首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9) belong to the TGF-beta superfamily and are involved in the regulation of folliculogenesis. Though there are many reports concerning the expression and regulation of GDF9 in the process of oocyte maturation, expression of BMP15 during oocyte maturation is still not clearly understood. It has been reported that BMP15 and GDF9 expression is important in folliculogeneiss and that the regulation of these two proteins is complex and species-specific. In this report, we investigated the expression of BMP15 and GDF9 genes during in vitro maturation (IVM) at 0, 6, 12, 18, 24, 30, 36, 42 and 48 h for porcine oocytes. Porcine GDF9 gene was found to be highly expressed in immature oocytes and declined slowly during the oocyte maturation process. BMP15mRNA and its encoded protein were expressed at low levels in immature oocytes and increased to the highest level at 18 h of IVM, which coincides with the time of cumulus cell expansion. Thus, these two genes were differentially expressed during the oocyte maturation process and BMP15 is specifically expressed during cumulus cell expansion in porcine oocytes.  相似文献   

4.
Oocyte-secreted factors enhance oocyte developmental competence   总被引:6,自引:0,他引:6  
The capacity of fully grown oocytes to regulate their own microenvironment by paracrine factors secreted by the oocyte (oocyte-secreted factors, OSFs) may in turn contribute to oocyte developmental competence. Here, we investigated if OSFs have a direct influence on oocyte developmental competence during in vitro maturation (IVM). Bovine cumulus-oocyte complexes (COCs) were aspirated from abattoir-derived ovaries and matured in serum-free medium. COCs were either co-cultured with denuded oocytes (DOs) or treated with specific OSFs: recombinant bone morphogenetic protein 15 (BMP15) and/or growth differentiation factor 9 (GDF9). Following maturation, embryos were fertilized and cultured in vitro and blastocyst development and cell number were assessed on day 8. Co-culturing intact COCs with DOs did not affect cleavage rate, but increased (P<0.001) the proportion of cleaved embryos that reached the blastocyst stage post-insemination from 39% to 51%. OSFs also altered blastocyst cell allocation as co-culture of COCs with DOs significantly increased total and trophectoderm cell numbers, compared to control COCs. BMP15 alone, GDF9 alone or the two combined all (P<0.05) increased the proportion of oocytes that reached the blastocyst stage post-insemination from 41% (controls) to 58%, 50% and 55%, respectively. These results were further verified in neutralization experiments of the exogenous growth factors and of the native OSFs. Follistatin and the kinase inhibitor SB-431542, which antagonize BMP15 and GDF9, respectively, neutralized the stimulatory effects of the exogenous growth factors and impaired the developmental competence of control COCs. These results demonstrate that OSFs, and particularly BMP15 and GDF9, enhance oocyte developmental competence and provide evidence that OSF regulation of the COC microenvironment is an important determinant of oocyte developmental programming.  相似文献   

5.
6.
In the growing follicle, communication between the oocyte and its surrounding follicular cells is essential for normal oocyte and follicular development. Maturation of the fully grown oocyte in vivo is associated with the loss of cumulus cell-oocyte gap junctional communication, preventing entry of meiotic-modulating factors such as cAMP into the oocyte. We have previously shown that oocyte and cumulus cell cAMP levels can be independently regulated using inhibitors of cell-specific phosphodiesterase (PDE) isoenzymes. The objectives of this study were to examine the effects of cell type-specific PDE inhibitors on the maintenance of cumulus cell-oocyte gap junction communication (GJC) and oocyte meiotic progression. Cumulus-oocyte complexes (COCs) were aspirated from antral follicles of abattoir-derived ovaries. Cumulus cell-oocyte GJC during oocyte maturation was quantified using the fluorescent dye, calcein-AM. COCs were cultured in the presence of specific PDE inhibitors, milrinone (an oocyte PDE3 inhibitor) or rolipram (a cumulus cell PDE4 inhibitor), and were pulsed with calcein-AM to allow dye transfer between the two cell types. Following cumulus cell removal, fluorescence in denuded oocytes was measured by microphotometry, and meiotic progression was assessed. In control COCs, dye transfer from cumulus cells to the oocyte fell progressively from 0 to 9 h, after which oocyte-cumulus cell GJC was completely lost. Loss of GJC was significantly attenuated (P < 0.05) during this time in response to treatment with milrinone and rolipram. Forskolin maintained GJC at the initial 0 h level until 3-4 h of culture, whereas treatment with milrinone and forskolin together actually increased the level of dye transfer above that in COCs treated with forskolin alone. Importantly, all treatments that prolonged GJC also delayed meiotic resumption, with meiosis generally resuming when fluorescence had fallen to approximately 40% of initial levels. These results, together with our previous studies, demonstrate that treatments that maintain or elevate cAMP levels in cumulus cells, oocytes, or both result in prolonged oocyte-cumulus cell communication and delayed meiotic resumption.  相似文献   

