首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ultrastructure of spermiogenesis and the mature spermatozoon in Catenotaenia pusilla (Cestoda: Catenotaeniidae) is described. Spermiogenesis is characterized by the presence of a single axoneme which grows on the outside of a cytoplasmic extension at an angle of 45 degrees. Flagellar rotation and proximodistal fusion are produced in this process. The centrioles lack striated roots and an intercentriolar body. In the mature spermatozoon four different regions are described. The anterior extremity is capped by an apical cone and presents two helical crest-like bodies of unequal length. The axoneme, of the 9 + '1' pattern of the Trepaxonemata, presents a periaxonemal sheath. The cortical microtubules form a spiral pattern at an angle of about 40 degrees to the hypothetical spermatozoon axis. The nucleus is kidney- to horseshoe-shaped in cross section. Granules and proteinaceus walls are not observed in the spermatozoon of C. pusilla.  相似文献   

2.
Ultrastructural characters in spermiogenesis and spermatozoa are considered important tools to elucidate the phylogenetic relationships within the Platyhelminthes. In the Anoplocephalidae, ultrastructural data refer to the spermatozoon of 14 species, whereas data on spermiogenesis refer to only 7 species. The present study focused on the spermiogenesis and spermatozoon of the anoplocephalid cestode Mosgovoyia ctenoides, as revealed by transmission electron microscopy. Type IV spermiogenesis was detected, beginning with the formation of a differentiation zone containing 2 centrioles, with a centriolar adjunct and vestigial striated rootlets. Different forms of the latter character have been described in other anoplocephalids. This study supports spermiogenesis of type IV as the most frequent in the Anoplocephalidae and confirms the presence of a centriolar adjunct in yet another type IV spermiogenesis species. The spermatozoon of M. ctenoides possesses 1 axoneme of the 9+ '1' trepaxonematan type, 2 crestlike bodies, dense plates, and granules of electron-dense cytoplasmic material, nucleus, and twisted cortical microtubules. It was again confirmed that the presence of granular material and the absence of both a periaxonemal sheath and intracytoplasmic walls are constant characters in the spermatozoa of all the Anoplocephalinae.  相似文献   

3.
The ultrastructural events of spermiogenesis and the ultrastructure of the mature spermatozoon of an acanthocotylid monogenean, Acanthocotyle lobianchi, are described. The early zone of differentiation (ZD) contains two roughly perpendicular centrioles which become parallel and produce two free flagella, although these later become incorporated into the same body of cytoplasm. No cortical microtubules were found supporting the ZD at any stage of spermiogenesis. Much of the length of the thread-like sperm contains two axonemes of the 9 + '1' pattern together with a nuclear and mitochondrial profile but the 'posterior' region is occupied only by a single axoneme and the nucleus. A laterally situated electron-lucent vesicle with specialization of the adjacent surface membrane is found in the 'anterior' region of the sperm. The phylogenetic implications of these observations are discussed.  相似文献   

4.
Ultrastructure of spermiogenesis and the main characters of the mature spermatozoon of Troglotrema acutum are described by means of transmission electron microscopy. Specimens were obtained from the nasolacrimal sinuses of an American mink (Mustela vison). Spermiogenesis in T. acutum follows the general pattern of digeneans. The zone of differentiation is a conical-shaped area bordered by cortical microtubules and delimited at its base by a ring of arched membranes. This area contains 2 centrioles associated with striated rootlets and an intercentriolar body between them. The centrioles develop 2 free flagella that grow ortogonally to the median cytoplasmic process. The posterior flagellar rotation and proximodistal fusion of the free flagella with the median cytoplasmic process originate the spermatozoon. The mature spermatozoon of T. acutum is characterized by the presence of 2 axonemes of different lengths presenting the 9+'1' trepaxonematan pattern, 2 bundles of parallel cortical microtubules, 2 mitochondria, a nucleus, and granules of glycogen. These ultrastructural characters are compared with other digenean species previously studied and the importance of different spermatological features is discussed.  相似文献   

