首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 4 毫秒
1.
Pituitary adenylate cyclase activating peptide (PACAP) is a novel peptide isolated from the ovine hypothalamus. PACAP exists in 2 molecular forms with 27 (PACAP27) or 38 (PACAP38) amino acid residues. PACAP localization was studied by immunohistochemical methods in central (bone marrow and thymus) and peripheral (spleen, lymph nodes and duodenal mucosa) lymphoid tissues with antisera raised against PACAP27 or PACAP38. PACAP-positive cells were found in all lymphoid tissues examined. These cells were highly positive for PACAP38 but were negative for PACAP27. Morphologically, they were small mononuclear cells with relatively scarce cytoplasm and lymphocyte-like features. PACAP38-positive cells were abundant in peripheral lymphoid tissues (i.e., mesenteric lymph nodes). In the duodenal mucosa, PACAP38-positive cells were located either in the lamina propria or epithelium. These results suggest that PACAP38-positive cells are present within lymphoid tissues and may represent a lymphocyte-like cell subpopulation that has a potential role in cell-to-cell interactions in the immune system and in the integrated communication between neuroendocrine and immune systems.  相似文献   

2.
Summary Pituitary adenylate cyclase-activating peptide (PACAP) is a vasoactive intestinal peptide (VIP)-like peptide recently isolated from ovine hypothalami. Nerve fibers displaying PACAP immunoreactivity were found in the respiratory tract of rats, guinea pigs, ferrets, pigs, sheep and squirrel monkeys. A moderate supply of PACAP-immunoreactive fibers was seen in the nasal mucosa of guinea pigs. Few to moderate numbers of PACAP-containing fibers occurred in the tracheo-bronchial wall of rats, guinea pigs, ferrets, pigs, sheep and squirrel monkeys. The fibers were distributed beneath the epithelium, around blood vessels and seromucous glands, and among bundles of smooth muscle. In the lungs, the immunoreactive fibers were observed close to small bronchioli. A few PACAP-immunoreactive nerve cell bodies were seen in the sphenopalatine and otic ganglia of guinea pigs. Simultaneous double immunostaining of the respiratory tract of sheep and ferrets revealed that all PACAP-containing nerve fibers stored VIP. We suggest that neuronal PACAP may take part in the regulation of smooth muscle tone and glandular secretion.  相似文献   

3.
Summary Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide that occurs in several tissues, e.g., in the gut. We have studied PACAP-like immunoreactivity in the pancreas of rat and mouse, and the effects of PACAP-38 on basal and stimulated insulin and glucagon secretion in the mouse. Immunofluorescence staining demonstrated the presence of PACAP-like immunoreactivity in nerve fibers in both the rat and mouse pancreas. The nerve fibers were seen in the exocrine pancreas and surrounding the islets. Occasionally, the nerve fibers occurred within the islets. Most PACAP-positive nerve fibers innervated the intrapancreatic ganglia, although no nerve cell bodies contained PACAP-like immunoreactivity. In-vivo experiments in mice revealed that basal plasma glucagon levels were increased by PACAP-39 injected intravenously at dose levels exceeding 1.8 nmol/kg. Furthermore, PACAP-38 (7 nmol/kg) potentiated the plasma glucagon response to the cholinergic agonist carbachol (0.16 mol/kg). This potentiation was reduced to simple addition by pretreatment with a combined - and -adrenergic blockade by phentolamine (35 mol/kg) and propranolol (8.5 mol/kg). Moreover, PACAP-38 inhibited a carbachol-induced increase in the level of plasma insulin in the absence but not in the presence of adrenergic blockade. PACAP-38 increased basal plasma insulin levels and increased basal plasma glucose levels 6 min and 10 min, respectively, after injection of the peptide. We conclude that PACAP-like immunoreactivity exists in nerve fibers innervating the mouse and rat pancreas, particularly the intrapancreatic ganglia, and that PACAP-38 augments both basal and carbachol-stimulated glucagon secretion in the mouse.  相似文献   

4.
The crustacean hyperglycemic hormone is the most abundant neuropeptide present in the eyestalk of Crustacea and its main role is to control the glucose level in the hemolymph. Our study was aimed at assessing the importance of C-terminal amidation for its biological activity. Two recombinant peptides were produced, Asl-rcHH-Gly with a free carboxyl terminus and Asl-rcHH-amide with an amidated C-terminus. Homologous bioassays performed on the astacid crayfish Astacus leptodactylus showed that the amidated peptide had a stronger hyperglycemic effect compared to the non-amidated peptide. To assess the relevance of amidation also in other decapods and how much the differences in the cHH amino acid sequence can affect the functionality of the peptides, we carried out heterologous bioassays on the cambarid Procambarus clarkii and palaemonid Palaemon elegans. The Asl-rcHH-amide elicited a good response in P. clarkii and in P. elegans. The injection of Asl-rcHH-Gly evoked a weak response in both species. These results prove the importance of C-terminal amidation for the biological activity of cHH in crayfish as well as the role of the peptide primary sequence for the species-specificity hormone-receptor recognition.  相似文献   