7.
The present study was conducted to evaluate the function of cumulus cells during bovine IVF Oocytes within cumulus-oocyte complexes (COCs) or denuded oocytes (DOs) were inseminated in control medium, or DOs were inseminated in cumulus cell conditioned medium (CCCM). DOs exhibited reduced cleavage and blastocyst formation rates when compared with intact COCs. The reduced blastocyst formation rate of DOs resulted from reduced first cleavage but subsequent embryo development was not changed. Live-dead staining and staining for apoptotic cells revealed no differences in blastocysts from oocytes fertilized as COC or DO. Fertilization of DOs in CCCM partially restored the cleavage rate, suggesting that factors secreted by cumulus cells are important for fertilization but that physical contact between oocytes and cumulus cells is required for optimal fertilization and first cleavage. Exposure of COCs to hydrogen peroxide shortly before fertilization reduced the cleavage rate, but did not lead to enhanced death of cumulus cells or oocyte death. Exposure of DOs to hydrogen peroxide, however, resulted in oocyte death and a complete block of first cleavage, suggesting that cumulus cells protect the oocyte against oxidative stress during fertilization.  相似文献   

8.
The aim of the study was to evaluate meiotic maturation, and expression of genes coding for oocyte secreted factors (GDF9, BMP15, TGFBR1, and BPR2) and apoptosis (BCL2, BAX and P53) after vitrification of immature goat cumulus oocyte complexes (COCs) and in vitro maturation. COCs were vitrified in a solution containing ethylene glycol, dimethyl sulfoxide and sucrose using either a conventional straw (CS), open pulled straw (OPS), cryoloop (CL), hemistraw (HS) or cryotop (CT). Freshly collected COCs (Control), COCs exposed to vitrification and dilution solutions without cryopreservation (EC) and vitrified-warmed COCs were matured in vitro for 27h. The viability of vitrified-warmed COCs 2 h post warming and in vitro maturation was similar for CL, HS and CT. The proportion of oocytes that extruded a 1st polar body and reached TI/MII was significantly higher with CT and HS followed by CL, OPS and CS. Gene expression of GDF9, BMP15, BMPR2, BAX and P53 were comparable to control levels for OPS, CL, HS and CT. The gene expression pattern in CS vitrified COCs was by contrast changed in that GDF9, BMP15, TGFBR1 and BAX were up regulated and BMPR2, BCL2 and P53 down regulated. In conclusion immature goat COCs vitrified using CT and HS showed that viability, maturation rates and expression of genes coding for oocyte secreted factors and apoptosis were similar to non-vitrified controls.  相似文献   

9.
Stereological methods were applied to bovine cumulus-oocyte complexes (COCs) in order to characterize them quantitatively during the estrous cycle. COCs from medium (4-8mm) antral follicles with a compact and complete cumulus mass, and with an uniform or a non-visible ooplasm were aspirated from ovaries of Holstein-Friesian cows, fixed in glutaraldehyde, randomly embedded in glycol-methacrylate, and sectioned at 20 microm. The unbiased nucleator principle was used for estimating the mean volumes of complexes, oocytes, cumulus cells, and nuclei of oocytes and cumulus cells. The thickness of the zona pellucida and the relative numerical percentages of the several morphological types (C1-C3) of cumulus cells were also evaluated. The optical disector procedure was used for cumulus cell sampling. Quantitative data show that COCs appear heterogeneous for all studied parameters. From metestrus to proestrus the volumes of COCs and oocytes remained constant, the volumes of oocytes and oocyte nuclei were correlated, the thickness of the outer zona pellucida decreased, and the relative numerical frequency of follicular type C3 cells increased. Results suggest that COCs from distinct estrus stages are structurally different, with type C3 follicular cells gradually differentiating from cell types C1 and C2.  相似文献   