5.
Spermatogenesis and spermatozoon ultrastructure in the Nile electric catfish Malapterurus electricus are described using scanning and transmission electron microscopy. Although the testis organization conforms to the ‘unrestricted’ spermatogonial type, the species has a rare type of spermatogenesis not previously described among catfishes, ‘semicystic’, in which the cyst ruptures before the spermatozoon stage. Spermiogenesis also involves some peculiar features such as condensation of the chromatin in the posterior part of the nucleus to form a compact electron‐dense mass with some irregular electron‐lucent lacunae, while the uppermost part of the nucleus is a loose electron‐lucent area, absence of the nuclear rotation and, as a consequence, the centriolar complex and the initial segment of each flagellum arise directly in a position perpendicular to the basal pole of the nucleus, and occurrence of numerous vesicles in the midpiece. In addition, spermiogenesis includes migration of the diplosome and mitochondria to the basal pole of the nucleus, formation of two moderate nuclear fossae, each of which contains the centriolar complex, development of two independent flagella and elimination of the excess cytoplasm. The mature spermatozoon has a more or less round head with no acrosome or acrosomal vesicle, a long midpiece with numerous mitochondria and vesicles and two long tails or flagella having the classical axoneme structure of 9 + 2 microtubular doublet pattern and with no lateral fins and membranous compartment. These findings suggest that the ultrastructural features of spermiogenesis and spermatozoa of Melectricus are synapomorphies of types I and II spermiogenesis and spermiogenesis is closely similar to the type described in the Nile catfish Chrysichthys auratus.  相似文献   

6.
The ultrastructure of spermiogenesis and mature spermatozoon in Lytocestus indicus (Cestoda: Lytocestidae) is described; this is the first representative of this group of monozoic, presumably most basal, tapeworms (Eucestoda) from the Indomalayan region to be documented in this manner. Similarly, as in other caryophyllideans, its spermiogenesis involves the formation of a conical differentiation zone with 2 centrioles associated with striated roots and an intercentriolar body. In the course of the process, 1 of the centrioles develops a free flagellum, which fuses with a cytoplasmic protrusion, whereas the other remains oriented in a cytoplasmic bud. Spermiogenesis is also characterized by the presence of electron-dense material in the early stages of spermiogenesis and a slight rotation of the flagellar bud. The mature spermatozoon of L. indicus is a filiform cell tapered at both extremities that lacks mitochondria; its nucleus has parallel disposition to the axoneme and does not reach up to the posterior extremity of the spermatozoon, which is typical for spermatozoa of the type III pattern. The new data confirm that caryophyllideans share the same type of spermiogenesis that is considered to be plesiomorphic in the Eucestoda. The existing information on spermatological ultrastructure of 8 members for 3 of 4 caryophyllidean families from different host groups (cyprinids and catostomids, both Cypriniformes, and mochokids and clariids, both Siluriformes) from 4 zoogeographical regions (Palearctic, Neotropic, Ethiopian, and Indomalayan regions) demonstrates great uniformity in spermiogenesis and sperm ultrastructure, which does not reflect different taxonomic position of the species studied.  相似文献   

7.
The present paper describes the ultrastructure of spermiogenesis and the spermatozoon of Macracanthorhynchus hirudinaceus, an acanthocephalan parasite of the wild boar Sus scrofa. At the beginning of spermatogenesis, spermatocytes exhibit synaptonemal complexes and 2 centrioles. In the spermatid, only 1 centriole remains, generating a flagellum with a 9+2 pattern. Another ultrastructural feature observed during the spermiogenesis of M. hirudinaceus is the condensation of the chromatin, forming a "honeycomb" structure in the old spermatid and a homogeneous, electron-dense structure in the spermatozoon. The mature spermatozoon of M. hirudinaceus presents a reversed anatomy, as has been described previously in other species of the Acanthocephala. The spermatozoon is divided into 2 parts: an axoneme, and a nucleocytoplasmic derivative. The spermatozoon flagellum exhibits a 9+2 or 9+0 pattern. The process of spermiogenesis and the ultrastructural organization of the spermatozoon of M. hirudinaceus are compared with available data regarding other acanthocephalan species.  相似文献   

