首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We previously have reported that the mitogen-activated protein kinase (MAPK) pathway is stimulated by adhesion of human chondrocytes to anti-beta(1)-integrin antibodies or collagen type II in vitro. These mechanisms most likely prevent chondrocyte dedifferentiation to fibroblast-like cells and chondrocyte death. To investigate whether this pathway plays an essential role for the differentiation, phenotype, and survival of chondrocytes, we blocked mitogen-activated protein kinase/extracellular signal-regulated kinase (Erk) (MEK), a kinase upstream of the kinase Erk by using U0126. Exposure of chondrocytes to U0126 caused activation of caspase-3 in a dose-dependent manner. Western blot analysis with an antibody specific for dually phosphorylated Erk shows that collagen type II induced phosphorylation of Erk1/2 was specifically blocked by U0126 in a dose-dependent manner. Immunohistochemical analysis showed that treated chondrocytes were caspase-3 positive. In treated chondrocytes, the cleavage of 116-kDa poly(ADP-ribose)polymerase resulted in the 85-kDa apoptosis-related cleavage fragment and was associated with caspase-3 activity. Analysis by electron microscopy showed typical morphological signs of apoptosis, such as crescent-shaped clumps of heterochromatin, and a degraded pericellular matrix. Thus, these results indicate that the MEK/Erk signal transduction pathway is involved in the maintenance of chondrocytes differentiation and survival. These data stimulate further investigations on the role of mitogen-activated protein kinase pathways in human chondrocytes.  相似文献   

2.
Expression of DNA-dependent protein kinase in human granulocytes   总被引:3,自引:0,他引:3  
Human polymorphonuclear leukocytes (PMN) have been reported to completely lack of DNA-dependent protein kinase (DNA-PK) which is composed of Ku protein and the catalytic subunit DNA-PKcs, needed for nonhomologous end-joining (NHEJ) of DNA double-strand breaks. Promyelocytic HL-60 cells express a variant form of Ku resulting in enhanced radiation sensitivity. This raises the question if low efficiency of NHEJ, instrumental for the cellular repair of oxidative damage, is a normal characteristic of myeloid differentiation. Here we confirmed the complete lack of DNAPK in PMN protein extracts, and the expression of the truncated Ku86 variant form in HL-60. However, this degradation of DNA-PK was shown to be due to a DNA-PK-degrading protease in PMN and HL-60. In addition, by using a protease-resistant whole cell assay, both Ku86 and DNA-PKcs could be demonstrated in PMN, suggesting the previously reported absence in PMN of DNA-PK to be an artefact. The levels of Ku86 and DNA-PKcs were much reduced in PMN, as compared with that of the lymphocytes, whereas HL-60 displayed a markedly elevated DNA-PK concentration. In conclusion, our findings provide evidence of reduced, not depleted expression of DNA-PK during the mature stages of myeloid differentiation.  相似文献   

3.
It is shown that 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H7), a specific inhibitor of protein kinase C, induces neuritogenesis in neuro 2a cells. The percentage of differentiated cells was 9%, 20%, 59% and 85% at 0, 17, 85 and 500 microM H7, respectively. The number of neurites cell increased 2-, 8- and 14-fold over the controls for 17, 85 and 500 microM H7, respectively. These results indicate that protein kinase C plays a key role in the control of differentiation of neural cells and that its specific inhibition may be of basic as well as of practical importance.  相似文献   

