共查询到20条相似文献,搜索用时 0 毫秒
1.
The superfamily 2 bacterial helicase, RecG, is a monomeric enzyme with a role in DNA repair by reversing stalled replication forks. The helicase must act specifically and rapidly to prevent replication fork collapse. We have shown that RecG binds tightly and rapidly to four-strand oligonucleotide junctions, which mimic a stalled replication fork. The helicase unwinds such DNA junctions with a step-size of approximately four bases per ATP hydrolyzed. To gain an insight into this mechanism, we used fluorescent stopped-flow and quenched-flow to measure individual steps within the ATPase cycle of RecG, when bound to a DNA junction. The fluorescent ATP analogue, mantATP, was used throughout to determine the rate limiting steps, effects due to DNA and the main states in the cycle. Measurements, when possible, were also performed with unlabeled ATP to confirm the mechanism. The data show that the chemical step of hydrolysis is the rate limiting step in the cycle and that this step is greatly accelerated by bound DNA. The ADP release rate is similar to the cleavage rate, so that bound ATP and ADP would be the main states during the ATP cycle. Evidence is provided that the main structural rearrangements, which bring about DNA unwinding, are linked to these states. 相似文献
2.
The catalytically active form of histidinol dehydrogenase from Salmonella typhimurium. 总被引:2,自引:0,他引:2
下载免费PDF全文

The active-enzyme-sedimentation procedure was used to identify the catalytically competent form of histidinol dehydrogenase (EC 1.1.1.23) isolated from Salmonella typhimurium. At pH 9.4 the active species has a sedimentation coefficient S20,W of 5.4S, indicating that the dimer with a mol.wt. of approx. 83 000 is the enzymically active form. 相似文献
3.
4.
RecG is a DNA helicase involved in the repair of damage at a replication fork and catalyzes the reversal of the fork to a point beyond the damage in the template strand. It unwinds duplex DNA in reactions that are coupled to ATP hydrolysis. The kinetic mechanism of duplex DNA unwinding by RecG was analyzed using a quantitative fluorescence assay based on the process of contact quenching between Cy3 and Dabcyl groups attached to synthetic three-way DNA junctions. The data show that the protein moves at a rate of 26 bp s(-1) along the duplex DNA during the unwinding process. RecG ATPase activity during translocation indicates a constant rate of 7.6 s(-1), measured using a fluorescent phosphate sensor, MDCC-PBP. These two rates imply a movement of approximately 3 bp per ATP hydrolyzed. We demonstrate in several trapping experiments that RecG remains attached to DNA after translocation to the end of the arm of the synthetic DNA junction. ATPase activity continues after translocation is complete. Dissociation of RecG from the product DNA occurs only very slowly, suggesting strong interactions between them. The data support the idea that interactions of the duplex template arm with the protein are the major sites of binding and production of translocation. 相似文献
5.
A cysteine proteinase from purulent sputum was partially purified by a method involving affinity chromatography on Sepharose-aminohexanoylphenylalanylglycinaldehyde semicarbazone. It was immunologically related to lysosomal cathepsin B from human liver and was similar in many, but not all, other aspects. It was catalytically active, as demonstrated by active-site-directed radioiodination, and hydrolysed three cathepsin B substrates, two with Km values similar to those of lysosomal cathepsin B. In addition, the rates of inactivation of the sputum and lysosomal forms of the enzyme by L-3-carboxy-2,3-transepoxypropionyl-leucylamido(4-guanidino) butane (Compound E-64) were very similar. However, the sputum enzyme differed from lysosomal cathepsin B in the following respects. Inhibition by chicken cystatin was much weaker for sputum cathepsin B than for the lysosomal enzyme. Sputum cathepsin B had greater stability at pH 7.5 and a higher apparent Mr, even after deglycosylation, than lysosomal cathepsin B. We conclude that the form of cathepsin B found in sputum is probably a truncated form of human procathepsin B, with some differences in properties that could be of physiological importance. 相似文献
6.