8.
During spermiogenesis two lateral flagellar processes and a median process arising from the apex of the zone of differentiation, fuse to form the elongated unipartite spermatozoon. Two axial units, therefore, with the ‘9+1’ pattern of microtubules are incorporated into the spermatozoon. The nucleus, in the head region, contains dense lamellar subunits arranged in a spiral in the long axis. These are formed by condensation of the chromatin during spermiogenesis. The single elongated mitochondrion, resulting from early fusion of small mitochondria, extends through the head and middle regions of the spermatozoon. Peripheral microtubules, present originally in the zone of differentiation, are arranged in straight dorsal and ventral rows, along the length. β glycogen particles accumulate in the spermatozoa after they have separated from the residual cytoplasm. Spermatozoa are present in the testes on the second day after infection of the bird host and accumulate in the vesicula seminalis from the third day onwards.  相似文献   

9.
10.
Using transmission electron microscopy, spermiogenesis and the spermatozoon ultrastructural organization are described in Ligula intestinalis (Linnaeus, 1758) (Diphyllobothriidea), a parasite of the great crested grebe Podiceps cristatus (Linnaeus, 1758). Spermiogenesis starts with the differentiation zone of 2 striated rootlets, 2 centrioles giving rise to 2 flagella, and an intercentriolar body. The latter is composed of 5 electron-dense layers separating 4 electron-lucent layers. In the early stages of spermiogenesis, an electron-dense material is present in the apical region of the differentiation zone. Later, the flagella undergo a rotation and fuse with the cytoplasmic extension in a proximo-distal process. The spermatozoon contains 2 axonemes with a 9 + "1" trepaxonematan pattern, the nucleus, the cortical microtubules, and an electron-dense zone. The spermatozoon anterior extremity in L. intestinalis is characterized by the absence of crested bodies and a ring of electron-dense cortical microtubules. Some characters of spermiogenesis and spermatozoon in L. intestinalis confirm the recent splitting of "Pseudophyllidea" into 2 new orders, i.e., Bothriocephalidea and Diphyllobothriidea. The process of spermiogenesis is similar in both orders for the "type I" of spermiogenesis and the presence of electron-dense material. However, the intercentriolar body is clearly more developed in the Diphyllobothriidea than in the Bothriocephalidea. Moreover, these 2 orders seem to differ in the presence or absence of a ring of electron-dense cortical microtubules in the anterior extremity of the spermatozoon.  相似文献   