10.
11.
Paracrine actions of growth differentiation factor-9 in the mammalian ovary.   总被引:33,自引:0,他引:33  
Although the transforming growth factor-beta (TGF-beta) superfamily is the largest family of secreted growth factors, surprisingly few downstream target genes in their signaling pathways have been identified. Likewise, the identities of oocyte-derived secreted factors, which regulate important oocyte-somatic cell interactions, remain largely unknown. For example, oocytes are known to secrete paracrine growth factor(s) which are necessary for cumulus expansion, induction of hyaluronic acid synthesis, and suppression of LH receptor (LHR) mRNA synthesis. Our previous studies demonstrated that absence of the TGF-beta family member, growth differentiation factor-9 (GDF-9), blocks ovarian folliculogenesis at the primary follicle stage leading to infertility. In the present study, we demonstrate that mouse GDF-9 protein is expressed in all oocytes beginning at the type 3a follicle stage including antral follicles. To explore the biological functions of GDF-9 in the later stages of folliculogenesis and cumulus expansion, we produced mature, glycosylated, recombinant mouse GDF-9 using a Chinese hamster ovary cell expression system. A granulosa cell culture system was established to determine the role of GDF-9 in the regulation of several key ovarian gene products using semiquantitative RT-PCR. We find that recombinant GDF-9 induces hyaluronan synthase 2 (HAS2), cyclooxygenase 2 (COX-2), and steroidogenic acute regulator protein (StAR) mRNA synthesis but suppresses urokinase plasminogen activator (uPA) and LHR mRNA synthesis. Consistent with the induction of StAR mRNA by GDF-9, recombinant GDF-9 increases granulosa cell progesterone synthesis in the absence of FSH. Since induction of HAS2 and suppression of the protease uPA in cumulus cells are key events in the production of the hyaluronic acid-rich extracellular matrix which is produced during cumulus expansion, we determined whether GDF-9 could mimic this process. Using oocytectomized cumulus cell-oocyte complexes, we show that recombinant GDF-9 induces cumulus expansion in vitro. These studies demonstrate that GDF-9 can bind to receptors on granulosa cells to regulate the expression of a number of gene products. Thus, in addition to playing a critical function as a growth and differentiation factor during early folliculogenesis, GDF-9 functions as an oocyte-secreted paracrine factor to regulate several key granulosa cell enzymes involved in cumulus expansion and maintenance of an optimal oocyte microenvironment, processes which are essential for normal ovulation, fertilization, and female reproduction.  相似文献   

12.
Apoptosis, or programmed cell death, is an important mechanism for the regulation of embryonic development and tissue homeostasis. It is coordinated by a number of molecules including the Fas-Fas ligand (FasL) system and bcl-2. The purpose of this study was to characterize the expression of these molecules in human oocytes and cumulus cells from gonadotropin-stimulated human ovaries and to determine whether the presence of soluble Fas (sFas), soluble FasL, or interferon-gamma in follicular fluid (FF) correlated with apoptosis in cumulus cells, oocyte maturation, and embryo quality. Levels of sFas were significantly higher in FF containing immature oocytes compared with those containing atretic oocytes (P < 0.05; FF containing mature oocytes had highly variable levels of sFas. Levels of sFas in FF did not correlate with either fertilization, embryo quality resulting from fertilized oocytes, or apoptosis rate in cumulus cells. Fas was expressed in both unfertilized oocytes and cumulus cells, whereas FasL expression was not usually detected in these cell types. Messenger RNA for bcl-2 was detectable in both freshly isolated oocytes and cumulus cells but was not demonstrable following 24 h of culture that coincided with a significant increase of apoptosis in cumulus cells. Our results indicate that soluble forms of the Fas-FasL system are present in FF from gonadotropin-stimulated human ovaries and suggest that this system may play a role in preventing oocyte atresia during folliculogenesis but is probably not important for apoptotic events in cumulus cells and oocytes after fertilization failure. Apoptosis in this case may be facilitated by the downregulation of bcl-2. Further studies on the expression of these molecules in follicles containing atretic oocytes and immature oocytes are needed to confirm this new hypothesis.  相似文献   

13.
Gap junctional coupling between cumulus cells is required for oocytes to reach developmental competence. Multiple connexins, which form these gap junctions, have been found within the ovarian follicles of several species including bovine. The aim of this study was to determine the role of connexin 43 (CX43) and its relationship to embryo development, after in vitro fertilization (IVF). Cumulus?oocyte complexes (COCs) were obtained from abattoir sourced, mixed breed, bovine ovaries. COCs were isolated from follicles ranging from 2 to 5 mm in size, representing the preselected follicle pool. Immediately after isolation, two cumulus cell biopsies were collected and stored for analysis pending determination of developmental outcomes. Using in vitro procedures, COCs were individually matured, fertilized, and cultured to the blastocyst stage. Biopsies were grouped as originating from COCs that arrested at the two‐cell stage (low developmental competence [LDC]) or having developed to the late morula/blastocyst stage (high developmental competence [HDC]), after IVF and embryo culture. The expression level of CX43 was found to be significantly higher in cumulus cells from COCs that had an HDC when compared with those that had an LDC. Moreover, the gap junctional intercellular coupling rate was significantly higher in cumulus from COCs deemed to have an HDC. Significantly higher expression of the cumulus health markers luteinizing hormone receptor and cytochrome p450 19A1 was found in the cumulus originating from oocytes with HDC, suggesting that this system may provide a mechanism for noninvasively testing for oocyte health in preselected bovine follicles.  相似文献   

