on increasing afferent inflow from muscles of contralateral arm was demonstrated. Emerging electrical activity was modulated in the arms movements cycle and depended on the degree of active arm loading. During combined active movements of arms and legs the reduction of activity in the flexor muscles of shoulder and forearm was observed. Concomitant arms movements increased the magnitude ofelectromiographic bursts during passive stepping-like movements in the most of recorded muscles, and the same increasing was only observed in biceps femoris and tibialis anterior muscles during active legs movement. The increasing of loading of one arm caused essential augmentation of EMG-activity in the majority of recording legs muscles. The data obtained are the additional proof of existence of functionally significant neuronal interaction both between arms and between upper and lower extremities, which is evidently depend on the intraspinal neuronal connections.  相似文献   

6.
Controversy exists regarding whether bimanual skill learning can generalize to unimanual performance. For example, some investigators showed that dynamic adaptation could only partially generalize between bilateral and unilateral movement conditions, while others demonstrated complete generalization of visuomotor adaptation. Here, we identified three potential factors that might have contributed to the discrepancy between the two sets of findings. In our first experiment, subjects performed reaching movements toward eight targets bilaterally with a novel force field applied to both arms, then unilaterally with the force field applied to one arm. Results showed that the dynamic adaptation generalized completely from bilateral to unilateral movements. In our second experiment, the same force field was only applied to one arm during both bilateral and unilateral movements. Results indicated complete transfer again. Finally, our subjects performed reaching movements toward a single target with the force field or a novel visuomotor rotation applied only to one arm during both bilateral and unilateral movements. The reduced breadth of experience obtained during bilateral movements resulted in incomplete transfer, which explains previous findings of limited generalization. These findings collectively suggest a substantial overlap between the neural processes underlying bilateral and unilateral movements, supporting the idea that bilateral training, often employed in stroke rehabilitation, is a valid method for improving unilateral performance. However, our findings also suggest that while the neural representations developed during bilateral training can generalize to facilitate unilateral performance, the extent of generalization may depend on the breadth of experience obtained during bilateral training.  相似文献   

7.
The purpose of this study is to investigate the asymmetry of dominant and non-dominant arms regarding reaction time (RT), velocity, force and power generated during ballistic target-directed movements. Fifty six, right-handed young males performed protractile movements with both arms separately by pushing a joystick towards a target-line as quickly and as accurately as possible. Participants performed 21 repetitions with each hand. The temporal, spatial, kinetic and kinematic parameters were computed. All movements were grouped regarding their accuracy (when joystick fell short, stopped precisely or overreached the target). Each group of movements was analyzed separately and the data obtained was compared across groups. The results showed that although the left arm was less accurate than the right one, it reached the target significantly faster, developing greater average force and power. The forces of acceleration and deceleration of the left arm were greater too. We did not observe a significant lateral difference in RT in situations when the arm fell short of the target, or stopped precisely on the target. It was only when the target was overreached that the left arm displayed a significantly greater RT than the right one. We explain the results from the asymmetry of motor behavior in favor of the influence of both hemispheres in this process.  相似文献   

8.
Opening a door, turning a steering wheel, and rotating a coffee mill are typical examples of human movements that are constrained by the physical environment. The constraints decrease the mobility of the human arm and lead to redundancy in the distribution of actuator forces (either joint torques or muscle forces). Due to this actuator redundancy, there is an infinite number of ways to form a specific arm trajectory. However, humans form trajectories in a unique way. How do humans resolve the redundancy of the constrained motions and specify the hand trajectory? To investigate this problem, we examine human arm movements in a crank-rotation task. To explain the trajectory formation in constrained point-to-point motions, we propose a combined criterion minimizing the hand contact force change and the actuating force change over the course of movement. Our experiments show a close matching between predicted and experimental data.  相似文献   

