共查询到20条相似文献,搜索用时 0 毫秒
1.
To provide molecular-level insights into the spontaneous replication error and the mismatch discrimination mechanisms of human DNA polymerase β (polβ), we report four crystal structures of polβ complexed with dG•dTTP and dA•dCTP mismatches in the presence of Mg2+ or Mn2+. The Mg2+-bound ground-state structures show that the dA•dCTP-Mg2+ complex adopts an ‘intermediate’ protein conformation while the dG•dTTP-Mg2+ complex adopts an open protein conformation. The Mn2+-bound ‘pre-chemistry-state’ structures show that the dA•dCTP-Mn2+ complex is structurally very similar to the dA•dCTP-Mg2+ complex, whereas the dG•dTTP-Mn2+ complex undergoes a large-scale conformational change to adopt a Watson–Crick-like dG•dTTP base pair and a closed protein conformation. These structural differences, together with our molecular dynamics simulation studies, suggest that polβ increases replication fidelity via a two-stage mismatch discrimination mechanism, where one is in the ground state and the other in the closed conformation state. In the closed conformation state, polβ appears to allow only a Watson–Crick-like conformation for purine•pyrimidine base pairs, thereby discriminating the mismatched base pairs based on their ability to form the Watson–Crick-like conformation. Overall, the present studies provide new insights into the spontaneous replication error and the replication fidelity mechanisms of polβ. 相似文献
2.
Yasushi Dobashi Yoshinobu Kubota Taro Shuin Soichiro Torigoe Masahiro Yao Masahiko Hosaka 《Human genetics》1995,95(4):389-390
Recently, evidence has accumulated that mutations in DNA repair genes might be associated with certain steps in carcinogenesis. The DNA polymerase gene is one of the DNA repair genes, and mutations in it have been detected in 83% of human colorectal cancers. To assess the involvement of polymerase gene mutations in the development of human prostate cancers, we performed sequence analyses of human DNA samples. Unexpectedly, we found six regions that were polymorphic. This information should be taken into consideration at the time of sequence analysis of the DNA polymerase gene.s 相似文献
3.
Abbie M. Frederick 《Biochemical and biophysical research communications》2009,378(3):419-199
The antineoplastic prodrug Cloretazine exerts its cytotoxicity via a synergism between 2-chloroethylating and carbamoylating activities that are cogenerated upon activation in situ. Cloretazine is reported here to inhibit the nucleotidyl-transferase activity of purified human DNA polymerase β (Pol β), a principal enzyme of DNA base excision repair (BER). The 2-chloroethylating activity of Cloretazine alkylates DNA at the O6 position of guanine bases resulting in 2-chloroethoxyguanine monoadducts, which further react to form cytotoxic interstrand DNA crosslinks. Alkylated DNA is often repaired via BER in vivo. Inhibition of the polymerase activity of Pol β may account for some of the synergism between Cloretazine’s two reactive subspecies in cytotoxicity assays. This inhibition was only observed using agents with carbamoylating activity. Furthermore, while therapeutically relevant concentrations of Cloretazine inhibited the polymerase activity of Pol β, the enzyme’s lyase activity, which may also participate in BER, was not significantly inhibited. 相似文献
4.
《DNA Repair》2015
Numerous genetic studies have provided compelling evidence to establish DNA polymerase ɛ (Polɛ) as the primary DNA polymerase responsible for leading strand synthesis during eukaryotic nuclear genome replication. Polɛ is a heterotetramer consisting of a large catalytic subunit that contains the conserved polymerase core domain as well as a 3′ → 5′ exonuclease domain common to many replicative polymerases. In addition, Polɛ possesses three small subunits that lack a known catalytic activity but associate with components involved in a variety of DNA replication and maintenance processes. Previous enzymatic characterization of the Polɛ heterotetramer from budding yeast suggested that the small subunits slightly enhance DNA synthesis by Polɛ in vitro. However, similar studies of the human Polɛ heterotetramer (hPolɛ) have been limited by the difficulty of obtaining hPolɛ in quantities suitable for thorough investigation of its catalytic activity. Utilization of a baculovirus expression system for overexpression and purification of hPolɛ from insect host cells has allowed for isolation of greater amounts of active hPolɛ, thus enabling a more detailed kinetic comparison between hPolɛ and an active N-terminal fragment of the hPolɛ catalytic subunit (p261N), which is readily overexpressed in Escherichia coli. Here, we report the first pre-steady-state studies of fully-assembled hPolɛ. We observe that the small subunits increase DNA binding by hPolɛ relative to p261N, but do not increase processivity during DNA synthesis on a single-stranded M13 template. Interestingly, the 3′ → 5′ exonuclease activity of hPolɛ is reduced relative to p261N on matched and mismatched DNA substrates, indicating that the presence of the small subunits may regulate the proofreading activity of hPolɛ and sway hPolɛ toward DNA synthesis rather than proofreading. 相似文献
5.