5.
Summary The present immunohistochemical study reveals that a small number of chromaffin cells in the rat adrenal medulla exhibit CGRP-like immunoreactivity. All CGRP-immunoreactive cells were found to be chromaffin cells without noradrenaline fluorescence; from combined immunohistochemistry and fluorescence histochemistry we suggest that these are adrenaline cells. In addition, all CGRP-immunoreactive cells simultaneously exhibited NPY-like immunoreactivity. CGRP-chromaffin cells were characterized by abundant chromaffin granules with round cores in which the immunoreactive material was densely localized. These findings suggest the co-existence of CGRP, NPY and adrenaline within the chromaffin granules in a substantial number of chromaffin cells.Thicker and thinner nerve bundles, which included CGRP-immunoreactive nerve fibers, with or without varicosities, penetrated the adrenal capsule. Most of them passed through the cortex and entered the medulla directly, whereas others were distributed in subcapsular regions and among the cortical cells of the zona glomerulosa. Here the CGRP-fibers were in close contact with cortical cells. A few of the fibers supplying the cortex extended further into the medulla. The CGRP-immunoreactive fibers in the medulla were traced among and within small clusters of chromaffin cells and around ganglion cells. The CGRP-fibers were directly apposed to both CGRP-positive and negative chromaffin cells, as well as to ganglion cells. Immunoreactive fibers, which could not be found close to blood vessels, were characterized by the presence of numerous small clear vesicles mixed with a few large granular vesicles. The immunoreactive material was localized in the large granular vesicles and also in the axoplasm. Since no ganglion cells with CGRP-like immunoreactivity were found in the adrenal gland, the CGRP-fibers are regarded as extrinsic in origin. In double-immunofluorescence staining for CGRP and SP, all the SP-immunoreactive fibers corresponded to CGRP-immunoreactive ones in the adrenal gland. This suggests that CGRP-positive fibers in the adrenal gland may be derived from the spinal ganglia, as has been demonstrated with regard to the SP-nerve fibers.  相似文献   

6.
Pituitary adenylate cyclase-activating polypeptide (PACAP) and tissue plasminogen activator (tPA) play important roles in neuronal migration and survival. However, a direct link between the neurotrophic effects of PACAP and tPA has never been investigated. In this study, we show that, in PC12 cells, PACAP induced a 9.85-fold increase in tPA gene expression through activation of the protein kinase A- and protein kinase C-dependent signaling pathways. In immature cerebellar granule neurons (CGN), PACAP stimulated tPA mRNA expression and release of proteolytically active tPA. Immunocytochemical labeling revealed the presence of tPA in the cytoplasm and processes of cultured CGN. The inhibitory effect of PACAP on CGN motility was not affected by the tPA substrate plasminogen or the tPA inhibitor plasminogen activator inhibitor-1. In contrast, plasminogen activator inhibitor-1 significantly reduced the stimulatory effect of PACAP on CGN survival. Altogether, these data indicate that tPA gene expression is activated by PACAP in both tumoral and normal neuronal cells. The present study also demonstrates that PACAP stimulates the release of tPA which promotes CGN survival by a mechanism dependent of its proteolytic activity.  相似文献   

7.
Antisera specific for mammalian atrial natriuretic peptied (ANP) and neuropeptide Y (NPY) were applied to examine, in immunofluorescence, the occurrence of cells immunoreactive to ANP and NPY in the adrenal organs of mammals, birds, reptiles, amphibians, and bony fish. Catecholamine-containing cells were identified using antisera against tyrosine-hydroxylase, dopamine--hydroxylase, and phenylethanolamine-N-methyl-transferase. In all vertebrates studied, immunoreactivities to ANP and NPY occurred in adrenal chromaffin cells but were absent from the cortex or its homolog, the interrenal. The majority of immunoreactivities to ANP and NPY was confined to the adrenaline cells. In mammals, the number of ANP-immuno-reactive cells (60%–80% of the total cell population) exceeded that of the NPY-immunoreactive cells (35%–45%). In birds, reptiles, and Amphibia, the numbers of ANP-immunoreactive (35%–40%) and NPY-immunoreactive (30%–35%) cells were in a similar range. The bony fish showed a density of both ANP-immunoreactive (80%–90%) and NPY-immunoreactive (35%–40%) cells. In all species studied, immunoreactivities to ANP and NPY partially coexisted. Generally, 30%–55% of the ANP-immunoreactive cells also contained NPY-immunoreactivity. In rat, coexistence amounted to almost 100% and in quail to 95%. Except for the rat, three subpopulations of chromaffin cells seemed to occur: ANP-immunoreactive non-NPY-immunoreactive, ANP-immunoreactive+NPY-immunoreactive and NPY-immunoreactive non-ANP-immunoreactive cells. Thus, adrenal ANP and NPY share a conservative history and coexist as early as at the level of bony fish. The endocrine actions of ANP and NPY derived from medullary cells on cortical cells as found in mammals might be based on an ancestoral paracrine system. In submammalians, ANP and NPY may not only act as endocrine hormones, but also influence steroid-producing interrenal cells in a paracrine manner, and act as modulators on chromaffin cells.Dedicated to Professor dr. Angela Nolte (Münster, Germany) on the occasion of the 50th anniversary of her Ph.D. graduation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号