首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
3.
4.
5.
AimsPrevious studies have shown that isorhamnetin has anti-adipogenic effects in mouse 3T3-L1 cells. This study was conducted to elucidate the inhibitory mechanisms of isorhamnetin during adipogenic differentiation of human adipose tissue-derived stem cells (hAMSCs).Main methodsThe effect of isorhamnetin on adipogenic differentiation of hAMSCs was quantified by Oil Red O staining and a triglyceride assay. In addition, real-time PCR and Western blot were used to determine the expression of adipogenesis-related genes.Key findingsIsorhamnetin inhibited the adipocyte differentiation of hAMSCs. Additionally, when the effects of Wnt antagonists that promote adipogenesis were evaluated, isorhamnetin was found to down-regulate the mRNA levels of sFRP1 and Dkk1, but had no effect on the mRNA levels of sFRP2, sFRP3, sFRP4 and Dkk3. Isorhamnetin also inhibited the expression of Wnt receptor and co-receptor genes. Furthermore, isorhamnetin increased the protein levels of β-catenin, an effector molecule of Wnt signaling, but had no effect on the mRNA levels of β-catenin. The phosphorylation level of GSK 3β was also increased by isorhamnetin. These results were confirmed by the fact that the expression of c-myc, cyclin D1 and PPARδ, which are target genes of β-catenin, was upregulated by isorhamnetin. Moreover, isorhamnetin reduced the mRNA expression levels of C/EBPα and PPARγ, which are known to be inhibited by c-myc or by cyclin D1 and PPARδ, respectively.SignificanceOur results indicate that isorhamnetin inhibits the adipogenic differentiation of hAMSCs and that its mechanisms are mediated by the stabilization of β-catenin.  相似文献   

6.
In neural crest cell development, the expression of the cell adhesion proteins cadherin-7 and cadherin-11 commences after delamination of the neural crest cells from the neuroepithelium. The canonical Wnt signaling pathway is known to drive this delamination step and is a candidate for inducing expression of these cadherins at this time. This project was initiated to investigate the role of canonical Wnt signaling in the expression of cadherin-7 and cadherin-11 by treating neural crest cells with Wnt3a ligand. Expression of cadherin-11 was first confirmed in the neural crest cells for the chicken embryo. The changes in the expression level of cadherin-7 and -11 following the treatment with Wnt3a ligand were studied using real-time RT-PCR and immunostaining. Statistically significant up-regulation in the mRNA expression of cadherin-7 and cadherin-11 and in the amount of cadherin-7 and cadherin-11 protein found in cell-cell interfaces between neural crest cells was observed in response to Wnt, demonstrating that cadherin-7 and cadherin-11 expressed by the migrating neural crest cells can be regulated by the canonical Wnt pathway.  相似文献   

7.
Song Y  Yang QX  Zhang F  Meng F  Li H  Dong Y  Han A 《Cancer epidemiology》2012,36(2):e116-e121
Aim: To investigate the role of β-catenin in pathogenesis of nasopharyngeal carcinoma (NPC). Methods: Cellular proliferation, apoptosis, matrix penetration assay, and western blotting were employed to determine cell biological changes in NPC cell lines transfected with β-catenin siRNA. Immunohistochemistry staining was used to detect β-catenin and Ki-67 expression in NPC tissue. Results: β-Catenin was upregulated in NPC cell lines and tissues compared with chronic nasopharyngitis tissue. β-Catenin knockdown dramatically inhibited cellular growth, migration and invasion, but induced apoptosis of NPC cells. Further study showed that downstream genes of β-catenin signaling pathway including cyclin D1, c-Myc, MMP2 and MMP9 expression were suppressed in NPC cell lines transfected with β-catenin siRNA. Conclusion: Targeting β-catenin signaling pathway may be a noval strategy for NPC therapy.  相似文献   

8.
The activation of developmental signaling pathways such as Notch, Hedgehog and Wnt has implications in the onset and progression of numerous types of cancer. Consequently, targeting of such pathways is considered an attractive therapeutic approach. Inhibition of the Wnt signaling cascade proves to be complicated, in part, due to the lack of druggable pathway components. The central hub in Wnt signaling is the protein β-catenin, which is involved in numerous protein–protein interactions. In general, the inhibition of protein–protein interactions is challenging in particular with binding interfaces lacking pronounced hydrophobic pockets. Herein, we give an overview of β-catenin–protein interactions, and we review active agents that were reported to inhibit canonical Wnt signaling via direct targeting of β-catenin.  相似文献   