9.
In this paper, the computational problem of inverse kinematics of arm prehension movements was investigated. How motions of each joint involved in arm movements can be used to control the end-effector (hand) position and orientation was first examined. It is shown that the inverse kinematics problem due to the kinematic redundancy in joint space is ill-posed only at the control of hand orientation but not at the control of hand position. Based upon this analysis, a previously proposed inverse kinematics algorithm (Wang et Verriest, 1998a) to predict arm reach postures was extended to a seven-DOF arm model to predict arm prehension postures using a separate control of hand position and orientation. The algorithm can be either in rule-based form or by optimization through appropriate choice of weight coefficients. Compared to the algebraic inverse kinematics algorithm, the proposed algorithm can handle the non-linearity of joint limits in a straightforward way. In addition, no matrix inverse calculation is needed, thus avoiding the stability and convergence problems often occurring near a singularity of the Jacobian. Since an end-effector motion-oriented method is used to describe joint movements, observed behaviors of arm movements can be easily implemented in the algorithm. The proposed algorithm provides a general frame for arm postural control and can be used as an efficient postural manipulation tool for computer-aided ergonomic evaluation.  相似文献   

10.
Grip force adjustments to changes of object loading induced by external changes of the direction of gravity during discrete arm movements with a grasped object were analyzed during normal and anesthetized finger sensibility. Two subjects were seated upright in a rotatable chair and rotated backwards into a horizontal position during discrete movements with a hand-held instrumented object. The movement direction varied from vertical to horizontal inducing corresponding changes in the direction of gravity, but the orientation of the movement in relation to the body remained unaffected. During discrete vertical movements a maximum of load force occurs early in upward and late in downward movements; during horizontal movements two load force peaks result from both acceleratory and deceleratory phases of the movement. During performance with normal finger sensibility grip force was modulated in parallel with fluctuations of load force during vertical and horizontal movements. The grip force profile adopted to the varying load force profile during the transition from the vertical to the horizontal position. The maximum grip force occurred at the same time of maximum load force irrespective of the movement plane. During both subjects' first experience of digital anesthesia the object slipped from the grasp during rotation to the horizontal plane. During the following trials with anesthetized fingers subjects substantially increased their grip forces, resulting in elevated force ratios between maximum grip and load force. However, grip force was still modulated with the movement-induced load fluctuations and maximum grip force coincided with maximum load force during vertical and horizontal movements. This implies that the elevated force ratio between maximum grip and load force does not alter the feedforward system of grip force control. Cutaneous afferent information from the grasping digits seems to be important for the economic scaling of the grip force magnitude according to the actual loading conditions and for reactive grip force adjustments in response to load perturbations. However, it plays a subordinate role for the precise anticipatory temporal coupling between grip and load forces during voluntary object manipulation.  相似文献   

11.
Grip force adjustments to changes of object loading induced by external changes of the direction of gravity during discrete arm movements with a grasped object were analyzed during normal and anesthetized finger sensibility. Two subjects were seated upright in a rotatable chair and rotated backwards into a horizontal position during discrete movements with a hand-held instrumented object. The movement direction varied from vertical to horizontal inducing corresponding changes in the direction of gravity, but the orientation of the movement in relation to the body remained unaffected. During discrete vertical movements a maximum of load force occurs early in upward and late in downward movements; during horizontal movements two load force peaks result from both acceleratory and deceleratory phases of the movement. During performance with normal finger sensibility grip force was modulated in parallel with fluctuations of load force during vertical and horizontal movements. The grip force profile adopted to the varying load force profile during the transition from the vertical to the horizontal position. The maximum grip force occurred at the same time of maximum load force irrespective of the movement plane. During both subjects' first experience of digital anesthesia the object slipped from the grasp during rotation to the horizontal plane. During the following trials with anesthetized fingers subjects substantially increased their grip forces, resulting in elevated force ratios between maximum grip and load force. However, grip force was still modulated with the movement-induced load fluctuations and maximum grip force coincided with maximum load force during vertical and horizontal movements. This implies that the elevated force ratio between maximum grip and load force does not alter the feedforward system of grip force control. Cutaneous afferent information from the grasping digits seems to be important for the economic scaling of the grip force magnitude according to the actual loading conditions and for reactive grip force adjustments in response to load perturbations. However, it plays a subordinate role for the precise anticipatory temporal coupling between grip and load forces during voluntary object manipulation.  相似文献   

12.
This paper presents a mathematical model for the learning of accurate human arm movements. Its main features are that the movement is the superposition of smooth submovements, the intrinsic deviation of arm movements is considered, visual and kinesthetic feedback are integrated in the motion control, and the movement duration and accuracy are optimized with practice. This model is consistent with the jerky arm movements of infants, and may explain how the adult motion behavior emerges from the infant behavior. Comparison with measurements of adult movements shows that the kinematics of accurate movements are well predicted by the model. Received: 15 May 1997 / Accepted 5 December 1997  相似文献   