The Escherichia coli RecG protein is a unique junction-specific helicase involved in DNA repair and recombination. The C-terminus of RecG contains motifs conserved throughout a wide range of DNA and RNA helicases and it is thought that this C-terminal half of RecG contains the helicase active site. However, the regions of RecG which confer junction DNA specificity are unknown. To begin to assign structure-function relationships within RecG, a series of N- and C-terminal deletions have been engineered into the protein, together with an N-terminal histidine tag fusion peptide for purification purposes. Junction DNA binding, unwinding and ATP hydrolysis were disrupted by mutagenesis of the N-terminus. In contrast, C-terminal deletions moderately reduced junction DNA binding but almost abolished unwinding. These data suggest that the C-terminus does contain the helicase active site whereas the N-terminus confers junction DNA specificity. 相似文献
7.
Mark Paetzel Maia Chernaia Natalie Strynadka William Tschantz Gnoqing Cao Ross E. Dalbey Michael N. G. James 《Proteins》1995,23(1):122-125
Leader peptidase, a novel serine protease in Escherichia coli, catalyzes the cleavage of the amino-terminal leader sequences from exported proteins. It is an integral membrane protein containing two transmembrane segments with its carboxy-terminal catalytic domain residing in the periplasmic space. Here, we report a procedure for the purification and the crystallization of a soluble non-membrane-bound form of leader peptidase (Δ2-75). Crystals were obtained by the sitting-drop vapor diffusion technique using ammonium dihydrogen phosphate as the precipitant. Interestingly, we have found that the presence of the detergent Triton X-100 is required to obtain crystals sufficiently large for X-ray analysis. The crystals belong to the tetragonal space group P42212, with unit cell dimensions of a = b = 115 Å and c = 100 Å, and contain 2 molecules per asymmetric unit. This is the first report of the crystallization of a leader (or signal) peptidase. © 1995 Wiley-Liss, Inc. 相似文献
8.
We report the accumulation of an acid unfolded (UA) state and a molten globule (MG) state in the acid induced unfolding pathway of unmodified preparation of stem bromelain (SB) [EC 3.4.22.32], a cystein protease from Ananas cosmosus. The conformation of SB was examined over the pH 0.8-3 regions by circular dichroism, tryptophanyl fluorescence, 1-anilino-8-naphthalenesulfonate (ANS) binding, and tryptophanyl fluorescence quenching study. The pH 0.8-3.0 regions were selected to study the acid induced unfolding of SB because no autolysis of the enzyme was observed in these pH regions. The results show that SB at pH 2.0 is maximally unfolded and characterizes by significant loss of secondary structure ( approximately 80%) and almost complete loss of tertiary contacts. However, on further decreasing the pH to 0.8 a MG state was observed, with secondary structure content similar to that of native protein but no tertiary structure. We also made a comparative study of these acid induced states of SB with acid induced states of modified stem bromelain (mSB), reported by our group earlier [Eur. J. Biochem. (2002) 269, 47-52]. We have shown that modification of SB for inactivation significantly affects the N-UA transition but neither affects the UA-MG transition nor the stability of the MG state. 相似文献
9.
Characterisation of Bacillus stearothermophilus PcrA helicase: evidence against an active rolling mechanism. 总被引:2,自引:0,他引:2
下载免费PDF全文

PcrA from Bacillus stearothermophilus is a DNA helicase for which, despite the availability of a crystal structure, there is very little biochemical information. We show that the enzyme has a broad nucleotide specificity, even being able to hydrolyse ethenonucleotides, and is able to couple the hydrolysis to unwinding of DNA substrates. In common with the Escherichia coli helicases Rep and UvrD, PcrA is a 3'-5' helicase but at high protein concentrations it can also displace a substrate with a 5' tail. However, in contrast to Rep and UvrD, we do not see any evidence for dimerisation of the protein even in the presence of DNA. The enzyme shows a specificity for the DNA substrate in gel mobility assays, with the preferred substrate being one with both single and double stranded regions of DNA. We propose that these data, together with existing structural evidence, support an inchworm rather than a rolling model for 3'-5' helicase activity. 相似文献
10.