9.
10.
Prostaglandins (PGs) are signaling lipids derived from arachidonic acid (AA), which is metabolized by cyclooxygenase (COX)-1 or 2 and class-specific synthases to generate PGD2, PGE2, PGF, PGI2 (prostacyclin), and thromboxane A2. PGs signal through G-protein coupled receptors (GPCRs) and are important modulators of an array of physiological functions, including systemic inflammation and insulin secretion from pancreatic islets. The role of PGs in β-cell function has been an active area of interest, beginning in the 1970s. Early studies demonstrated that PGE2 inhibits glucose-stimulated insulin secretion (GSIS), although more recent studies have questioned this inhibitory action of PGE2. The PGE2 receptor EP3 and one of the G-proteins that couples to EP3, GαZ, have been identified as negative regulators of β-cell proliferation and survival. Conversely, PGI2 and its receptor, IP, play a positive role in the β-cell by enhancing GSIS and preserving β-cell mass in response to the β-cell toxin streptozotocin (STZ). In comparison to PGE2 and PGI2, little is known about the function of the remaining PGs within islets. In this review, we discuss the roles of PGs, particularly PGE2 and PGI2, PG receptors, and downstream signaling events that alter β-cell function and regulation of β-cell mass.  相似文献   

11.
The Wnt/β-catenin pathway controls developmental processes and homeostasis; however, abnormal activation of this pathway has been linked to several human diseases. Recent reports have demonstrated regulation of platelet function by canonical and non-canonical Wnt signalling. Platelet aggregation plays a crucial role in haemostasis and thrombosis. Here we report for the first time that, induction of sustained aggregation of platelets by a strong agonist in the presence of calcium was associated with nearly complete proteolysis of β-catenin, which was abrogated upon depletion of calcium from platelet suspension. β-catenin cleavage was disallowed in absence of aggregation, thus implicating integrin αIIbβ3 engagement in β-catenin proteolysis. Degradation of β-catenin was blocked partially by inhibitors of either proteasome or calpain and completely when cells were exposed to both the inhibitors. Protein kinase C inhibition, too, abolished β-catenin degradation. Thus activities of proteasome, calpain and protein kinase C regulate stabilization of β-catenin in aggregated human platelets.  相似文献   

12.
Transforming growth factor beta (TGFβ) signaling is linked to the membrane trafficking of TGFβ receptors. The Protein Kinase C (PKC) family of serine/threonine kinases have been implicated in modulating the endocytic processes of various receptors. The present study investigated whether PKC activity plays a role in the trafficking, and signaling of TGFβ receptors, and further explored which PKC isoforms may be responsible for altered TGFβ signaling patterns. Using immunofluorescence microscopy and 125I-TGFβ internalization assays, we show that the pharmacological inhibition of PKC activity alters TGFβ receptor trafficking and delays TGFβ receptor degradation. Consistent with these findings, we demonstrate that PKC inhibition extends TGFβ-dependent Smad2 phosphorylation. Previous studies have shown that PKCζ associates with TGFβ receptors to modulate cell plasticity. We therefore used siRNA directed at the atypical PKC isoforms to investigate if reducing PKCι and PKCζ protein levels would delay TGFβ receptor degradation and extend TGFβ signaling. Our findings suggest that atypical PKC isoforms regulate TGFβ signaling by altering cell surface TGFβ receptor trafficking and degradation.  相似文献   