4.
5.
DNA-dependent protein kinase (DNA-PK) is activated in a two-step process whereby the Ku heterodimer first binds to the DNA double-strand breaks (dsbs) and then the DNA-PK catalytic subunit (cs) is recruited to form a repair complex. Oxidative stress is simultaneously generated along with DNA damage by ionizing radiation or chemotherapeutic agents whose impact on the DNA-PK activity has not previously been investigated. Here we show that the DNA damage-induced kinase activity of DNA-PK was modulated by oxidative stress, which was induced along with DNA dsbs in chlorambucil (Cbl)-exposed cells. Pretreatment with the antioxidants, 2(3)-t-butyl-4-hydroxyanisole or N-acetyl-l-cysteine enhanced the amount of DNA-PKcs phosphorylated at threonine 2609 (DNA-PKpThr2609) at the DNA dsbs and DNA-PK activity. Conversely, oxidative stress induced by l-buthionine (SR)-sulfoximine or glucose oxidase decreased the DNA-PK activity in Cbl-exposed cells. In addition, DNA-PKpThr2609 was poorly detectable at the site of DNA dsbs, as shown by colocalization to DNA-end-binding pH2AX or p53BP1. There was no change in the protein levels of DNA-PKcs, Ku70, or Ku86. Data from these studies provide the first evidence that oxidative stress effects posttranslational modification and assembly of DNA-PK complex at DNA dsbs, and thereby repair of DNA dsbs.  相似文献   

6.
Geranylgeranylation of RhoA small G-protein is essential for its localization to cell membranes and for its biological functions. Many RhoA effects are mediated by its downstream effector RhoA kinase. The role of protein geranylgeranylation and the RhoA pathway in the regulation of endothelial cell survival has not been elucidated. The hydroxy-3-methylglutaryl (HMG)-CoA reductase inhibitor lovastatin depletes cellular pools of geranylgeranyl pyrophosphate and farnesol pyrophosphate and thereby inhibits both geranylgeranylation and farnesylation. Human umbilical vein endothelial cells (HUVECs) were exposed to lovastatin (3 microm-30 microm) for 48 h, and cell death was quantitatively determined by cytoplasmic histone-associated DNA fragments as well as caspase-3 activity. The assays showed that lovastatin caused a dose-dependent endothelial cell death. The addition of geranylgeraniol, which restores geranylgeranylation, rescued HUVEC from apoptosis. The geranylgeranyltransferase inhibitor GGTI-298, but not the farnesyltransferase inhibitor FTI-277, induced apoptosis in HUVEC. Cell death was also induced by a blockade of RhoA function by exoenzyme C3. In addition, treatment of HUVEC with the RhoA kinase inhibitors Y-27632 and HA-1077 caused dose-dependent cell death. Y-27632 did not inhibit other well known survival pathways, such as NF-kappa B, ERK, and phosphatidylinositol 3-kinase/Akt. However, there was an increase in p53 protein level concomitant with Y-27632-induced cell death. Unlike the apoptosis induced by TNF-alpha, which occurs only with inhibition of new protein synthesis, apoptosis induced by inhibitors of HMG-CoA reductase, geranylgeranyltransferase, or RhoA kinase was blocked by cycloheximide. Our data indicate that inhibition of protein geranylgeranylation and RhoA pathways induce apoptosis in HUVEC and that induction of p53 or other proapoptotic proteins is required for this process.  相似文献   

7.
DNA-dependent protein kinase (DNA-PK) is activated in a two-step process whereby the Ku heterodimer first binds to the DNA double-strand breaks (dsbs) and then the DNA-PK catalytic subunit (cs) is recruited to form a repair complex. Oxidative stress is simultaneously generated along with DNA damage by ionizing radiation or chemotherapeutic agents whose impact on the DNA-PK activity has not previously been investigated. Here we show that the DNA damage-induced kinase activity of DNA-PK was modulated by oxidative stress, which was induced along with DNA dsbs in chlorambucil (Cbl)-exposed cells. Pretreatment with the antioxidants, 2(3)-t-butyl-4-hydroxyanisole or N-acetyl-l-cysteine enhanced the amount of DNA-PKcs phosphorylated at threonine 2609 (DNA-PKpThr2609) at the DNA dsbs and DNA-PK activity. Conversely, oxidative stress induced by l-buthionine (SR)-sulfoximine or glucose oxidase decreased the DNA-PK activity in Cbl-exposed cells. In addition, DNA-PKpThr2609 was poorly detectable at the site of DNA dsbs, as shown by colocalization to DNA-end-binding pH2AX or p53BP1. There was no change in the protein levels of DNA-PKcs, Ku70, or Ku86. Data from these studies provide the first evidence that oxidative stress effects posttranslational modification and assembly of DNA-PK complex at DNA dsbs, and thereby repair of DNA dsbs.  相似文献   

