首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RNA interference (RNAi) can achieve sequence-selective inactivation of gene expression in a wide variety of eukaryotes by introducing double-stranded RNA corresponding to the target gene. Here we explore the potential of RNAi as a therapy for amyotrophic lateral sclerosis (ALS) caused by mutations in the Cu, Zn superoxide dismutase (SOD1) gene. Although the mutant SOD1 is toxic, the wild-type SOD1 performs important functions. Therefore, the ideal therapeutic strategy should be to selectively inhibit the mutant, but not the wild-type SOD1 expression. Because most SOD1 mutations are single nucleotide changes, to selectively silence the mutant requires single-nucleotide specificity. By coupling rational design of small interfering RNAs (siRNAs) with their validation in RNAi reactions in vitro and in vivo, we have identified siRNA sequences with this specificity. A similarly designed sequence, when expressed as small hairpin RNA (shRNA) under the control of an RNA polymerase III (pol III) promoter, retains the single-nucleotide specificity. Thus, RNAi is a promising therapy for ALS and other disorders caused by dominant, gain-of-function gene mutations.  相似文献   

2.
Proximal spinal muscular atrophy (SMA) is caused by low levels of the SMN protein, encoded by the Survival Motor Neuron genes (SMN1 and SMN2). Mouse models of SMA can be rescued by increased SMN expression, but the timing of SMN replacement for complete rescue is unknown. Studies in zebrafish predict restoration of SMN function during embryogenesis may be important for axonal pathfinding, while the mouse models and normal human disease progression suggest that post-natal treatment may be sufficient for amelioration of disease. To evaluate the timing for SMN replacement, we have generated a stably integrated Cre-inducible SMN mouse in which expression of full-length SMN2 occurs after tamoxifen administration. Our temporally inducible SMN transgene is able to express SMN in embryonic, neonatal, and weanling mice and as such can be utilized in severe and mild SMA mouse models to identify the therapeutic window for SMN replacement.  相似文献   

3.
随着人类基因组大规模测序的完成,下一步的挑战是了解每一个基因的功能 . RNA 干扰文库为大规模基因功能筛选提供了可能 . 虽然用于线虫等模式生物的 RNAi 文库,已经证明是大规模基因功能筛选的有效方法,但这些文库不能用于高等动物的细胞 . 自 2003 年以来,用于人的细胞和哺乳动物细胞的 RNAi 文库取得了突破,相继出现构建已知基因 RNAi 文库和构建随机 RNAi 文库的报道,并成功地应用于大规模基因功能的筛选 . RNAi 文库作为一种简单、高效、大规模、高通量的功能基因组学研究的工具,将在基因功能研究、发现新的药物靶基因、发现疾病相关基因等方面有广阔的应用前景 .  相似文献   

4.
Spinal muscular atrophy (SMA) is a neurodegenerative disorder that results from mutations in the SMN1 gene, leading to survival motor neuron (SMN) protein deficiency. One therapeutic strategy for SMA is to identify compounds that enhance the expression of the SMN2 gene, which normally only is a minor contributor to functional SMN protein production, but which is unaffected in SMA. A recent high-throughput screening campaign identified a 3,4-dihydro-4-phenyl-2(1H)-quinolinone derivative (2) that increases the expression of SMN2 by 2-fold with an EC50?=?8.3?µM. A structure-activity relationship (SAR) study revealed that the array of tolerated substituents, on either the benzo portion of the quinolinone or the 4-phenyl, was very narrow. However, the lactam ring of the quinolinone was more amenable to modifications. For example, the quinazolinone (9a) and the benzoxazepin-2(3H)-one (19) demonstrated improved potency and efficacy for increase in SMN2 expression as compared to 2.  相似文献   

5.
RNA interference (RNAi) has become a powerful tool to dissect cellular pathways and characterize gene functions. The availability of genome-wide RNAi libraries for various model organisms and mammalian cells has enabled high-throughput RNAi screenings. These RNAi screens successfully identified key components that had previously been missed in classical forward genetic screening approaches and allowed the assessment of combined loss-of-function phenotypes. Crucially, the quality of RNAi screening results depends on quantitative assays and the choice of the right biological context. In this review, we provide an overview on the design and application of high-throughput RNAi screens as well as data analysis and candidate validation strategies.  相似文献   