11.
Lundin  Kennet  Hendelberg  Jan 《Hydrobiologia》1998,383(1-3):197-205
Results from a transmission electron microscope study of the spermiogenesis and spermatozoon of Meara stichopi (Nemertodermatida, Platyhelminthes) indicate that the sperm type of the Nemertodermatida has evolved from the primitive metazoan sperm type rather than from an aberrant biflagellar sperm type as found in many other flatworms. The spirally coiled mitochondrial derivative in the mature spermatozoon develops from two large oval mitochondria in the early spermatid stages. A single flagellum grows out from a peripheral basal body adjacent to a perpendicularly placed accessory centriole. The basal body moves to a distal depression of the nucleus, and becomes equipped with an anchoring fibre apparatus. Most of the flagellum becomes axially incorporated into the developing spermatid. No trace of a second flagellum was found in any stage of the spermiogenesis. Rounded vesicles appear around the proximal, tapering end of the elongating nucleus. Most probably these vesicles form a thin acrosomal structure in the mature spermatozoon. No dense bodies, characteristic of many other ‘turbellarian’ flatworm sperm types, were found. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Spermiogenesis in the proteocephalidean cestode Barsonella lafoni de Chambrier et al., 2009 shows typical characteristics of the type I spermiogenesis. These include the formation of distal cytoplasmic protrusions forming the differentiation zones, lined by cortical microtubules and containing two centrioles. An electron-dense material is present in the apical region of the differentiation zone during the early stages of spermiogenesis. Each centriole is associated to a striated rootlet, being separated by an intercentriolar body. Two free and unequal flagella originate from the centrioles and develop on the lateral sides of the differentiation zone. A median cytoplasmic process is formed between the flagella. Later these flagella rotate, become parallel to the median cytoplasmic process and finally fuse proximodistally with the latter. It is interesting to note that both flagellar growth and rotation are asynchronous. Later, the nucleus enlarges and penetrates into the spermatid body. Finally, the ring of arching membranes is strangled and the young spermatozoon is detached from the residual cytoplasm.The mature spermatozoon presents two axonemes of the 9 + ‘1’ trepaxonematan pattern, crested body, parallel nucleus and cortical microtubules, and glycogen granules. Thus, it corresponds to the type II spermatozoon, described in almost all Proteocephalidea. The anterior extremity of the gamete is characterized by the presence of an apical cone surrounded by the lateral projections of the crested body. An arc formed by some thick and parallel cortical microtubules appears at the level of the centriole. They surround the centriole and later the first axoneme. This arc of electron-dense microtubules disorganizes when the second axoneme appears, and then two parallel rows of thin cortical microtubules are observed. The posterior extremity of the male gamete exhibits some cortical microtubules. This type of posterior extremity has never been described in proteocephalidean cestodes. The ultrastructural features of the spermatozoon/spermiogenesis of the Proteocephalidea species are analyzed and compared.  相似文献   

13.
The present study focuses on the ultrastructural characteristics of both spermiogenesis and the spermatozoon in the order Trypanorhyncha. New ultrastructural data are presented for two species of the unexplored superfamily Tentacularioidea, Nybelinia queenslandensis, and Kotorella pronosoma. The present study also provides supplementary data on the superfamily Eutetrarhynchoidea, with the analysis of spermiogenesis and spermatozoon of two progrillotiids, Progrillotia dasyatidis and Pro. pastinacae, and new ultrastructural data concerning spermiogenesis in the eutetrarhynchids Dollfusiella spinulifera and Parachristianella trygonis. Spermiogenesis in trypanorhynchs follows the Bâ and Marchand's type I and the ultrastructural organisation of the mature spermatozoon corresponds to the Levron et al.’s type I. The most remarkable characters concerns the number of electron-dense plates constituting the intercentriolar body during spermiogenesis and in the variability of the arc-like row of thick cortical microtubules present in the anterior areas of the spermatozoon because of its variability according to the species.  相似文献   

14.
The spermiogenesis of Tetrabothrius erostris is characterized by the following events: formation of a differentiation zone containing 2 basal bodies and a pair of rootlets; one of the basal bodies gives rise to a free flagellum, the other induces formation of a flagellar bud; rotation at 90° of the flagellum prior to its fusion with the middle cytoplasmic process of the differentiation zone and partial rotation of the flagellar bud; penetration of the nucleus between the rootlets and appearance of a spur-like protrusion in the differentiation zone; elongation and twisting of the differentiation zone, resulting in twisting of the peripheral microtubules and migration of the nucleus; formation of a crested body; proximal densification of the spermatozoon prior to its detachment from the spermatid rosette. The mature spermatozoon has a single axoneme of 9+“1” type and twisted peripheral microtubules. It consists of 3 portions: a proximal part with a crested body, a middle region rich in β-glycogen, and a distal part containing the nucleus. The pattern of spermiogenesis resembles most closely that in phyllobothriid tetraphyllideans, and probably reflects a relationship of the family Tetrabothriidae with this group.  相似文献   