8.
The DNA-dependent protein kinase (DNA-PK) is composed of a large catalytic subunit (DNA-PKcs) and a DNA-binding protein, Ku. Cells lacking DNA-PK activity are radiosensitive and are defective in DNA double-strand break repair and V(D)J recombination. Although much information regarding the interactions of Ku with DNA ends is available, relatively little is known about the interaction of DNA-PKcs with DNA-bound Ku. Here we show, using electrophoretic mobility shift assays, that chemical crosslinkers enhance the formation of protein-DNA complexes containing DNA-PKcs, Ku and other proteins in extracts from cells of normal human cell lines. Extracts from cells of the radiosensitive human cell line M059J, which lacks DNA-PKcs, are not competent to form these protein-DNA complexes, while addition of purified DNA-PKcs protein restores complex formation. This assay may be useful for screening for DNA-PK function in cells of human cell lines and for identifying proteins that interact with the DNA-PK-DNA complex. We also show that Ku protein in rodent cells can interact with human DNA-PKcs; however, this assay may be less useful for studying Ku/DNA-PKcs interactions in cells of rodent cell lines due to the low abundance of DNA-PKcs in these cells.  相似文献   

9.
Treating SH-SY5Y human neuroblastoma cells with 1 microM staurosporine resulted in a three- to fourfold higher DNA-dependent protein kinase (DNA-PK) activity compared with untreated cells. Time course studies revealed a biphasic effect of staurosporine on DNA-PK activity: an initial increase that peaked by 4 h and a rapid decline that reached approximately 5-10% that of untreated cells by 24 h of treatment. Staurosporine induced apoptosis in these cells as determined by the appearance of internucleosomal DNA fragmentation and punctate nuclear morphology. The maximal stimulation of DNA-PK activity preceded significant morphological changes that occurred between 4 and 8 h (40% of total number of cells) and increased with time, reaching 70% by 48 h. Staurosporine had no effect on caspase-1 activity but stimulated caspase-3 activity by 10-15-fold in a time-dependent manner, similar to morphological changes. Similar time-dependent changes in DNA-PK activity, morphology, and DNA fragmentation occurred when the cells were exposed to either 100 microM ceramide or UV radiation. In all these cases the increase in DNA-PK activity preceded the appearance of apoptotic markers, whereas the loss in activity was coincident with cell death. A cell-permeable inhibitor of DNA-PK, OK-1035, significantly reduced staurosporine-induced punctate nuclear morphology and DNA fragmentation. Collectively, these results suggest an intriguing possibility that activation of DNA-PK may be involved with the induction of apoptotic cell death.  相似文献   

10.
11.
12.

Objectives

Coroglaucigenin (CGN), a natural product isolated from Calotropis gigantean by our research group, has been identified as a potential anti‐cancer agent. However, the molecular mechanisms involved remain poorly understood.

Materials and methods

Cell viability and cell proliferation were detected by MTT and BrdU assays. Flow cytometry, SA‐β‐gal assay, western blotting and immunofluorescence were performed to determine CGN‐induced apoptosis, senescence and autophagy. Western blotting, siRNA transfection and coimmunoprecipitation were carried out to investigate the mechanisms of CGN‐induced senescence and autophagy. The anti‐tumour activities of combination therapy with CGN and chloroquine were observed in mice tumour models.

Results

We demonstrated that CGN inhibits the proliferation of colorectal cancer cells both in vitro and in vivo. We showed that the inhibition of cell proliferation by CGN is independent of apoptosis, but is associated with cell‐cycle arrest and senescence in colorectal cancer cells. Notably, CGN induces protective autophagy that attenuates CGN‐mediated cell proliferation. Functional studies revealed that CGN disrupts the association of Hsp90 with both CDK4 and Akt, leading to CDK4 degradation and Akt dephosphorylation, eventually resulting in senescence and autophagy, respectively. Combination therapy with CGN and chloroquine resulted in enhanced anti‐tumour effects in vivo.