13.
14.
BackgroundCa2+/calmodulin-dependent protein kinase kinase (CaMKK) is a pivotal activator of CaMKI, CaMKIV and 5’-AMP-activated protein kinase (AMPK), controlling Ca2+-dependent intracellular signaling including various neuronal, metabolic and pathophysiological responses. Recently, we demonstrated that CaMKKβ is feedback phosphorylated at Thr144 by the downstream AMPK, resulting in the conversion of CaMKKβ into Ca2+/CaM-dependent enzyme. However, the regulatory phosphorylation of CaMKKβ at Thr144 in intact cells and in vivo remains unclear.MethodsAnti-phosphoThr144 antibody was used to characterize the site-specific phosphorylation of CaMKKβ in immunoprecipitated samples from mouse cerebellum and in transfected mammalian cells that were treated with various agonists and protein kinase inhibitors. CaMKK activity assay and LC-MS/MS analysis were used for biochemical characterization of phosphorylated CaMKKβ.ResultsOur data suggest that the phosphorylation of Thr144 in CaMKKβ is rapidly induced by cAMP/cAMP-dependent protein kinase (PKA) signaling in CaMKKβ-transfected HeLa cells, that is physiologically relevant in mouse cerebellum. We confirmed that the catalytic subunit of PKA was capable of directly phosphorylating CaMKKβ at Thr144 in vitro and in transfected cells. In addition, the basal phosphorylation of CaMKKβ at Thr144 in transfected HeLa cells was suppressed by AMPK inhibitor (compound C). PKA-catalyzed phosphorylation reduced the autonomous activity of CaMKKβ in vitro without significant effect on the Ca2+/CaM-dependent activity, resulting in the conversion of CaMKKβ into Ca2+/CaM-dependent enzyme.ConclusioncAMP/PKA signaling may confer Ca2+-dependency to the CaMKKβ-mediated signaling pathway through direct phosphorylation of Thr144 in intact cells.General significanceOur results suggest a novel cross-talk between cAMP/PKA and Ca2+/CaM/CaMKKβ signaling through regulatory phosphorylation.  相似文献   

15.
Cyto-nuclear shuttling of β-catenin is at the epicenter of the canonical Wnt pathway and mutations in genes that result in excessive nuclear accumulation of β-catenin are the driving force behind the initiation of many cancers. Recently, Naked Cuticle homolog 1 (Nkd1) has been identified as a Wnt-induced intracellular negative regulator of canonical Wnt signaling. The current model suggests that Nkd1 acts between Disheveled (Dvl) and β-catenin. Here, we employ the zebrafish embryo to characterize the cellular and biochemical role of Nkd1 in vivo. We demonstrate that Nkd1 binds to β-catenin and prevents its nuclear accumulation. We also show that this interaction is conserved in mammalian cultured cells. Further, we demonstrate that Nkd1 function is dependent on its interaction with the cell membrane. Given the conserved nature of Nkd1, our results shed light on the negative feedback regulation of Wnt signaling through the Nkd1-mediated negative control of nuclear accumulation of β-catenin.  相似文献   

16.
17.
18.
Wnt/β-catenin signaling plays a major role in embryonic development and adult stem cell maintenance. Reduced activation of the Wnt/β-catenin pathway underlies neurodegenerative disorders and aberrations in bone formation. Screening of a small molecule compound library with a β-galactosidase fragment complementation assay measuring β-catenin nuclear entry revealed bona fide activators of β-catenin signaling. The compounds stabilized cytoplasmic β-catenin and activated β-catenin-dependent reporter gene activity. Although the mechanism through which the compounds activate β-catenin signaling has yet to be determined, several key regulators of Wnt/β-catenin signaling, including glycogen synthase kinase 3 and Frizzled receptors, were excluded as the molecular target. The compounds displayed remarkable selectivity, as they only induced β-catenin signaling in a human osteosarcoma U2OS cell line and not in a variety of other cell lines examined. Our data indicate that differences in cellular Wnt/β-catenin signaling machinery can be exploited to identify cell type-specific activators of Wnt/β-catenin signaling.  相似文献   

19.
20.
TREM2 is an immunoreceptor expressed on osteoclasts (OC) and microglia that transmits intracellular signals through the adaptor DAP12. Individuals with genetic mutations inactivating TREM2 or DAP12 develop the Nasu-Hakola disease (NHD) with cystic-like lesions of the bone and brain demyelination that lead to fractures and presenile dementia. The mechanisms of this disease are poorly understood. In this study, we report that TREM2-deficient mice have an osteopenic phenotype reminiscent of NHD. In vitro, lack of TREM2 impairs proliferation and β-catenin activation in osteoclast precursors (OcP) in response to M-CSF. This defect results in accelerated differentiation of OcP into mature OC. Corroborating the importance of a balanced proliferation and differentiation of OcP for bone homeostasis, we show that conditional deletion of β-catenin in OcP also results in reduced OcP proliferation and accelerated osteoclastogenesis in vitro as well as osteopenia in vivo. These results reveal that TREM2 regulates the rate of osteoclastogenesis and provide a mechanism for the bone pathology in NHD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号