It has been inferred from structural and computational studies that the mechanism of DNA polymerases involves subtle but important discrete steps that occur between binding and recognition of the correct dNTP and chemical catalysis. These steps potentially include local conformational changes involving active site residues, reorganization of Mg(2+)-coordinating ligands, and proton transfer. Here we address this broad issue by conducting extensive transient state kinetic analyses of DNA polymerase β (Pol β). We also performed kinetic simulations to evaluate alternative kinetic models. These studies provide some support for two-step subdomain closing and define constraints under which a kinetically significant prechemistry step can occur. To experimentally identify additional microscopic steps, we developed a stopped flow absorbance assay to measure proton formation that occurs during catalysis. These studies provide direct evidence that formation of the enzyme-bound 3'-O(-) nucleophile is rate determining for chemistry. We additionally show that at low pH the chemical step is rate limiting for catalysis, but at high pH, a postchemistry conformational step is rate limiting due to a pH-dependent increase in the rate of nucleotidyl transfer. Finally, we performed exhaustive analyses of [Mg(2+)] and pH effects. In contrast to published studies, the results suggest an irregular pH dependence of k(pol), which is consistent with general base catalysis involving cooperativity between two or more protonic residues. Overall, the results represent significant advancement in the kinetic mechanism of Pol β and also reconcile some computational and experimental findings. 相似文献
6.
Promiscuous DNA synthesis by human DNA polymerase θ 总被引:1,自引:0,他引:1
The biological role of human DNA polymerase θ (POLQ) is not yet clearly defined, but it has been proposed to participate in several cellular processes based on its translesion synthesis capabilities. POLQ is a low-fidelity polymerase capable of efficient bypass of blocking lesions such as abasic sites and thymine glycols as well as extension of mismatched primer termini. Here, we show that POLQ possesses a DNA polymerase activity that appears to be template independent and allows efficient extension of single-stranded DNA as well as duplex DNA with either protruding or multiply mismatched 3'-OH termini. We hypothesize that this DNA synthesis activity is related to the proposed role for POLQ in the repair or tolerance of double-strand breaks. 相似文献
7.
A. A. Kazakov E. E. Grishina V. Z. Tarantul L. V. Gening 《Biochemistry. Biokhimii?a》2010,75(7):905-911
An increased level of mutagenesis, partially caused by imbalanced activities of error prone DNA polymerases, is a key symptom of cell malignancy. To clarify the possible role of incorrect DNA polymerase ι (Pol ι) function in increased frequency of mutations in mammalian cells, the activity of this enzyme in extracts of cells of different mouse organs and human eye (melanoma) and eyelid (basal-cell skin carcinoma) tumor cells was studied. Both Mg2+, considered as the main activator of the enzyme reaction of in vivo DNA replication, and Mn2+, that activates homogeneous Pol ι preparations in experiments in vitro more efficiently compared to all other bivalent cations, were used as cofactors of the DNA polymerase reaction in these experiments. In the presence of Mg2+, the enzyme was active only in cell extracts of mouse testicles and brain, whereas in the presence of Mn2+ the activity of Pol ι was found in all studied normal mouse organs. It was found that in cell extracts of both types of malignant tumors (basal-cell carcinoma and melanoma) Pol ι activity was observed in the presence of either Mn2+ or Mg2+. Manganese ions activated Pol ι in both cases, though to a different extent. In the presence of Mn2+ the Pol ι activity in the basal-cell carcinoma exceeded 2.5-fold that in control cells (benign tumors from the same eyelid region). In extracts of melanoma cells in the presence of either cation, the level of the enzyme activity was approximately equal to that in extracts of cells of surrounding tumor-free tissues as well as in eyes removed after traumas. The distinctive feature of tissue malignancy (in basal-cell carcinoma and in melanoma) was the change in DNA synthesis revealed as Mn2+-activated continuation of DNA synthesis after incorrect incorporation of dG opposite dT in the template by Pol ι. Among cell extracts of different normal mouse organs, only those of testicles exhibited a similar feature. This similarity can be explained by cell division blocking that occurs in all normal cells except in testicles and in malignant cells. 相似文献
8.