Conclusions

Our results demonstrate that CGN induces senescence and autophagy in colorectal cancer cells and indicate that combining it with an autophagy inhibitor may be a novel strategy suitable for CGN‐mediated anti‐cancer therapy.
  相似文献   

13.
Artemis protein has irreplaceable functions in V(D)J recombination and nonhomologous end joining (NHEJ) as a hairpin and 5' and 3' overhang endonuclease. The kinase activity of the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is necessary in activating Artemis as an endonuclease. Here we report that three basal phosphorylation sites and 11 DNA-PKcs phosphorylation sites within the mammalian Artemis are all located in the C-terminal domain. All but one of these phosphorylation sites deviate from the SQ or TQ motif of DNA-PKcs that was predicted previously from in vitro phosphorylation studies. Phosphatase-treated mammalian Artemis and Artemis that is mutated at the three basal phosphorylation sites still retain DNA-PKcs-dependent endonucleolytic activities, indicating that basal phosphorylation is not required for the activation. In vivo studies of Artemis lacking the C-terminal domain have been reported to be sufficient to complement V(D)J recombination in Artemis null cells. Therefore, the C-terminal domain may have a negative regulatory effect on the Artemis endonucleolytic activities, and phosphorylation by DNA-PKcs in the C-terminal domain may relieve this inhibition.  相似文献   

14.
Mesenchymal stem cells (MSCs) contribute to tissue repair in vivo and form an attractive cell source for tissue engineering. Their regenerative potential is impaired by cellular senescence. The effects of oxidative stress on MSCs are still unknown. Our studies were to investigate into the proliferation potential, cytological features and the telomere linked stress response system of MSCs, subject to acute or prolonged oxidant challenge with hydrogen peroxide. Telomere length was measured using the telomere restriction fragment assay, gene expression was determined by rtPCR. Sub-lethal doses of oxidative stress reduced proliferation rates and induced senescent-morphological features and senescence-associated β-galactosidase positivity. Prolonged low dose treatment with hydrogen peroxide had no effects on cell proliferation or morphology. Sub-lethal and prolonged low doses of oxidative stress considerably accelerated telomere attrition. Following acute oxidant insult p21 was up-regulated prior to returning to initial levels. TRF1 was significantly reduced, TRF2 showed a slight up-regulation. SIRT1 and XRCC5 were up-regulated after oxidant insult and expression levels increased in aging cells. Compared to fibroblasts and chondrocytes, MSCs showed an increased tolerance to oxidative stress regarding proliferation, telomere biology and gene expression with an impaired stress tolerance in aged cells.  相似文献   

15.
We studied the effect of pre-incubation with NU7441, a specific inhibitor of DNA-dependent protein kinase (DNA-PK), on molecular mechanisms triggered by ionizing radiation (IR). The experimental design involved four groups of human T-lymphocyte leukaemic MOLT-4 cells: control, NU7441-treated (1 μM), IR-treated (1 Gy), and combination of NU7441 and IR. We used flow cytometry for apoptosis assessment, Western blotting and ELISA for detection of proteins involved in DNA repair signalling and epifluorescence microscopy for detection of IR-induced phosphorylation of histone H2A.X. We did not observe any major changes in the amount of DNA-PK subunits Ku70/80 caused by the combination of NU7441 and radiation. Their combination led to an increased phosphorylation of H2A.X, a hallmark of DNA damage. However, it did not prevent up-regulation of neither p53 (and its phosphorylation at Ser 15 and 392) nor p21. We observed a decrease in the levels of anti-apoptotic Mcl-1, cdc25A phosphatase, cleavage of PARP and a significant increase in apoptosis in the group treated with combination. In conclusion, the combination of NU7441 with IR caused increased phosphorylation of H2A.X early after irradiation and subsequent induction of apoptosis. It was efficient in MOLT-4 cells in 10× lower concentration than the inhibitor NU7026. NU7441 proved as a potent radio-sensitizing agent, and it might provide a platform for development of new radio-sensitizers in radiotherapy.  相似文献   

