首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ral GTPase activity is a crucial cell-autonomous factor supporting tumor initiation and progression. To decipher pathways impacted by Ral, we have generated null and hypomorph alleles of the Drosophila melanogaster Ral gene. Ral null animals were not viable. Reduced Ral expression in cells of the sensory organ lineage had no effect on cell division but led to postmitotic cell-specific apoptosis. Genetic epistasis and immunofluorescence in differentiating sensory organs suggested that Ral activity suppresses c-Jun N-terminal kinase (JNK) activation and induces p38 mitogen-activated protein (MAP) kinase activation. HPK1/GCK-like kinase (HGK), a MAP kinase kinase kinase kinase that can drive JNK activation, was found as an exocyst-associated protein in vivo. The exocyst is a Ral effector, and the epistasis between mutants of Ral and of msn, the fly ortholog of HGK, suggest the functional relevance of an exocyst/HGK interaction. Genetic analysis also showed that the exocyst is required for the execution of Ral function in apoptosis. We conclude that in Drosophila Ral counters apoptotic programs to support cell fate determination by acting as a negative regulator of JNK activity and a positive activator of p38 MAP kinase. We propose that the exocyst complex is Ral executioner in the JNK pathway and that a cascade from Ral to the exocyst to HGK would be a molecular basis of Ral action on JNK.  相似文献   

2.
Neutrophil (polymorphonuclear leukocyte; PMN) inflammatory functions, including cell adhesion, diapedesis, and phagocytosis, are dependent on the mobilization and release of various intracellular granules/vesicles. In this study, we found that treating PMN with damnacanthal, a Ras family GTPase inhibitor, resulted in a specific release of secondary granules but not primary or tertiary granules and caused dysregulation of PMN chemotactic transmigration and cell surface protein interactions. Analysis of the activities of Ras members identified Ral GTPase as a key regulator during PMN activation and degranulation. In particular, Ral was active in freshly isolated PMN, whereas chemoattractant stimulation induced a quick deactivation of Ral that correlated with PMN degranulation. Overexpression of a constitutively active Ral (Ral23V) in PMN inhibited chemoattractant-induced secondary granule release. By subcellular fractionation, we found that Ral, which was associated with the plasma membrane under the resting condition, was redistributed to secondary granules after chemoattractant stimulation. Blockage of cell endocytosis appeared to inhibit Ral translocation intracellularly. In conclusion, these results demonstrate that Ral is a critical regulator in PMN that specifically controls secondary granule release during PMN response to chemoattractant stimulation.  相似文献   

3.
The Ras protein activates at least three different pathways during early development. Two of them regulate mesodermal gene expression and the third is thought to participate in the control of actin cytoskeleton dynamics via the Ral protein. From a yeast two-hybrid screen of a Xenopus maternal cDNA library, we identified the Xenopus orthologue of the Ral interacting protein (RLIP, RIP1 or RalBP1), a putative effector of small G protein Ral. Previously, we observed that a constitutively activated form of Ral GTPase (XralB G23V) induced bleaching of the animal hemisphere and disruption of the cortical actin cytoskeleton. To demonstrate that RLIP is the effector of RalB in early development, we show that the artificial targeting of RLIP to the membrane induces a similar phenotype to that of activated RalB. We show that overexpression of the Ral binding domain (RalBD) of XRLIP, which binds to the effector site of Ral, acts in competition with the endogenous effector of Ral and protects against the destructive effect of XralB G23V on the actin cytoskeleton. In contrast, the XRLIP has a synergistic effect on the activated form of XralB, which is dependent on the RalBD of RLIP. We provide evidence for the involvement of RLIP by way of its RalBD on the dynamics of the actin cytoskeleton and propose that signalling from Ral to RLIP is required for gastrulation.  相似文献   

4.
Drosophila kayak mutant embryos exhibit defects in dorsal closure, a morphogenetic cell sheet movement during embryogenesis. Here we show that kayak encodes D-Fos, the Drosophila homologue of the mammalian proto-oncogene product, c-Fos. D-Fos is shown to act in a similar manner to Drosophila Jun: in the cells of the leading edge it is required for the expression of the TGFbeta-like Decapentaplegic (Dpp) protein, which is believed to control the cell shape changes that take place during dorsal closure. Defects observed in mutant embryos, and adults with reduced Fos expression, are reminiscent of phenotypes caused by 'loss of function' mutations in the Drosophila JNKK homologue, hemipterous. These results indicate that D-Fos is required downstream of the Drosophila JNK signal transduction pathway, consistent with a role in heterodimerization with D-Jun, to activate downstream targets such as dpp.  相似文献   