15.
The demosponge Crambe crambe shows a peculiar spermatogenesis, hard to be reconciled with the basal position of sponges in the animal phylogeny. Early spermatogenesis stages showed most of the simple features expected in sponges. However, spermiogenesis departed from the anticipated process. Spermatids lengthened remarkably, forming a deep cytoplasmic pit around the cilium insertion, with the proximal axoneme bending to produce a V-shaped spermatozoon surprisingly similar to that known in the phylum Phoronida. The cytology was unexpectedly complex, with a needle-like nucleus of helically condensed chromatin, a conical acrosome with a subacrosomal rod, and a mitochondrion connected to the basal body by striated rootlets. These findings establish that the spermatozoon of broad-casting demosponges occurs in two structural categories ('primitive' and 'modified' type). This dualistic condition must necessarily have pre-dated the evolutionary apparition of higher metazoans, if we are to keep regarding sponges as the most primitive animals. We hypothesize that internal fertilization in C. crambe – and incidentally other demosponges – may depart from the general model assumed for spermcasting sponges. The V-shape of this spermatozoon suggests a design to favour autonomous penetration through the dense mesohyl to reach the oocytes, rather than engulfment and transportation by carrier cells towards the oocyte.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 413–426.  相似文献   

16.
用扫描和透射电子显微镜研究了尼罗河鲶——盾头歧须鮠(Synodontis schall)的精子发生和精子的超微结构。精巢中含有无数肾形的生精小叶,我们将其称为"精原无限型"。尽管其精子发生的大体过程与同类鱼无异。但是,在细节上仍具其独特之处。这些特点未见在其他硬骨鱼中报道过。其特点主要是:生精过程中不发生细胞核的旋转,中心粒复合体和轴丝起始段直接发生在核的基底面垂直线上,有无数的粗的固定纤维将近端中心粒和远端中心粒的近侧部连接到细胞核上。另外,精子发生过程中还包括染色质浓缩,细胞质和线粒体向细胞核的尾端迁移,在核的后端中轴位置上形成中等大小的核后凹,近端中心粒和远端中心粒的一部分嵌在核后凹之内,短的胞质内陷管将线粒体与鞭毛分隔开。精子头部接近圆形,无顶体或顶体泡,鞭毛的中段及胞质内陷管均较短,整个鞭毛却很长,鞭毛侧面无翼膜,轴丝呈典型的9 2结构。上述结果显示,盾头歧须鮠的精子发生具有类型Ⅰ和类型Ⅱ的共同派生特征,这种特征在常见的其他硬骨鱼中也是常有的。但是,正如文献所报道过的另两种尼罗河鲶——金鯵(Chrysichthys auratus)和电鲶(Malapterurus electricus)中的情况一样,盾头歧须的精子发生与类型Ⅲ的精子发生过程更为相似。  相似文献   

17.
X Sun  HT Mao  WX Yang 《Gene》2012,508(1):78-84
Myosin Va is an F-actin dependent molecular motor with multiple functions that are essential for acrosome formation in mouse spermiogenesis. The spermatozoon of the crab has a complicated acrosome surrounded by a cup-shaped nucleus. In the present study, the myosin Va cDNA was cloned from the testis of the Chinese mitten crab Eriocheir sinensis using degenerate PCR and rapid amplification of cDNA ends (RACE). The myosin Va cDNA consists of a 125bp 5'-untranslated region (5' UTR), a 5331bp open reading frame (ORF) and a 590bp 3' UTR. The putative myosin Va protein contains the head domain, neck domain and tail domain. Multiple alignment and phylogenetic tree showed that E. sinensis myosin Va is more closely related to the vertebrate myosin Va than to the invertebrate myosin V. E. sinensis myosin Va was expressed in various tissues. In situ hybridization demonstrated that myosin Va mRNA is located in the entire process of spermatogenesis. Quantitative real-time PCR indicated that the expression level at the mitotic and meiotic phases is higher than the spermiogenesis phase. Taken together, our work suggests that myosin Va may function in E. sinensis spermatogenesis.  相似文献   