Briggs GS Mahdi AA Weller GR Wen Q Lloyd RG 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2004,359(1441):49-59
Recent studies in Escherichia coli indicate that the interconversion of DNA replication fork and Holliday junction structures underpins chromosome duplication and helps secure faithful transmission of the genome from one generation to the next. It facilitates interplay between DNA replication, recombination and repair, and provides means to rescue replication forks stalled by lesions in or on the template DNA. Insight into how this interconversion may be catalysed has emerged from genetic, biochemical and structural studies of RecG protein, a member of superfamily 2 of DNA and RNA helicases. We describe how a single molecule of RecG might target a branched DNA structure and translocate a single duplex arm to drive branch migration of a Holliday junction, interconvert replication fork and Holliday junction structures and displace the invading strand from a D loop formed during recombination at a DNA end. We present genetic evidence suggesting how the latter activity may provide an efficient pathway for the repair of DNA double-strand breaks that avoids crossing over, thus facilitating chromosome segregation at cell division. 相似文献
11.
The Escherichia coli UvrD protein is a 3' to 5' SF1 DNA helicase involved in methyl-directed mismatch repair and nucleotide excision repair of DNA. We have characterized in vitro UvrD-catalyzed unwinding of a series of 18 bp duplex DNA substrates with 3' single-stranded DNA (ssDNA) tails ranging in length from two to 40 nt. Single turnover DNA-unwinding experiments were performed using chemical quenched flow methods, as a function of both [UvrD] and [DNA] under conditions such that UvrD-DNA binding is stoichiometric. Although a single UvrD monomer binds tightly to the single-stranded/double-stranded DNA (dsDNA) junction if the 3' ssDNA tail is at least four nt, no unwinding was observed for DNA substrates with tail-lengths =8 nt, even at high [UvrD]/[DNA] ratios. Unwinding is observed for DNA substrates with 3' ssDNA tail lengths >/=12 nt, and the unwinding amplitude displays a sigmoidal dependence on [UvrD(tot)]/[DNA(tot)]. Quantitative analysis of these data indicates that a single UvrD monomer bound at the ssDNA/dsDNA junction of any DNA substrate, independent of 3' ssDNA tail length, is not competent to fully unwind even a short 18 bp duplex DNA, and that two UvrD monomers must bind the DNA substrate in order to form a complex that is able to unwind short DNA substrates in vitro. Other proteins, including a mutant UvrD with no ATPase activity as well as a monomer of the structurally homologous E.coli Rep helicase, cannot substitute for the second UvrD monomer, suggesting a specific interaction between two UvrD monomers and that both must be able to hydrolyze ATP. Initiation of DNA unwinding in vitro appears to require a dimeric UvrD complex in which one subunit is bound to the ssDNA/dsDNA junction, while the second subunit is bound to the 3' ssDNA tail. 相似文献
12.
13.