5.
6.
We studied the response of porcine vascular smooth muscle cells (PVSMCs) to cyclic sinusoidal stretch at a frequency of 1 Hz. Cyclic stretch with an area change of 25% caused an increase in PVSMC apoptosis, which was accompanied by sustained activation of c-Jun NH(2)-terminal kinases (JNK) and the mitogen-activated protein kinase p38. Cyclic stretch with an area change of 7% had no such effect. Infection of PVSMCs with recombinant adenoviruses expressing constitutively active forms of upstream molecules that activate JNK and p38 also led to apoptosis. The simultaneous blockade of both JNK and p38 pathways with adenovirus-mediated expression of dominant-negative mutants of c-Jun and p38 caused a significant decrease (to 1/2) of the apoptosis induced by 25% cyclic stretch. The 25% stretch also caused sustained clustering of tumor necrosis factor-alpha (TNF-alpha) receptor-1 and its association with TNF-alpha receptor-associated factor-2 (TRAF-2). Overexpressing the wild-type TRAF-2 in PVSMCs caused an increase in apoptosis. In contrast, the expression of a dominant-negative mutant of TRAF-2 attenuated stretch-induced apoptois. These results support the hypothesis that circumferential overload under hypertensive conditions induces a clustering of death receptors that cause vascular smooth muscle cell apoptosis.  相似文献   

7.
Earlier we have found that in p53-deficient cells the expression of activated Ras attenuates the DNA damage-induced arrest in G(1) and G(2). In the present work we studied Ras-mediated effects on the G(2) checkpoint in two human cell lines, MDAH041 immortalized fibroblasts and Saos-2 osteosarcoma cells. The transduction of the H-Ras mutants that retain certain functions (V12S35, V12G37, and V12C40 retain the ability to activate Raf or RalGDS or phosphatidylinositol 3-kinase, respectively) as well as the activated or dominant-negative mutants of RalA (V23 and N28, respectively) has revealed that the activation of Ras-RalGEFs-Ral pathway was responsible for the attenuation of the G(2) arrest induced by ethyl metanesulfonate or doxorubicin. Noteworthy, the activated RalA V23N49 mutant, which cannot interact with RLIP76/RalBP1 protein, one of the best studied Ral effectors, retained the ability to attenuate the DNA damage-induced G(2) arrest. Activation of the Ras-Ral signaling affected neither the level nor the intracellular localization of cyclin B1 and CDC2 but interfered with the CDC2 inhibitory phosphorylation at Tyr(15) and the decrease in the cyclin B/CDC2 kinase activity in damaged cells. The revealed function of the Ras-Ral pathway may contribute to the development of genetic instability in neoplastic cells.  相似文献   

8.
The coordinated migration and fusion of epithelial sheets is a crucial morphogenetic tool used on numerous occasions during the normal development of an embryo and re-activated as part of the wound healing response. Drosophila dorsal closure, whereby a hole in the embryonic epithelium is zipped closed late in embryogenesis, serves as an excellent, genetically tractable model for epithelial migration. Using live confocal imaging, we have dissected multiple roles for the small GTPase Rac in this process. We show that constitutive activation of Rac1 leads to excessive assembly of lamellipodia and precocious halting of epithelial sweeping, possibly through premature activation of contact-inhibition machinery. Conversely, blocking Rac activity, either by loss-of-function mutations or expression of dominant negative Rac1, disables the assembly of both actin cable and protrusions by epithelial cells. Movies of mutant embryos show that continued contraction of the amnioserosa is sufficient to draw the epithelial edges towards one another, allowing the zipper machinery to bypass non-functioning regions of leading edge. In addition to illustrating the key role of Rac in organization of leading edge actin, loss-of-function mutants also provide substantive proof that Rac acts upstream in the Jun N-terminal kinase (JNK) cascade to direct epithelial cell shape changes during dorsal closure.  相似文献   