18.
Thrips spermiogenesis is characterized by unusual features in the differentiating spermatid cells. Three centrioles from which three individual short flagella are initially assembled, make the early spermatid a tri-flagellated cell. Successively, during spermatid maturation, the three basal bodies maintain a position close to the most anterior end of the elongating nucleus, so that the three axonemes are progressively incorporated in the spermatid cytoplasm, where they run in parallel to the main nuclear axis. Finally, the three axonemes amalgamate to form a microtubular bundle. The process starts with the formation of rifts at three specific points in each axonemal circumference, corresponding to sites 1,3,7 and leads to the formation of 9 microtubular rows of different length, i.e. 3 "dyads", 3 "triads" and 3 "tetrads". In the spermatozoon, the nucleus, the mitochondrion and the bundle of microtubules are arranged in a helicoidal pattern. The elongation of the spermatozoon is allowed by the deep anchorage of the spermatid to the cyst cell through a dense mass of material which, at the end of spermiogenesis, becomes a long anterior cylindrical structure. This bizarre "axoneme" does not show any trace of progressive movement but it is able to beat. According to the presence of dynein arms, sliding can take place only within each row and not between the rows. The possible molecular basis underlying the peculiar instability of thrips axonemes is discussed in light of the present knowledge on the organization of the axoneme in mutant organisms carrying alterations of the tubulin molecule.  相似文献   

19.
This paper constitutes the first ultrastructural study of spermiogenesis and the spermatozoon of a cestode belonging to the family Mesocestoididae, Mesocestoides litteratus. Spermiogenesis in M. litteratus is characterised by a flagellar rotation and a proximodistal fusion. The zone of differentiation presents striated roots associated with the centrioles and also an intercentriolar body. The most interesting ultrastructural feature found in the mature spermatozoon of M. litteratus is the presence of parallel cortical microtubules. The spermatozoon also exhibits a single crest-like body and granules of glycogen. The pattern of spermiogenesis and the parallel position of cortical microtubules reveal the lack of concordance between M. litteratus and cyclophyllidean species studied to date in spermiogenesis and in the ultrastructural organisation of spermatozoon. This study provides new spermatological data and calls into question the validity of the current systematic position of mesocestoidids.  相似文献   

20.
The sperm of Spio setosa (Polychaeta, Spionidae) are known to be very unusual in form; here, spermiogenesis and the structure of the spermatozoon in this species are described by transmission electron microscopy. While spermiogenesis is similar to that described for many other polychaetes, two notable exceptions to this process include the synthesis of abundant ring‐shaped and tubular, membrane‐bounded cytoplasmic inclusions in the midpiece, and the differentiation of a spirally shaped sperm head. Spermatids develop as free‐floating tetrads in the male's coelom. A microtubular manchette does not develop during chromatin condensation and nuclear elongation, and the spiral acrosome forms as a single Golgi‐derived vesicle that migrates anteriorly to become housed in a deep anterior nuclear fossa. Early in spermiogenesis, numerous Golgi‐derived, membrane‐bounded cytoplasmic inclusions appear in the cytoplasm; these ultimately occupy the sperm midpiece only. The mature spermatozoon in the male has a 15‐μm‐long head consisting of a nucleus coiled like a spring and a spiral acrosome with differentiated substructure, the posterior two thirds of which sits in an anterior nuclear fossa. The midpiece is wider than the rest of the spermatozoon and contains 9–10 spherical mitochondria surrounding the two centrioles, as well as numerous membrane‐bounded conoid and tubular cytoplasmic inclusions. The axoneme has a 9 + 2 arrangement of microtubules. By contrast, stored sperm in the female's seminal receptacles have lost the midpiece inclusions but contain an abundance of glycogen. The function of the midpiece inclusions remains unresolved, and the significance of their absence in stored sperm within the seminal receptacle and the appearance of midpiece glycogen stores remains unclear and requires additional investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号