14.
15.
16.
Bovine cumulus-oocyte complexes (COCs) aspirated from slaughterhouse ovaries are used for in vitro maturation and fertilization after selection on the basis of morphological appearance of the cumulus and ooplasm. In this context, a quantitative characterization of COCs could provide additional criteria for selecting the most competent complexes. Bovine COCs from small (1-4mm) antral follicles were aspirated from metestrous and proestrous stage ovaries of Holstein-Friesian cows, fixed in glutaraldehyde, randomly embedded in glycol-methacrylate, and sectioned at 20 microm. The unbiased nucleator principle of stereology was used for estimating the mean volumes of complexes, oocytes, cumulus cells, and nuclei of oocytes and cumulus cells. The thickness of the zona pellucida and the relative numerical percentages of the several morphological types (C1, C2 and C3) of cumulus cells were also evaluated. The optical dissector procedure was used for cumulus cell sampling. Quantitative data show that the variability among complexes is generally high, especially for the volume of COCs. There were no linear correlations between the studied parameters, except between the volume of the oocyte and nucleus at metestrus. At proestrus, the volumes of COCs, oocytes and nuclei of oocytes, the volume of follicular cells and the thickness of the inner zona pellucida, were significantly higher than at metestrus. The relative numerical frequency of follicular type C1 cells was lower whereas that of type C3 cells was higher at proestrus than at metestrus. In conclusion, small antral follicles had larger COCs and oocytes at proestrus compared to metestrus and the COCs also had a higher percentage of follicular type C3 cells. Results suggest that for the same type of follicle size there may exist different functional populations of COCs at distinct stages of the bovine ovarian cycle.  相似文献   

17.
Bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9) are oocyte-specific growth factors that appear to play key roles in granulosa cell development and fertility in most mammalian species. We have evaluated the role(s) of these paracrine factors in the development and function of both the cumulus cells and oocytes by assessing cumulus expansion, oocyte maturation, fertilization, and preimplantation embryogenesis in Gdf9+/-Bmp15-/- [hereafter, double mutant (DM)] mice. We found that cumulus expansion, as well as the expression of hyaluronon synthase 2 (Has2) mRNA was impaired in DM oocyte-cumulus cell complexes. This aberrant cumulus expansion was not remedied by coculture with normal wild-type (WT) oocytes, indicating that the development and/or differentiation of cumulus cells in the DM, up to the stage of the preovulatory luteinizing hormone (LH) surge, is impaired. In addition, DM oocytes failed to enable FSH to induce cumulus expansion in WT oocytectomized (OOX) cumulus. Moreover, LH-induced oocyte meiotic resumption was significantly delayed in vivo, and this delayed resumption of meiosis was correlated with the reduced activation of mitogen-activated protein kinase (MAPK) in the cumulus cells, thus suggesting that GDF9 and BMP15 also regulate the function of cumulus cells after the preovulatory LH surge. Although spontaneous in vitro oocyte maturation occurred normally, oocyte fertilization and preimplantation embryogenesis were significantly altered in the DM, suggesting that the full complement of both GDF9 and BMP15 are essential for the development and function of oocytes. Because receptors for GDF9 and BMP15 have not yet been identified in mouse oocytes, the effects of the mutations in the Bmp15 and Gdf9 genes on oocyte development and functions must be produced indirectly by first affecting the granulosa cells and then the oocyte. Therefore, this study provides further evidence for the existence and functioning of an oocyte-granulosa cell regulatory loop.  相似文献   