Shigeru Tanaka Ke Cao Atsuko Niimi Siripan Limsirichaikul Huang Qin Miao Noriko Nakamura Takashi Murate Yoshinori Hasegawa Takashi Takahashi Motoshi Suzuki 《DNA Repair》2010,9(5):534-541
Recent studies have revealed that the base selection step of DNA polymerases (pol) plays a role in prevention of DNA replication errors. We investigated whether base selection is required for the DNA replication fidelity of pol α and genomic stability in human cells. We introduced an Leu864 to Phe substitution (L864F) into human pol α and performed an in vitro LacZα forward mutation assay. Our results showed that the overall mutation rate was increased by 180-fold as compared to that of the wild-type. Furthermore, steady state kinetics analyses consistently showed that L864F pol α had a decreased discrimination ability between correct and incorrect nucleotide incorporation, as well as between matched and mismatched primer termini. L864F pol α also exhibited increased translesion activity over the abasic, etheno-A, O4-methyl-T, and O6-methyl-G sites. In addition, our steady state kinetics analyses supported the finding of increased translesion activity of L864F pol α over O6-methyl-G. We also established stable clones transfected with pola1L864F utilizing the human cancer cell line HCT116. Using the HPRT gene as a reporter, the spontaneous mutation rate of pola1L864F cells was determined to be 2.4-fold greater than that of wild-type cells. Mutation assays were also carried out using cells transiently transfected with the wild-type or pola1L864F, and increased mutant frequencies were observed in pola1L864F cells under both spontaneous and methyl methanesulfonate-induced conditions. Together, our results indicate that the base selection step in human pol α functions to prevent DNA replication errors and maintain genomic integrity in HCT116 cells. 相似文献
9.
10.
The efficiency and fidelity of nucleotide incorporation and next-base extension by DNA polymerase (pol) κ past N(2)-ethyl-Gua were measured using steady-state and rapid kinetic analyses. DNA pol κ incorporated nucleotides and extended 3' termini opposite N(2)-ethyl-Gua with measured efficiencies and fidelities similar to that opposite Gua indicating a role for DNA pol κ at the insertion and extension steps of N(2)-ethyl-Gua bypass. The DNA pol κ was maximally activated to similar levels by a twenty-fold lower concentration of Mn(2+) compared to Mg(2+). In addition, the steady state analysis indicated that high fidelity DNA pol κ-catalyzed N(2)-ethyl-Gua bypass is Mg(2+)-dependent. Strikingly, Mn(2+) activation of DNA pol κ resulted in a dramatically lower efficiency of correct nucleotide incorporation opposite both N(2)-ethyl-Gua and Gua compared to that detected upon Mg(2+) activation. This effect is largely governed by diminished correct nucleotide binding as indicated by the high K(m) values for dCTP insertion opposite N(2)-ethyl-Gua and Gua with Mn(2+) activation. A rapid kinetic analysis showed diminished burst amplitudes in the presence of Mn(2+) compared to Mg(2+) indicating that DNA pol κ preferentially utilizes Mg(2+) activation. These kinetic data support a DNA pol κ wobble base pairing mechanism for dCTP incorporation opposite N(2)-ethyl-Gua. Furthermore, the dramatically different polymerization efficiencies of the Y-family DNA pols κ and ι in the presence of Mn(2+) suggest a metal ion-dependent regulation in coordinating the activities of these DNA pols during translesion synthesis. 相似文献
11.
12.
M. Di Re H. Sembongi J. He A. Reyes T. Yasukawa P. Martinsson L. J. Bailey S. Goffart J. D. Boyd-Kirkup T. S. Wong A. R. Fersht J. N. Spelbrink I. J. Holt 《Nucleic acids research》2009,37(17):5701-5713
The accessory subunit of mitochondrial DNA polymerase γ, POLGβ, functions as a processivity factor in vitro. Here we show POLGβ has additional roles in mitochondrial DNA metabolism. Mitochondrial DNA is arranged in nucleoprotein complexes, or nucleoids, which often contain multiple copies of the mitochondrial genome. Gene-silencing of POLGβ increased nucleoid numbers, whereas over-expression of POLGβ reduced the number and increased the size of mitochondrial nucleoids. Both increased and decreased expression of POLGβ altered nucleoid structure and precipitated a marked decrease in 7S DNA molecules, which form short displacement-loops on mitochondrial DNA. Recombinant POLGβ preferentially bound to plasmids with a short displacement-loop, in contrast to POLGα. These findings support the view that the mitochondrial D-loop acts as a protein recruitment centre, and suggest POLGβ is a key factor in the organization of mitochondrial DNA in multigenomic nucleoprotein complexes. 相似文献
13.