9.
The involvement of Ral and its downstream molecules in receptor-mediated endocytosis was examined. Expression of either RalG23V or RalS28N, which are known to be constitutively active and dominantnegative forms, respectively, in A431 cells blocked internalization of epidermal growth factor (EGF). Stable expression of RalG23V or RalS28N in CHO-IR cells also inhibited internalization of insulin. Internalization of EGF and insulin was not affected by full-length RalBP1 which is an effector protein of Ral, but was inhibited by its C-terminal region which binds directly to Ral and POB1. POB1 is a binding protein of RalBP1 and has the Eps15 homology (EH) domain. Deletion mutants of POB1 inhibited internalization of EGF and insulin. However, internalization of transferrin was unaffected by Ral, RalBP1, POB1 and their mutants. Epsin and Eps15 have been reported to be involved in the regulation of endocytosis of the receptors for EGF and transferrin. The EH domain of POB1 bound directly to Epsin and Eps15. Taken together with the observation that EGF and insulin activate Ral, these results suggest that Ral, RalBP1 and POB1 transmit the signal from the receptors to Epsin and Eps15, thereby regulating ligand-dependent receptor-mediated endocytosis.  相似文献   

10.
A kinase activity that phosphorylated myelin basic protein in vitro was detected in RalA and RalB immunoprecipitates from human platelets. Protein-protein interaction studies using recombinant GST-RalA, GST-RalB and GST-cH-Ras confirmed that the kinase specifically associates with the Ral GTPase. The Ral Interacting Protein 1 (RIP1), a GTPase Activating Protein (GAP) for Cdc42 and Rac1, was found to be the preferred substrate for the Ral Interacting Kinase (RIK). Phosphoamino acid analysis demonstrated that RIK phosphorylated serine residue in RIP1. The Ral-RIK interaction was not dependent on the guanine nucleotide status of Ral. RIK was detected in a variety of rat tissues with testis containing the highest and skeletal muscle the lowest activity. In-gel kinase renaturation assay using RIP1 as the substrate demonstrated that the kinase activity was associated with polypeptides of molecular mass of approximately 36-40 kDa and was detected in most rat tissues with a prominent 38 kDa band in testis and a 40 kDa band in brain. Human platelets contained a single band of approximately 36 kDa. RIK was distinct from MAPKs, CDKs, cyclic AMP dependent protein kinase and Ca2+/calmodulin dependent kinases. To demonstrate in vivo interaction, the endogenous Ral-RIK complex was isolated using a calmodulin affinity column. The Ral-RIK complex co-eluted from this column upon washing with a 13 residue peptide that encompasses the calmodulin-binding domain in RalA. The data suggest that RIK is a serine specific kinase that phosphorylates RIP1 and is constitutively associated with Ral. The current study provides additional support for a link between Ral and the Cdc42/Rac1 signalling pathways in the cell.  相似文献   

11.
12.
The signaling pathways that mediate the transforming activity of the Rac1 GTPase remain to be determined. In the present study, we used effector domain mutants of the constitutively activated Rac(61L) mutant that display differential transforming activities and differential activation of downstream effector pathways to investigate the contribution of p70 S6 kinase (p70(S6K)) to Rac1 transformation and to decipher the signaling pathways leading from Rac1 to p70(S6K). First, we found that Rac1 transforming activity could be dissociated from Rac1 activation of p70(S6K). A weakly transforming Rac1 mutant retained the ability to activate p70(S6K), whereas some potently transforming effector mutants were impaired in their ability to activate p70(S6K). These data suggest that p70(S6K) is not necessary to promote full Rac1 transforming activity. We also found a strong correlation between the ability of the Rac(61L) effector mutants to activate p70(S6K) and their ability to activate the JNK mitogen-activated protein kinase. We found that the MLK3 serine/threonine kinase activated JNK and p70(S6K), whereas activation of p70(S6K) by Rac(61L) was significantly inhibited by dominant-negative MLK3. Additionally, the ability of the Rac(61L) effector mutants to activate MLK3 correlated well with their ability to activate p70(S6K) and JNK. Taken together, these results provide evidence that Rac1 coordinately activates p70(S6K) and JNK via MLK3 activation. Finally, we found that co-expression of wild type, but not kinase-dead, MLK3 significantly inhibited Rac1 transforming activity. These results suggest that MLK3 may be a negative regulator of the growth-promoting and transforming properties of Rac1.  相似文献   