13.
A three-dimensional (3-D) arm movement model is presented to simulate kinematic properties and muscle forces in reaching arm movements. Healthy subjects performed reaching movements repetitively either with or without a load in the hand. Joint coordinates were measured. Muscle moment arms, 3-D angular acceleration, and moment of inertias of arm segments were calculated to determine 3-D joint torques. Variances of hand position, arm configuration, and muscle activities were calculated. Ratios of movement variances observed in the two conditions (load versus without load) showed no differences for hand position and arm configuration variances. Virtual muscle force variances for all muscles except deltoid posterior and EMG variances for four muscles increased significantly by moving with the load. The greatly increased variances in muscle activity did not imply equally high increments in kinematic variances. We conclude that enhanced muscle cooperation through synergies helps to stabilize movement at the kinematic level when a load is added.  相似文献   

14.
15.
In this work, we have studied a muscular control system under experimental conditions for analyzing the dynamic behavior of individual muscles and theoretical considerations for elucidating its control strategy. Movement of human limbs is achieved by joint torques and each torque is specified as the sum of torques generated by muscle forces. The behavior of individual muscles is controlled by the neural input which is estimated by means of an electromyogram (EMG). In this study, the EMGs for a flexor and an extensor are measured in elbow joint movements and the dynamic behavior of individual muscles is analyzed. As a result, it is verified that both a flexor and an extensor are activated throughout the entire movement and that the activation of muscles is controlled above a specific limit independent of the hand-held load. Subsequently, a system model for simulating elbow joint movements is developed which includes the muscle dynamic relationship between the neural input and the isometric force. The minimum limit of muscle activation that has been confirmed in experiments is provided as a constraint of the neural input and the criterion is defined by a derivative of the isometric force of individual muscles. The optimal trajectories formulated under these conditions are quantitatively compared with the experimentally observed trajectories, and the control strategy of a muscular control system is studied. Finally, a muscular control system in multi-joint arm movements is discussed with regard to the comparative analysis between observed and optimal trajectories. Received: 7 April 1999 / Accepted in revised form: 27 July 1999  相似文献   

16.
Although arm movements play an important role in everyday life, there is still a lack of procedures for the analysis of upper extremity movement. The main problems for standardizing the procedure are the variety of arm movements and the difficult assessment of external hand forces. The first problem requires the predefinition of motions, and the second one is the prerequisite for calculation of net joint forces and torques arising during motion. A new methodology for measuring external forces during prespecified, reproducible upper extremity movement has been introduced and validated. A robot-arm has been used to define the motion and 6 degrees of freedom (DoF) force sensor has been attached to it for acquiring the external loads acting on the arm. Additionally, force feedback has been used to help keeping external loads constant. Intra-individual reproducibility of joint angles was estimated by using correlation coefficients to compare a goal-directed movement with robot-guided task. Inter-individual reproducibility has been evaluated by using the mean standard deviation of joint angles for both types of movement. The results showed that both inter- and intra-individual reproducibility have significantly improved by using the robot. Also, the effectiveness of using force feedback for keeping a constant external load has been shown. This makes it possible to estimate net joint forces and torques which are important biomechanical information in motion analysis.  相似文献   

17.
Analysis of an optimal control model of multi-joint arm movements   总被引:1,自引:0,他引:1  
 In this paper, we propose a model of biological motor control for generation of goal-directed multi-joint arm movements, and study the formation of muscle control inputs and invariant kinematic features of movements. The model has a hierarchical structure that can determine the control inputs for a set of redundant muscles without any inverse computation. Calculation of motor commands is divided into two stages, each of which performs a transformation of motor commands from one coordinate system to another. At the first level, a central controller in the brain accepts instructions from higher centers, which represent the motor goal in the Cartesian space. The controller computes joint equilibrium trajectories and excitation signals according to a minimum effort criterion. At the second level, a neural network in the spinal cord translates the excitation signals and equilibrium trajectories into control commands to three pairs of antagonist muscles which are redundant for a two-joint arm. No inverse computation is required in the determination of individual muscle commands. The minimum effort controller can produce arm movements whose dynamic and kinematic features are similar to those of voluntary arm movements. For fast movements, the hand approaches a target position along a near-straight path with a smooth bell-shaped velocity. The equilibrium trajectories in X and Y show an ‘N’ shape, but the end-point equilibrium path zigzags around the hand path. Joint movements are not always smooth. Joint reversal is found in movements in some directions. The excitation signals have a triphasic (or biphasic) pulse pattern, which leads to stereotyped triphasic (or biphasic) bursts in muscle control inputs, and a dynamically modulated joint stiffness. There is a fixed sequence of muscle activation from proximal muscles to distal muscles. The order is preserved in all movements. For slow movements, it is shown that a constant joint stiffness is necessary to produce a smooth movement with a bell-shaped velocity. Scaled movements can be reproduced by varying the constraints on the maximal level of excitation signals according to the speed of movement. When the inertial parameters of the arm are altered, movement trajectories can be kept invariant by adjusting the pulse height values, showing the ability to adapt to load changes. These results agree with a wide range of experimental observations on human voluntary movements. Received: 4 December 1995 / Accepted in revised form: 17 September 1996  相似文献   