18.
Mammalian oocytes are deficient in their ability to carry out glycolysis. Therefore, the products of glycolysis that are necessary for oocyte development are provided to oocytes by companion cumulus cells. Mouse oocytes secrete paracrine factors that promote glycolysis in cumulus cells. The objective of this study was to identify paracrine factors secreted by oocytes that promote glycolysis and expression of mRNA encoding the glycolytic enzymes PFKP and LDHA. Candidates included growth differentiation factor 9 (GDF9), bone morphogenetic protein 15 (BMP15) and fibroblast growth factors (FGFs). Bmp15-/- and Gdf9+/- Bmp15-/- (double mutant, DM) cumulus cells exhibited reduced levels of both glycolysis and Pfkp and Ldha mRNA, and mutant oocytes were deficient in promoting glycolysis and expression of Pfkp and Ldha mRNA in cumulus cells of wild-type (WT) mice. Alone, neither recombinant BMP15, GDF9 nor FGF8 promoted glycolysis and expression of Pfkp and Ldha mRNA in WT cumulus cells. Co-treatment with BMP15 and FGF8 promoted glycolysis and increased expression of Pfkp and Ldha mRNA in WT cumulus cells to the same levels as WT oocytes; however, the combinations of BMP15/GDF9 or GDF9/FGF8 did not. Furthermore, SU5402, an FGF receptor-dependent protein kinase inhibitor, inhibited Pfkp and Ldha expression in cumulus cells promoted by paracrine oocyte factors. Therefore, oocyte-derived BMP15 and FGFs cooperate to promote glycolysis in cumulus cells.  相似文献   

19.
It has become increasingly recognized that coculture has a beneficial effect on the in vitro maturation (IVM) of oocytes and embryo development in many species. However, these effects of coculture on IVM have been documented only for their positive conditioning roles without any evidence on the precise mechanisms underlying the action of coculture systems on the development of cumulus oocyte complexes (COCs). It has been suggested that the epidermal growth factor receptor (EGFR) signaling pathway is important for development of COCs, mediated by several epidermal growth factor (EGF)-like proteins with downstream mitogen-activated protein kinase 1/3 signaling. Therefore, we hypothesized that canine oviduct cells (OCs) in a coculture system, which shows improvement of oocyte quality in several species, are associated with EGFR signaling by exposure to progesterone (P4; imitating its production before ovulation and its continuous increase while oocytes reside in the oviduct to complete maturation in dogs). We designed three experimental groups: control, OCs coculture exposed to P4, and OCs coculture without exposure to P4. The result showed that the OCs coculture exposed to P4 strongly expressed EGF-like proteins and significantly improved COCs and subsequent embryo development. Furthermore, the expression of EGFR-related genes in cumulus cells and GDF9 and BMP15 in oocytes was upregulated in the P4-treated group. This study provides the first evidence that OCs exposed to P4 can induce strong expression of EGF-like proteins, and OCs effectively mediate improved porcine COCs development and subsequent embryo development by altering EGFR signaling related mRNA expression.  相似文献   

20.
Developmental competence of oocytes is compromised if they originate from atretic follicles. Apoptosis is the underlying process of atresia. Apoptotic changes in follicular cells are thought to influence the outcome of IVF. The aim of this study was to investigate apoptosis in different compartments of single bovine follicles (follicular wall, granulosa and cumulus cells (CC)) in relation to COC morphology, and to determine whether the addition, in vitro, of exogenous follicular cells from atretic follicles to maturing cumulus oocyte complexes (COCs) influenced the development of oocytes.Antral follicles were dissected from bovine ovaries and opened to obtain COCs and free floating granulosa cells (GC). The COCs were classified according to morphology. Apoptosis was determined in cumulus and granulosa cells and in homogenates of the remaining follicular wall.For every morphological class of COCs, a large variability of apoptotic expression was found in all follicle compartments. Follicular wall apoptosis was not correlated to COC morphology or to the percentage of apoptotic granulosa or cumulus cells. In grade 1 (best morphology) COCs, the degree of apoptosis in granulosa cells was comparable to cumulus cell apoptosis (P<0.01). The overall expression of apoptosis in granulosa cells of follicles containing grade 3 COCs (median+/-median absolute deviation: 37.8+/-13.8%) was significantly higher (P<0.05) than in follicles with grade 1 (22.7+/-10.4%) or grade 2 COCs (20.0+/-17.0%). About 48.3% of grade 3 COCs possessed strongly apoptotic cumulus cells compared to 27.8 and 28.2% of grade 1 or grade 2 COCs, respectively. Nonapoptotic cumulus complexes were observed in grades 1 and 2 COCs only.Adding exogenous follicular cells from atretic follicles to bovine COCs (grades 1 and 2) during in vitro maturation (IVM) had no impact on fertilization, blastocyst formation or hatching after IVF. This is of particular practical relevance to embryo production after ovum pick up (OPU), as during this process, good quality COCs are cultured together with simultaneously collected slightly atretic COCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号