6.
Proximal spinal muscular atrophy (SMA) results from loss of the survival motor neuron 1 (SMN1) gene, with retention of its nearly identical homolog, SMN2. There is a direct correlation between disease severity and SMN2 copy number. Mice do not have a Smn2 gene, and thus cannot naturally replicate the disorder. However, two murine models of SMA have been generated using SMN2-BAC transgenic mice bred onto a mutant Smn background. In these instances mice die shortly after birth, have variable phenotypes within the same litter, or completely correct the SMA phenotype. Both models have been imported to The Jackson Laboratory for distribution to the research community. To ensure that similar results are obtained after importation to The Jackson Laboratory to what was originally reported in the literature, we have begun a molecular and phenotypic evaluation of these mouse models. Here we report our findings for the SMA mouse model that has been deposited by the Li group from Taiwan. These mice, JAX stock number TJL-005058, are homozygous for the SMN2 transgene, Tg(SMN2)2Hung, and a targeted Smn allele that lacks exon 7, Smn1tm1Hung. Our findings are consistent with those reported originally for this line and clarify some of the original data. In addition, we have cloned and mapped the integration site for Tg(SMN2)2Hung to Chromosome 4, and provide a simple genotyping assay that is specific to the junction fragment. Finally, based upon the survival data from our genetic crosses, we suggest that this underused SMA model may be a useful compliment or alternative to the more commonly used “delta7” SMA mouse. We provide breeding schemes in which two genotypes of mice can be generated so that 50% of the litter will be SMA-like pups while 50% will be controls.  相似文献   

7.
RNA interference (RNAi) is a mechanism displayed by most eukaryotic cells to rid themselves of foreign double-stranded RNA molecules. RNAi has now been demonstrated to function in mammalian cells to alter gene expression, and has been used as a means for genetic discovery as well as a possible strategy for genetic correction. RNAi was first described in animal cells by Fire and colleagues in the nematode, Caenorhabditis elegans. Knowledge of RNAi mechanism in mammalian cell in 2001 brought a storm in the field of drug discovery. During the past few years scientists all over the world are focusing on exploiting the therapeutic potential of RNAi for identifying a new class of therapeutics. The applications of RNAi in medicine are unlimited because all cells possess RNAi machinery and hence all genes can be potential targets for therapy. RNAi can be developed as an endogenous host defense mechanism against many infections and diseases. Several studies have demonstrated therapeutic benefits of small interfering RNAs and micro RNAs in animal models. This has led to the rapid advancement of the technique from research discovery to clinical trials.  相似文献   

8.
Spinal muscular atrophy (SMA) is a common autosomal recessive neuromuscular disorder that is currently incurable. SMA is caused by decreased levels of the survival motor neuron protein (SMN), as a result of loss or mutation of SMN1. Although the SMN1 homolog SMN2 also produces some SMN protein, it does not fully compensate for the loss or dysfunction of SMN1. Salbutamol, a β2-adrenergic receptor agonist and well-known bronchodilator used in asthma patients, has recently been shown to ameliorate symptoms in SMA patients. However, the precise mechanism of salbutamol action is unclear. We treated SMA fibroblast cells lacking SMN1 and HeLa cells with salbutamol and analyzed SMN2 mRNA and SMN protein levels in SMA fibroblasts, and changes in SMN protein ubiquitination in HeLa cells. Salbutamol increased SMN protein levels in a dose-dependent manner in SMA fibroblast cells lacking SMN1, though no significant changes in SMN2 mRNA levels were observed. Notably, the salbutamol-induced increase in SMN was blocked by a protein kinase A (PKA) inhibitor and deubiquitinase inhibitor, respectively. Co-immunoprecipitation assay using HeLa cells showed that ubiquitinated SMN levels decreased in the presence of salbutamol, suggesting that salbutamol inhibited ubiquitination. The results of this study suggest that salbutamol may increase SMN protein levels in SMA by inhibiting ubiquitin-mediated SMN degradation via activating β2-adrenergic receptor-PKA pathways.  相似文献   