13.
The extracellular matrix exerts a stringent control on the proliferation of normal cells, suggesting the existence of a mitogenic signaling pathway activated by integrins, but not significantly by growth factor receptors. Herein, we provide evidence that integrins cause a significant and protracted activation of Jun NH2-terminal kinase (JNK), while several growth factors cause more modest or no activation of this enzyme. Integrin-mediated stimulation of JNK required the association of focal adhesion kinase (FAK) with a Src kinase and p130(CAS), the phosphorylation of p130(CAS), and subsequently, the recruitment of Crk. Ras and PI-3K were not required. FAK-JNK signaling was necessary for proper progression through the G1 phase of the cell cycle. These findings establish a role for FAK in both the activation of JNK and the control of the cell cycle, and identify a physiological stimulus for JNK signaling that is consistent with the role of Jun in both proliferation and transformation.  相似文献   

14.
Members of the mitogen-activated protein kinase (MAPK) family, including Jun amino-terminal kinase (JNK) and extracellular signal-related kinase (ERK), play an important role in the proliferation of erythroid cells in response to erythropoietin (Epo). Erythroid cells infected with the Friend spleen focus-forming virus (SFFV) proliferate in the absence of Epo and show constitutive activation of Epo signal transduction pathways. We previously demonstrated that the ERK pathway was constitutively activated in Friend SFFV-infected erythroid cells, and in this study JNK is also shown to be constitutively activated. Pharmacological inhibitors of both the ERK and JNK pathways stopped the proliferation of primary erythroleukemic cells from Friend SFFV-infected mice, with little induction of apoptosis, and furthermore blocked their ability to form Epo-independent colonies. However, only the JNK inhibitor blocked the proliferation of erythroleukemia cell lines derived from these mice. The JNK inhibitor caused significant apoptosis in these cell lines as well as an increase in the fraction of cells in G(2)/M and undergoing endoreduplication. In contrast, the growth of erythroleukemia cell lines derived from Friend murine leukemia virus (MuLV)-infected mice was inhibited by both the MEK and JNK inhibitors. JNK is important for AP1 activity, and we found that JNK inhibitor treatment reduced AP1 DNA-binding activity in primary erythroleukemic splenocytes from Friend SFFV-infected mice and in erythroleukemia cell lines from Friend MuLV-infected mice but did not alter AP1 DNA binding in erythroleukemia cell lines from Friend SFFV-infected mice. These data suggest that JNK plays an important role in cell proliferation and/or the survival of erythroleukemia cells.  相似文献   

15.
Heterotrimeric G proteins stimulate the activities of two stress-activated protein kinases, c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase in mammalian cells. In this study, we examined whether alpha subunits of G(i) family activate JNK using transient expression system in human embryonal kidney 293 cells. Constitutively activated mutants of Galpha(i1), Galpha(i2), and Galpha(i3) increased JNK activity. In contrast, constitutively activated Galpha(o) and Galpha(z) mutants did not stimulate JNK activity. To examine the mechanism of JNK activation by Galpha(i), kinase-deficient mutants of mitogen-activated protein kinase kinase 4 (MKK4) and 7 (MKK7), which are known to be JNK activators, were transfected into the cells. However, Galpha(i)-induced JNK activation was not blocked effectively by kinase-deficient MKK4 and MKK7. In addition, activated Galpha(i) mutant failed to stimulate MKK4 and MKK7 activities. Furthermore, JNK activation by Galpha(i) was inhibited by dominant-negative Rho and Cdc42 and tyrosine kinase inhibitors, but not dominant-negative Rac and phosphatidylinositol 3-kinase inhibitors. These results indicate that Galpha(i) regulates JNK activity dependent on small GTPases Rho and Cdc42 and on tyrosine kinase but not on MKK4 and MKK7.  相似文献   