16.
Although curcumin has been shown to inhibit prostate tumor growth in animal models, its mechanism of action is not clear. To better understand the anti-cancer effects of curcumin, we investigated the effects of curcumin on cell survival factor Akt in human prostate cancer cell lines, LNCaP, PC-3, and DU-145. Our results demonstrated differential activation of Akt. Akt was constitutively activated in LNCaP and PC-3 cells. Curcumin inhibited completely Akt activation in both LNCaP and PC-3 cells. The presence of 10% serum decreased the inhibitory effect of curcumin in PC-3 cells whereas complete inhibition was observed in 0.5% serum. Very little or no activation of Akt was observed in serum starved DU-145 cells (0.5% serum). The presence of 10% serum activated Akt in DU-145 cells and was not inhibited by curcumin. Results suggest that one of the mechanisms of curcumin inhibition of prostate cancer may be via inhibition of Akt. To our knowledge this is the first report on the curcumin inhibition of Akt activation in LNCaP and PC-3 but not in DU-145 cells.  相似文献   

17.
Studies over the last several years have revealed the existence of a biological phenomenon known as "bystander effect", wherein cells that are not exposed to radiation elicit a similar response to that of irradiated cells. Understanding the mechanism(s) underlying the bystander effect is important not only for radiation risk assessment but also for evaluation of protocols for cancer radiotherapy. Evaluation of signaling pathways in bystander cells may provide an insight to understand the molecular mechanisms(s) responsible for this complex phenomenon. With this objective, the time course kinetics of intracellular distribution of protein kinase C (PKC isoforms PKC-betaII, PKC-alpha/beta, PKC-theta) was investigated in total and subcellular (cytosolic and nuclear) fractions of human lung fibroblast (MRC-5) cells. MRC-5 cells were either irradiated or treated with the irradiated conditioned medium collected 1h after 1 or 10 Gy of gamma-irradiation. The radiation dose selected was in the range of therapeutic usage of radiation for the human cancer treatment. Unexpectedly, bystander cells showed higher activation of protein kinase C isoforms as compared to irradiated and sham-treated control cells. Protein kinase C isoforms were more enriched in the nuclear fraction than the cytosolic fraction proteins. Induction of PKC isoforms in bystander cells are due to post-translational modifications as shown by the non-phosphorylated protein kinase C level in both irradiated and bystander cells did not differ from the sham-treated control cells. The specific activation of protein kinase C isoforms in bystander cells as demonstrated for the first time in this study may help to identify the effect of therapeutically used radiation exposure for the tumor destructions along with its implications for adjacent non-irradiated cells and organs.  相似文献   

18.
Mitogen-activated protein (MAP) kinase mediates cell proliferation, cell differentiation, and cell survival by regulating signaling pathways activated by receptor protein tyrosine kinases (RPTKs), including the insulin-like growth factor 1 receptor (IGF-IR). We analyzed the upstream signaling components of the MAP kinase pathway, including RPTKs, in human breast cancer cell lines and found that some of those components were overexpressed. Importantly, signaling molecules such as IGF-IR, insulin receptor, and insulin receptor substrate 1, leading to the MAP kinase pathway, were found to be concomitantly overexpressed within certain tumor lines, i.e., MCF-7 and T-47D. When compared with the nonmalignant and other breast tumor lines examined, MCF-7 and T-47D cells displayed a more rapid, robust, and sustained MAP kinase activation in response to insulin-like growth factor I (IGF-I) stimulation. By contrast, IGF-I treatment led to a sustained down-regulation of MAP kinase in those lines overexpressing ErbB2-related RPTKs. Interestingly, blocking the MAP kinase pathway with PD098059 had the greatest antiproliferative effect on MCF-7 and T-47D among the normal and tumor lines tested. Furthermore, addition of an IGF-IR blocking antibody to growth medium attenuated the ability of PD098059 to suppress the growth of MCF-7 and T-47D cells. Thus, our study suggests that concomitant overexpression of multiple signaling components of the IGF-IR pathway leads to the amplification of IGF-I-mediated MAP kinase signaling and resultant sensitization to PD098059. The enhanced sensitivity to PD098059 implies an increased requirement for the MAP kinase pathway in those breast cancer cells, making this pathway a potential target in the treatment of selected breast malignancies.  相似文献   