《Journal of enzyme inhibition and medicinal chemistry》2013,28(2):270-279
The human polymerase α (pol α) is a promising target for the therapy of cancer e.g. of the skin. The authors recently built a homology model of the active site of human DNA pol α. This 3D model was now used for molecular modelling studies with eight novel analogues of 2-butylanilino-dATP, which is a highly selective nucleoside inhibitor of mammalian pol α. Our results suggest that a higher hydrophobicity of a carbohydrate side chain (pointing into a spacious hydrophobic cavity) may enhance the strength of the interaction with the target protein. Moreover, acyclic acyclovir-like derivatives outperformed those with a sugar-moiety, indicating that structural flexibility and higher conformational adaptability has a positive effect on the receptor affinity. Cytotoxicity tests confirmed our theoretical findings. Besides, one of our most promising compounds in the molecular modelling studies revealed high selectivity for the SCC-25 cell line derived from squamous cell carcinoma in man. 相似文献
14.
《Evolution and human behavior》2022,43(3):169-180
The gaze-signaling hypothesis and the related cooperative-eye hypothesis posit that humans have evolved special external eye morphology, including exposed white sclera (the white of the eye), to enhance the visibility of eye-gaze direction and thereby facilitate conspecific communication through joint-attentional interaction and ostensive communication. However, recent quantitative studies questioned these hypotheses based on new findings that certain features of human eyes are not necessarily unique among great ape species. Accordingly, there is currently a heated debate over whether external eye features of humans are distinct from those of other apes and how such distinguishable features contribute to the visibility of eye-gaze direction. The present study leveraged updated image analysis techniques to test the uniqueness of human eye features in facial images of great apes. Although many eye features were similar between humans and other great apes, a key difference was that humans have uniformly white sclera which creates clear visibility of both the eye outline and iris—the two essential features contributing to the visibility of eye-gaze direction. We then tested the robustness of the visibility of these features against visual noise, such as shading and distancing, and found that both eye features remain detectable in the human eye, while eye outline becomes barely detectable in other species under these visually challenging conditions. Overall, we identified that humans have unique external eye morphology among other great apes, which ensures the robustness of eye-gaze signals in various visual conditions. Our results support and also critically update the central premises of the gaze-signaling hypothesis. 相似文献
15.
Zdrazil B Schwanke A Schmitz B Schäfer-Korting M Höltje HD 《Journal of enzyme inhibition and medicinal chemistry》2011,26(2):270-279
The human polymerase α (pol α) is a promising target for the therapy of cancer e.g. of the skin. The authors recently built a homology model of the active site of human DNA pol α. This 3D model was now used for molecular modelling studies with eight novel analogues of 2-butylanilino-dATP, which is a highly selective nucleoside inhibitor of mammalian pol α. Our results suggest that a higher hydrophobicity of a carbohydrate side chain (pointing into a spacious hydrophobic cavity) may enhance the strength of the interaction with the target protein. Moreover, acyclic acyclovir-like derivatives outperformed those with a sugar-moiety, indicating that structural flexibility and higher conformational adaptability has a positive effect on the receptor affinity. Cytotoxicity tests confirmed our theoretical findings. Besides, one of our most promising compounds in the molecular modelling studies revealed high selectivity for the SCC-25 cell line derived from squamous cell carcinoma in man. 相似文献
16.
DNA polymerase (pol) λ, one of the 15 cellular pols, belongs to the X family. It is a small 575 amino-acid protein containing a polymerase, a dRP-lyase, a proline/serine rich and a BRCT domain. Pol λ shows various enzymatic activities including DNA polymerization, terminal transferase and dRP-lyase. It has been implicated to play a role in several DNA repair pathways, particularly base excision repair (BER), non-homologous end-joining (NHEJ) and translesion DNA synthesis (TLS). Similarly to other DNA repair enzymes, pol λ undergoes posttranslational modifications during the cell cycle that regulate its stability and possibly its subcellular localization. Here we describe our knowledge about ubiquitylation of pol λ and the impact of this modification on its regulation. 相似文献
17.
A kinetic model for the helix-cruciform transition is presented, mean lifetimes for the cruciform states are calculated and shown to be inconsistent with the notion of metastability. 相似文献
18.
19.
20.