9.
陈万金  张奇杰  何瑾  林翔  王柠 《遗传》2014,36(11):1168-1172
脊髓性肌萎缩症(Spinal muscular atrophy, SMA)大多数在儿童或婴幼儿期发病,表现为进行性、对称性的肢体无力和肌肉萎缩,迄今尚无有效的治疗方法,是婴幼儿最常见的致死性遗传病之一。患者来源的细胞系是该病研究的重要工具,但依赖于肌肉或皮肤活检等创伤性手术的成纤维细胞培养较难被患者及家属接受。文章收集SMA患者及健康对照的新鲜尿液,进行离心、尿液沉渣培养,观察尿液细胞的生长状况,用酶联免疫吸附实验(Enzyme-linked immunosorbent assay,ELISA)分析患者尿液细胞中SMN(Survival of motor neuron)蛋白的表达量,应用免疫荧光染色观察SMN蛋白在细胞内的定位。共建立了11例SMA患者和14例健康对照的尿液细胞系,尿液细胞体外增殖旺盛,细胞形态及生长速度较稳定。患者来源的尿液细胞SMN1(Survival of motor neuron 1) 基因缺失突变、SMN蛋白表达量降低,荧光染色提示SMN蛋白在胞浆和胞核中均有定位。尿液细胞培养步骤简单、无创伤性、患儿及其家属的依从性好,是获取和保存病人来源标本的有效方法,在脊髓性肌萎缩症发病机制研究和临床应用方面具有较好的应用价值。  相似文献   

10.
Improving yeast tolerance to 1-butanol and isobutanol is a step toward enabling high-titer production. To identify previously unknown genetic targets leading to increased tolerance, we establish a tunable RNA interference (RNAi) screening approach. Specifically, we optimized the efficiency and tunability of RNA interference library screening in yeast, ultimately enabling downregulation efficiencies from 0 to 94 %. Using this system, we identified the Hsp70 family as a key regulator of isobutanol tolerance in a single round of screening, with downregulation of these genes conferring up to 64 % increased growth in 12 g/L isobutanol. For 1-butanol, we find through two rounds of iterative screening that the combined downregulation of alcohol dehydrogenase and enolase improves growth up to 3100 % in 10 g/L 1-butanol. Collectively, this work improves the tunability of RNAi in yeast as demonstrated by the discovery of novel effectors for these complex phenotypes.  相似文献   

11.
Kaganman I 《Nature methods》2006,3(9):662-663
RNA interference (RNAi) and automated high-throughput screening is a promising combination. But the first systematic large-scale mapping of genetic interactions in an animal shows that manual methods still have advantages over sophisticated automated screens.  相似文献   

12.
Techniques for targeted genetic disruption in Plasmodium, the causative agent of malaria, are currently intractable for those genes that are essential for blood stage development. The ability to use RNA interference (RNAi) to silence gene expression would provide a powerful means to gain valuable insight into the pathogenic blood stages but its functionality in Plasmodium remains controversial. Here we have used various RNA-based gene silencing approaches to test the utility of RNAi in malaria parasites and have undertaken an extensive comparative genomics search using profile hidden Markov models to clarify whether RNAi machinery exists in malaria. These investigative approaches revealed that Plasmodium lacks the enzymology required for RNAi-based ablation of gene expression and indeed no experimental evidence for RNAi was observed. In its absence, the most likely explanations for previously reported RNAi-mediated knockdown are either the general toxicity of introduced RNA (with global down-regulation of gene expression) or a specific antisense effect mechanistically distinct from RNAi, which will need systematic analysis if it is to be of use as a molecular genetic tool for malaria parasites.  相似文献   

13.
RNA interference (RNAi) is an important tool for studying gene function and genetic networks. Double-stranded RNA (dsRNA) triggers RNAi that selectively silences gene expression mainly by degrading target mRNA sequences. Short interfering RNA, short hairpin RNA (shRNA), long dsRNA, and microRNA-based shRNA (shRNAmir) are four different types of dsRNA that have been widely used to silence gene expression in cultured cells, tissues, organs, and organisms. Long dsRNAs are usually 200–500 nucleotides in length and can selectively suppress expression of target genes in Caenorhabditis elegans and Drosophila but not in mammals due to unwanted non-specific knockdown. Thus, multiple attempts have been made to synthesize, express, and deliver short dsRNAs that specifically silence target genes in mammals. We describe a method for constructing an RNAi library by converting cDNAs into shRNAmir30 sequences by sequential treatment with different enzymes and affinity purification of biotin- or digoxygenin-labeled DNA fragments. We also developed a system to generate stable cell lines that uniformly express shRNAmir30s and fluorescence reporters by Cre recombinase-dependent site-specific recombination. Thus, combined with the RNAi library, this system facilitates screening for potent RNAi sequences that strongly suppress expression of target genes.  相似文献   

14.
Introduction: Spinal muscular atrophy (SMA) is a neurodegenerative disorder characterized by alpha motor neuron loss in the spinal cord due to reduced survival motor neuron (SMN) protein level. While the genetic basis of SMA is well described, the specific molecular pathway underlying SMA is still not fully understood.