19.
DNA-dependent protein kinase (DNA-PK), a nuclear serine/threonine kinase, is responsible for the DNA double-strand break repair. Cells lacking or with dysfunctional DNA-PK are often associated with mis-repair, chromosome aberrations, and complex exchanges, all of which are known to contribute to the development of human cancers including glioblastoma. Two human glioblastoma cell lines were used in the experiment, M059J cells lacking the catalytic subunit of DNA-PK, and their isogenic but DNA-PK proficient counterpart, M059K. We found that M059K cells were much more sensitive to staurosporine (STS) treatment than M059J cells, as demonstrated by MTT assay, TUNEL detection, and annexin-V and propidium iodide (PI) staining. A possible mechanism responsible for the different sensitivity in these two cell lines was explored by the examination of Bcl-2, Bax, Bak, and Fas. The cell death stimulus increased anti-apoptotic Bcl-2 and decreased pro-apoptotic Bcl-2 members (Bak and Bax) and Fas in glioblastoma cells deficient in DNA-PK. Activation of DNA-PK is known to promote cell death of human tumor cells via modulation of p53, which can down-regulate the anti-apoptotic Bcl-2 member proteins, induce pro-apoptotic Bcl-2 family members and promote a Bax-Bak interaction. Our experiment also demonstrated that the mode of glioblastoma cell death induced by STS consisted of both apoptosis and necrosis and the percentage of cell death in both modes was similar in glioblastoma cell lines either lacking DNA-PK or containing intact DNA-PK. Taken together, our findings suggest that DNA-PK has a positive role in the regulation of apoptosis in human glioblastomas. The aberrant expression of Bcl-2 family members and Fas was, at least in part, responsible for decreased sensitivity of DNA-PK deficient glioblastoma cells to cell death stimuli.  相似文献   

20.
Tsuji T  Katsurano M  Ibaragi S  Shima K  Sasaki A  Hu GF 《Biochemistry》2007,46(31):8920-8932
Ornithine decarboxylase (ODC) antizyme targets ODC for ubiquitin-independent proteosome degradation, thereby inhibiting polyamine synthesis. It has been shown to regulate DNA methylation and has tumor suppressor activity. Increasing evidence suggested that antizyme may also have ODC-independent functions. Here, we report that antizyme plays a role in DNA double-strand break repairs. A zinc-inducible human antizyme gene expression vector was transfected into UM1 human oral squamous cancer cells that do not express endogenous antizyme. The resultant upregulated genes were screened by cDNA arrays and confirmed by quantitative real-time polymerase chain reaction. DNA-dependent protein kinase including its catalytic subunit DNA-PKcs and regulatory subunit Ku70, two key proteins of the DNA damage repair machinery, was significantly upregulated after ectopic expression of antizyme. Consistently, we found that UM1 cells are sensitive to gamma irradiation and deficient in DNA damage repairs, as shown by radio-sensitivity and Comet assays. Ectopic expression of antizyme increased radio-resistance of UM1 cells and restored their capacity of DNA damage repairs to the level of UM2 cells that have an identical genetic background but express endogenous antizyme. Plasmid end-joining assays confirmed that antizyme enhances the ability of UM1 cells to repair DNA double-strand breaks by the nonhomologous end-joining pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号