首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Choleragen activates adenylate cyclase in human skin fibroblasts by catalyzing the ADP-ribosylation of the 42,000 and 47,000 dalton guanyl nucleotide-binding regulatory components (G) of adenylate cyclase. The ADP-ribose linkage to 42,000 and 47,000 dalton proteins was stable at 30°C for 1 h with or without GTP, whereas GTP was required to stabilize activity of the G proteins. In human erythrocytes, choleragen catalyzed the ADP-ribosylation of only a 42,000 dalton G. The ADP-ribosyl-protein linkage was stable for 1 h at 30°C whether or not GTP was present, despite a rapid loss of G activity in the absence of GTP. Inactivation of choleragen-activated G in both the human fibroblast and human erythrocyte is, therefore, not secondary to the de-ADP-ribosylation of specifically labeled G subunits.  相似文献   

5.
Choleragen exerts its effect on cells through activation of adenylate cyclase. Choleragen initially interacts with cells through binding of the B subunit of the toxin to the ganglioside GM1 on the cell surface. Subsequent events are less clear. Patching or capping of toxin on the cell surface may be an obligatory step in choleragen action. Studies in cell-free systems have demonstrated that activation of adenylate cyclase by choleragen requires NAD. In addition to NAD, requirements have been observed for ATP, GTP, and calcium-dependent regulatory protein. GTP also is required for the expression of choleragen-activated adenylate cyclase. In preparations from turkey erythrocytes, choleragen appears to inhibit an isoproterenol-stimulated GTPase. It has been postulated that by decreasing the activity of a specific GTPase, choleragen would stabilize a GTP-adenylate cyclase complex and maintain the cyclase in an activated state. Although the holotoxin is most effective in intact cells, with the A subunit having 1/20th of its activity and the B subunit (choleragenoid) being inactive, in cell-free systems the A subunit, specifically the A1 fragment, is required for adenylate cyclase activation. The B protomer is inactive. Choleragen, the A subunit, or A1 fragment under suitable conditions hydrolyzes NAD to ADP-ribose and nicotinamide (NAD glycohydrolase activity) and catalyzes the transfer of the ADP-ribose moiety of NAD to the guandino group of arginine (ADP-ribosyltransferase activity). The NAD glycohydrolase activity is similar to that exhibited by other NAD-dependent bacterial toxins (diphtheria toxin, Pseudomonas exotoxin A), which act by catalyzing the ADP-ribosylation of a specific acceptor protein. If the ADP-ribosylation of arginine is a model for the reaction catalyzed by choleragen in vivo, then arginine is presumably an analog of the amino acid which is ADP-ribosylated in the acceptor protein. It is postulated that choleragen exerts its effects on cells through the NAD-dependent ADP-ribosylation of an arginine or similar amino acid in either the cyclase itself or a regulatory protein of the cyclase system.  相似文献   

6.
7.
M Noda  S C Tsai  R Adamik  D A Bobak  J Moss  M Vaughan 《Biochemistry》1989,28(19):7936-7940
Cholera toxin catalyzes the ADP-ribosylation that results in activation of the stimulatory guanine nucleotide-binding protein of the adenylyl cyclase system, known as Gs. The toxin also ADP-ribosylates other proteins and simple guanidino compounds and auto-ADP-ribosylates its AI protein (CTA1). All of the ADP-ribosyltransferase activities of CTAI are enhanced by 19-21-kDa guanine nucleotide-binding proteins known as ADP-ribosylation factors, or ARFs. CTAI contains a single cysteine located near the carboxy terminus. CTAI was immobilized through this cysteine by reaction with iodoacetyl-N-biotinyl-hexylenediamine and binding of the resulting biotinylated protein to avidin-agarose. Immobilized CTAI catalyzed the ARF-stimulated ADP-ribosylation of agmatine. The reaction was enhanced by detergents and phospholipid, but the fold stimulation by purified sARF-II from bovine brain was considerably less than that observed with free CTA. ADP-ribosylation of Gsa by immobilized CTAI, which was somewhat enhanced by sARF-II, was much less than predicted on the basis of the NAD:agmatine ADP-ribosyltransferase activity. Immobilized CTAI catalyzed its own auto-ADP-ribosylation as well as the ADP-ribosylation of the immobilized avidin and CTA2, with relatively little stimulation by sARF-II. ADP-ribosylation of CTA2 by free CTAI is minimal. These observations are consistent with the conclusion that the cysteine near the carboxy terminus of the toxin is not critical for ADP-ribosyltransferase activity or for its regulation by sARF-II. Biotinylation and immobilization of the toxin through this cysteine may, however, limit accessibility to Gsa or SARF-II, or perhaps otherwise reduce interaction with these proteins whether as substrates or activator.  相似文献   

8.
9.
A new method of concentration and purification developed allows to obtain choleragen and choleragenoid preparations, homogeneous in the immunochemical analysis with regard to the culturing of vibrios producing these substances on the available nonsynthetic nutrient medium. Crystalline choleragen and choleragenoid preparations were obtained from highly purified samples. Choleragen possessed enterotoxic and skin premeability factors; choleragenoid shows no biological activity.  相似文献   

10.
11.
12.
Choleragen (cholera toxin) activates adenylate cyclase by catalyzing ADP-ribosylation of Gs alpha, the stimulatory guanine nucleotide-binding protein. It was recently found (Tsai, S.-C., Noda, M., Adamik, R., Moss, J., and Vaughan, M. (1987) Proc. Natl. Acad. Sci. U. S. A. 84, 5139-5142) that a bovine brain membrane protein known as ADP-ribosylation factor or ARF, which enhances ADP-ribosylation of Gs alpha, also increases the GTP-dependent NAD:arginine and NAD:protein ADP-ribosyltransferase, NAD glycohydrolase, and auto-ADP-ribosylation activities of choleragen. We report here the purification and characterization of two soluble proteins from bovine brain that similarly enhance the Gs alpha-dependent and independent ADP-ribose transfer reactions catalyzed by toxin. Like membrane ARF, both soluble factors are 19-kDA proteins dependent on GTP or GTP analogues for activity. Maximal ARF effects were observed at a molar ratio of less than 2:1, ARF/toxin A subunit. Dimyristoyl phosphatidylcholine was necessary for optimal ADP-ribosylation of Gs alpha but inhibited auto-ADP-ribosylation of the choleragen A1 subunit and NAD:agmatine ADP-ribosyltransferase activity. It appears that the soluble factors directly activate choleragen in a GTP-dependent fashion. The relationships of the ARF proteins to the ras oncogene products and to the family of guanine nucleotide-binding regulatory proteins that includes Gs alpha remains to be determined.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号