Areas covered: This review discusses the recent advancements in understanding the molecular pathways in SMA using different omics approaches and genetic modifiers identified in both vertebrate and invertebrate systems. The findings that are summarized in this article were deduced from original articles and reviews with a particular focus on the latest advancements in the field.

Expert commentary: The identification of genetic modifiers such as PLS3 and NCALD in humans or of SMA modulators such as Elavl4 (HuD), Copa, Uba1, Mapk10 (Jnk3), Nrxn2 and Tmem41b (Stasimon) in various SMA animal models improved our knowledge of impaired cellular pathways in SMA. Inspiration from modifier genes and their functions in motor neuron and neuromuscular junctions may open a new avenue for future SMA combinatorial therapies.  相似文献   


15.
RNA干扰(RNAi)文库研究进展   总被引:2,自引:0,他引:2  
罗彦忠  王磊 《微生物学通报》2010,37(10):1512-1518
RNAi是由双链RNA(dsRNA)引发的转录后基因沉默现象,由dsRNA产生的小分子siRNA会导致生物体内同源转录产物特异性降解,是基因表达调控的重要方式之一。目前RNAi技术已发展成为遗传分析强有力的工具,在基因功能分析鉴定方面发挥越来越大的作用。构建大规模的RNAi文库进而转变成RNAi突变体库是功能基因组学研究的重要手段,因此如何利用简单经济的方法构建特定物种的高效RNAi文库就成为关键问题。综述了目前构建RNAi文库的不同方法以及每种构建方法的优点和存在的不足,为不同研究目的的RNAi文库的构建提供参考。  相似文献   

16.
The eye is an excellent model for the study of neuronal development and pathogenesis of central nervous system disorders because of its relative ease of accessibility and the well‐characterized cellular makeup. We have used this model to study spinal muscular atrophy (SMA), an autosomal recessive neuromuscular disease caused by deletions or mutations in the survival of motor neuron 1 gene (SMN1). We have investigated the expression pattern of mouse Smn mRNA and protein in the neural retina and the optic nerve of wild type mice. Smn protein is present in retinal ganglion cells and amacrine cells within the neural retina as well as in glial cells in the optic nerve. Histopathological analysis in phenotype stage SMA mice revealed that Smn deficiency is associated with a reduction in ganglion cell axon and glial cell number in the optic nerve, as well as compromised cellular processes and altered organization of neurofilaments in the neural retina. Whole mount preparation and retinal neuron primary culture provided further evidence of abnormal synaptogenesis and neurofilament accumulation in the neurites of Smn‐deficient retinal neurons. A subset of amacrine cells is absent, in a cell‐autonomous fashion, in the retina of SMA mice. Finally, the retinas of SMA mice have altered electroretinograms. Altogether, our study has demonstrated defects in axodendritic outgrowth and cellular composition in Smn‐depleted retinal neurons, indicating a role for Smn in neuritogenesis and neurogenesis, and providing us with an insight into pathogenesis of SMA. © 2010 Wiley Periodicals, Inc. Develop Neurobiol 71: 153‐169, 2011  相似文献   