16.
17.
The JNK family members JNK1 and JNK2 regulate tumor growth and are essential for transformation by oncogenes such as constitutively activated Ras. The mechanisms downstream of JNK that regulate cell cycle progression and transformation are unclear. Here we show that inhibition of JNK2, but not JNK1, with either a dominant-negative mutant, a pharmacological inhibitor, or RNA interference caused an accumulation of mammalian cells with 4N DNA content. When observed by immunofluorescence, these cells progressed to metaphase without apparent defects in spindle formation or chromosome alignment to the metaphase plate, suggesting that the 4N accumulation is a result of postmetaphase defects. Consistent with this prediction, when JNK activity was suppressed, we observed defects in central spindle formation and chromosome segregation during anaphase. In contrast, cyclin-dependent kinase 1 activity, cyclin B1 protein, and Polo-like kinase 1 protein turnover remained intact when JNK was inhibited. In addition, continued inhibition of JNK activity did not block reentry into subsequent cell cycles but instead resulted in polyploidy. This evidence suggests that JNK2 functions in maintaining the genomic stability of mammalian cells by signaling that is independent of cyclin-dependent kinase 1/cyclin B1 down-regulation.  相似文献   

18.
Although Jun amino-terminal kinase (JNK) is known to mediate a physiological stress signal that leads to cell death, the exact role of the JNK pathway in the mechanisms underlying intrinsic cell death is largely unknown. Here we show through a genetic screen that a mutant of Drosophila melanogaster tumour-necrosis factor receptor-associated factor 1 (DTRAF1) is a dominant suppressor of Reaper-induced cell death. We show that Reaper modulates the JNK pathway through Drosophila inhibitor-of-apoptosis protein 1 (DIAP1), which negatively regulates DTRAF1 by proteasome-mediated degradation. Reduction of JNK signals rescues the Reaper-induced small eye phenotype, and overexpression of DTRAF1 activates the Drosophila ASK1 (apoptosis signal-regulating kinase 1; a mitogen-activated protein kinase kinase kinase) and JNK pathway, thereby inducing cell death. Overexpresson of DIAP1 facilitates degradation of DTRAF1 in a ubiquitin-dependent manner and simultaneously inhibits activation of JNK. Expression of Reaper leads to a loss of DIAP1 inhibition of DTRAF1-mediated JNK activation in Drosophila cells. Taken together, our results indicate that DIAP1 may modulate cell death by regulating JNK activation through a ubiquitin#150;proteasome pathway.  相似文献   

19.
RLIP76 (also known as RalBP1) is an effector for Ral small G proteins. RLIP76 is a multifunctional, multi-domain protein that includes a GTPase activating domain for the Rho family (RhoGAP domain) and a GTPase binding domain (GBD) for the Ral small G proteins. The juxtaposition of these two domains (GAP and GBD) may be a strategy employed to co-ordinate regulation of Rho family and Ral-controlled signalling pathways at a crossover node. Here we present the (1)H, (15)N and (13)C NMR backbone and sidechain resonance assignments of the GAP and GBD di-domain (31 kDa).  相似文献   

20.
The small GTPase M-Ras is highly expressed in the central nervous system and plays essential roles in neuronal differentiation. However, its other cellular and physiological functions remain to be elucidated. Here, we clarify the novel functions of M-Ras in osteogenesis. M-Ras was prominently expressed in developing mouse bones particularly in osteoblasts and hypertrophic chondrocytes. Its expression was elevated in C3H/10T1/2 (10T1/2) mesenchymal cells and in MC3T3-E1 preosteoblasts during differentiation into osteoblasts. Treatment of C2C12 skeletal muscle myoblasts with bone morphogenetic protein-2 (BMP-2) to bring about transdifferentiation into osteoblasts also induced M-Ras mRNA and protein expression. Moreover, the BMP-2 treatment activated the M-Ras protein. Stable expression of the constitutively active M-Ras(G22V) in 10T1/2 cells facilitated osteoblast differentiation. M-Ras(G22V) also induced transdifferentiation of C2C12 cells into osteoblasts. In contrast, knockdown of endogenous M-Ras by RNAi interfered with osteoblast differentiation in 10T1/2 and MC3T3-E1 cells. Osteoblast differentiation in M-Ras(G22V)-expressing C2C12 cells was inhibited by treatment with inhibitors of p38 MAP kinase (MAPK) and c-Jun N-terminal kinase (JNK) but not by inhibitors of MAPK and ERK kinase (MEK) or phosphatidylinositol 3-kinase. These results imply that M-Ras, induced and activated by BMP-2 signaling, participates in the osteoblastic determination, differentiation, and transdifferentiation under p38 MAPK and JNK regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号