Synthesis of catalytically active form III ribulose 1,5-bisphosphate carboxylase/oxygenase in archaea
下载免费PDF全文

Ribulose 1,5 bisphosphate carboxylase/oxygenase (RubisCO) catalyzes the biological reduction and assimilation of carbon dioxide gas to organic carbon; it is the key enzyme responsible for the bulk of organic matter found on earth. Until recently it was believed that there are only two forms of RubisCO, form I and form II. However, the recent completion of several genome-sequencing projects uncovered open reading frames resembling RubisCO in the third domain of life, the archaea. Previous work and homology comparisons suggest that these enzymes represent a third form of RubisCO, form III. While earlier work indicated that two structurally distinct recombinant archaeal RubisCO proteins catalyzed bona fide RubisCO reactions, it was not established that the rbcL genes of anaerobic archaea can be transcribed and translated to an active enzyme in the native organisms. In this report, it is shown not only that Methanococcus jannaschii, Archaeoglobus fulgidus, Methanosarcina acetivorans, and Methanosarcina barkeri possess open reading frames with the residues required for catalysis but also that the RubisCO protein from these archaea accumulates in an active form under normal growth conditions. In addition, the form III RubisCO gene (rbcL) from M. acetivorans was shown to complement RubisCO deletion strains of Rhodobacter capsulatus and Rhodobacter sphaeroides under both photoheterotrophic and photoautotrophic growth conditions. These studies thus indicate for the first time that archaeal form III RubisCO functions in a physiologically significant fashion to fix CO(2). Furthermore, recombinant M. jannaschii, M. acetivorans, and A. fulgidus RubisCO possess unique properties with respect to quaternary structure, temperature optima, and activity in the presence of molecular oxygen compared to the previously described Thermococcus kodakaraensis and halophile proteins. 相似文献
14.
E R Hall G L Townsend W M Tuan D L Venton 《Prostaglandins, leukotrienes, and essential fatty acids》1988,32(2):51-56
Thromboxane synthase has been immobilized on phenyl-Sepharose beads by adsorption. The immobilized enzyme is catalytically active and has a slightly lower apparent Km for PGH2 than the detergent-solubilized enzyme. However, both imidazole- and pyridine-based inhibitors are equally effective in inhibiting the immobilized and solubilized enzyme preparations. Although the immobilized enzyme appears to be less stable than the solubilized enzyme it is sufficiently stable to be used as a model for studying the properties of the enzyme. 相似文献
15.
E Sh Iakutova A N Osipov O V Kostenko I Arnkhol'd K Arnol'd Iu A Vladimirov 《Biofizika》1992,37(6):1021-1028
Interaction of hemoglobin with hypochlorite (OCI-) induces changes in hemoglobin absorption spectra resulting in Soret band decrease and shift similar to those observed under the action of hydrogen peroxide (H2O2). Hemoglobin decomposition is accompanied by free iron release, as estimated by coloured iron-phenanthroline complex formation. The released iron is catalytically active: the incubation of hemoglobin with H2O2, OCl- or activated neutrophils increases the intensity of H2O2-dependent chemiluminescence of hemoglobin. In both reactions OCl- was more efficient than H2O2. These results show that hemoglobin can serve as a source of catalytically active ("free") iron in the reaction with OCl- and with H2O2. 相似文献
16.
The active form of Xp54 RNA helicase in translational repression is an RNA-mediated oligomer 总被引:4,自引:2,他引:4
Previously, we reported that in clam oocytes, cytoplasmic polyadenylation element-binding protein (CPEB) co-immunoprecipitates with p47, a member of the highly conserved RCK family of RNA helicases which includes Drosophila Me31B and Saccharomyces cerevisiae Dhh1. Xp54, the Xenopus homologue, with helicase activity, is a component of stored mRNP. In tethered function assays in Xenopus oocytes, we showed that MS2–Xp54 represses the translation of non-adenylated firefly luciferase mRNAs and that mutations in two core helicase motifs, DEAD and HRIGR, surprisingly, activated translation. Here we show that wild-type MS2–Xp54 tethered to the reporter mRNA 3′-untranslated region (UTR) represses translation in both oocytes and eggs in an RNA-dependent complex with endogenous Xp54. Injection of mutant helicases or adenylated reporter mRNA abrogates this association. Thus Xp54 oligomerization is a hallmark of translational repression. Xp54 complexes, which also contain CPEB and eIF4E in oocytes, change during meiotic maturation. In eggs, CPEB is degraded and, while eIF4E still interacts with Xp54, this interaction becomes RNA dependent. Supporting evidence for RNA-mediated oligomerization of endogenous Xp54, and RNA-independent association with CPEB and eIF4E in oocytes was obtained by gel filtration. Altogether, our data are consistent with a model in which the active form of the Xp54 RNA helicase is an oligomer in vivo which, when tethered, via either MS2 or CPEB to the 3′UTR, represses mRNA translation, possibly by sequestering eIF4E from the translational machinery. 相似文献
17.