17.
Spinal muscular atrophy (SMA) is a recessive neuromuscular disorder caused by loss of the SMN1 gene. The clinical distinction between SMA type I to IV reflects different age of onset and disease severity. SMN2, a nearly identical copy gene of SMN1, produces only 10% of full-length SMN RNA/protein and is an excellent target for a potential therapy. Several clinical trials with drugs that increase the SMN2 expression such as valproic acid and phenylbutyrate are in progress. Solid natural history data for SMA are crucial to enable a correlation between genotype and phenotype as well as the outcome of therapy. We provide genotypic and phenotypic data from 115 SMA patients with type IIIa (age of onset <3 years), type IIIb (age of onset >3 years) and rare type IV (onset >30 years). While 62% of type IIIa patients carry two or three SMN2 copies, 65% of type IIIb patients carry four or five SMN2 copies. Three type IV SMA patients had four and one had six SMN2 copies. Our data support the disease-modifying role of SMN2 leading to later onset and a better prognosis. A statistically significant correlation for ≥4 SMN2 copies with SMA type IIIb or a milder phenotype suggests that SMN2 copy number can be used as a clinical prognostic indicator in SMA patients. The additional case of a foetus with homozygous SMN1 deletion and postnatal measurement of five SMN2 copies illustrates the role of genotypic information in making informed decisions on the management and therapy of such patients.Database: SMN1—OMIM: 600354; GeneBank: U18423, SMN2—OMIM: 601627: GeneBank: NM_022875  相似文献   

18.
Local gene knockdown in the brain using viral-mediated RNA interference   总被引:23,自引:0,他引:23  
Conditional mutant techniques that allow spatial and temporal control over gene expression can be used to create mice with restricted genetic modifications. These mice serve as powerful disease models in which gene function in adult tissues can be specifically dissected. Current strategies for conditional genetic manipulation are inefficient, however, and often lack sufficient spatial control. Here we use viral-mediated RNA interference (RNAi) to generate a specific knockdown of Th, the gene encoding the dopamine synthesis enzyme tyrosine hydroxylase, within midbrain neurons of adult mice. This localized gene knockdown resulted in behavioral changes, including a motor performance deficit and reduced response to a psychostimulant. These results underscore the potential of using viral-mediated RNAi for the rapid production and testing of new genetic disease models. Similar strategies may be used in other model species, and may ultimately find applications in human gene therapy.  相似文献   

19.
High-throughput live-cell microarray technologies that facilitate combinatorial screening of genes and RNA interference (RNAi) would be invaluable in the identification of key gene expression profiles involved in complex cellular behaviors. Each spot on such a microarray can comprise a unique combination of genes or RNAi packaged into gene delivery vectors. Live target cells seeded on top of the microarrays would express the combination of genetic factors, potentially leading to phenotypic changes within cells. Here, we investigate the feasibility of using adeno-associated virus (AAV) as a gene delivery agent for such live-cell genetic microarrays. A robotic spotter was used to deposit AAV onto gamma-amino propyl silane, amine silane, or nitrocellulose-coated glass slides. Virus deposition and reverse transduction of target cells were found to be surface coating-dependent with nitrocellulose coating yielding the best AAV deposition, while also producing discrete islands of highly transduced cells. Our results demonstrate the feasibility of using nitrocellulose-coated surfaces for the development of AAV-based genetic microarrays.  相似文献   

20.
Establishing human cell models of spinal muscular atrophy (SMA) to mimic motor neuron-specific phenotypes holds the key to understanding the pathogenesis of this devastating disease. Here, we developed a closely representative cell model of SMA by knocking down the disease-determining gene, survival motor neuron (SMN), in human embryonic stem cells (hESCs). Our study with this cell model demonstrated that knocking down of SMN does not interfere with neural induction or the initial specification of spinal motor neurons. Notably, the axonal outgrowth of spinal motor neurons was significantly impaired and these disease-mimicking neurons subsequently degenerated. Furthermore, these disease phenotypes were caused by SMN-full length (SMN-FL) but not SMN-Δ7 (lacking exon 7) knockdown, and were specific to spinal motor neurons. Restoring the expression of SMN-FL completely ameliorated all of the disease phenotypes, including specific axonal defects and motor neuron loss. Finally, knockdown of SMN-FL led to excessive mitochondrial oxidative stress in human motor neuron progenitors. The involvement of oxidative stress in the degeneration of spinal motor neurons in the SMA cell model was further confirmed by the administration of N-acetylcysteine, a potent antioxidant, which prevented disease-related apoptosis and subsequent motor neuron death. Thus, we report here the successful establishment of an hESC-based SMA model, which exhibits disease gene isoform specificity, cell type specificity, and phenotype reversibility. Our model provides a unique paradigm for studying how motor neurons specifically degenerate and highlights the potential importance of antioxidants for the treatment of SMA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号