18.
To produce skilled movements, the brain flexibly adapts to different task requirements and movement contexts. Two core abilities underlie this flexibility. First, depending on the task, the motor system must rapidly switch the way it produces motor commands and how it corrects movements online, i.e. it switches between different (feedback) control policies. Second, it must also adapt to environmental changes for different tasks separately. Here we show these two abilities are related. In a bimanual movement task, we show that participants can switch on a movement-by-movement basis between two feedback control policies, depending only on a static visual cue. When this cue indicates that the hands control separate objects, reactions to force field perturbations of each arm are purely unilateral. In contrast, when the visual cue indicates a commonly controlled object, reactions are shared across hands. Participants are also able to learn different force fields associated with a visual cue. This is however only the case when the visual cue is associated with different feedback control policies. These results indicate that when the motor system can flexibly switch between different control policies, it is also able to adapt separately to the dynamics of different environmental contexts. In contrast, visual cues that are not associated with different control policies are not effective for learning different task dynamics.  相似文献   

19.
The preference for in-phase association of coupled cyclic limbs movements is well described (mirror-symmetrical patterns) and this is demonstrated by the ease of performing in-phase movements compared to anti-phase ones. The hypothesis of this study is that the easiest movement patterns are those with minor postural activity. The aim of this study was to describe postural activity in standing subjects in the sagittal and frontal planes during the execution of three upper limbs tasks (single arm, in-phase, anti-phase) at four different frequencies (from 0.6 to 1.2 Hz).We employed six infrared cameras for recording kinematics information, a force platform for measuring forces exerted on the ground, and a system for surface electromyography (SEMG). Outcome measures were: upper limb range of movement and relative-phase, centre of pressure displacement (COP), screw torque (Tz) exerted on the ground, and SEMG recordings of postural muscles (adductor longus, gluteus medius, rectus femoris, and biceps femoris).Our results show that in both the planes the in-phase task resulted in less COP displacement, torque production, and postural muscles involvement than the anti-phase and single arm tasks. This reduced need of postural control could explain the ease of performing in-phase coupled limb movements compared with anti-phase movements.  相似文献   

20.
It has been widely claimed that linear models of the neuromuscular apparatus give very inaccurate approximations of human arm reaching movements. The present paper examines this claim by quantifying the contributions of the various non-linear effects of muscle force generation on the accuracy of linear approximation. We performed computer simulations of a model of a two-joint arm with six monarticular and biarticular muscles. The global actions of individual muscles resulted in a linear dependence of the joint torques on the joint angles and angular velocities, despite the great non-linearity of the muscle properties. The effect of time delay in force generation is much more important for model accuracy than all the non-linear effects, while ignoring this time delay in linear approximation results in large errors. Thus, the viscosity coefficients are rather underestimated and some of them can even be paradoxically estimated to be negative. Similarly, our computation showed that ignoring the time delay resulted in large errors in the estimation of the hand equilibrium trajectory. This could explain why experimentally estimated hand equilibrium trajectories may be complex, even during a simple reaching movement. The hand equilibrium trajectory estimated by a linear model becomes simple when the time delay is taken into account, and it is close to that actually used in the non-linear model. The results therefore provide a theoretical basis for estimating the hand equilibrium trajectory during arm reaching movements and hence for estimating the time course of the motor control signals associated with this trajectory, as set out in the equilibrium point hypothesis. Received: 17 February 1999 / Accepted in revised form: 22 October 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号