The PriA protein of Escherichia coli plays a key role in the rescue of replication forks stalled on the template DNA. One attractive model of rescue relies on homologous recombination to establish a new fork via PriA-mediated loading of the DnaB replicative helicase at D loop intermediates. We provide genetic and biochemical evidence that PriA helicase activity can also rescue a stalled fork by an alternative mechanism that requires manipulation of the fork before loading of DnaB on the lagging strand template. This direct rescue depends on RecG, which unwinds forks and Holliday junctions and interconverts these structures. The combined action of PriA and RecG helicase activities may thus avoid the potential dangers of rescue pathways involving fork breakage and recombination. 相似文献
18.
Fischer H Stichenwirth M Dockal M Ghannadan M Buchberger M Bach J Kapetanopoulos A Declercq W Tschachler E Eckhart L 《FEBS letters》2004,577(3):446-450
Caspase-14, a cysteine protease with restricted tissue distribution, is highly expressed in differentiated epidermal keratinocytes. Here, we extracted soluble proteins from stratum corneum (SC) of human epidermis and demonstrate that the extract cleaves tetrapeptide caspase substrates. The activity decreased to below 10% when caspase-14 was removed by immunodepletion showing that caspase-14 is the predominant caspase in SC. In contrast to normal SC, where caspase-14 was present exclusively in its processed form, incompletely matured SC of parakeratotic skin from psoriasis and seborrheic dermatitis contained both procaspase-14 and caspase-14 subunits. Fractionation of extract from parakeratotic SC revealed that the peak caspase activity coeluted with processed caspase-14 but not with procaspase-14. Our results suggest that during regular terminal keratinocyte differentiation, endogenous procaspase-14 is converted to caspase-14 subunits that are catalytically active in the outermost layers of normal human skin. 相似文献
19.
RecG differs from most helicases acting on branched DNA in that it is thought to catalyze unwinding via translocation of a monomer on dsDNA, with a wedge domain facilitating strand separation. Conserved phenylalanines in the wedge are shown to be critical for DNA binding. When detached from the helicase domains, the wedge bound a Holliday junction with high affinity but failed to bind a replication fork structure. Further stabilizing contacts are identified in full-length RecG, which may explain fork binding. Detached from the wedge, the helicase region unwound junctions but had extremely low substrate affinity, arguing against the "classical inchworm" mode of translocation. We propose that the processivity of RecG on branched DNA substrates is dependent on the ability of the wedge to establish strong binding at the branch point. This keeps the helicase motor in contact with the substrate, enabling it to drive dsDNA translocation with high efficiency. 相似文献
20.
A surfactant-lactoperoxidase (LPO) complex catalytically active in organic solvents was developed by the emulsion coating method. The oxidation of 2,6-dimethoxyphenol (2,6-DMP) was conducted by the surfactant-LPO complex in organic media. The LPO complex efficiently catalyzed the oxidation of 2,6-DMP in various organic solvents, although lyophilized LPO did not display the catalytic activity at all. To optimize the preparation and reaction conditions for the surfactant-LPO complex, we examined the effects of pH value in the water pools of W/O emulsions, kinds of oxidants, and the nature of organic solvents on the oxidation reaction. Its optimum activity was obtained when the pH value of the aqueous enzyme solution was adjusted to ca. 8 at the preparation stage. The LPO complex exhibited the highest catalytic activity in chloroform when H(2)O(2) was employed as the oxidant. Furthermore, the storage stability of the surfactant-LPO complex was far better than that of the surfactant-horseradish peroxidase complex. This high storage stability of the LPO complex will be a benefit for industrial usage of peroxidases. 相似文献