首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evidence for the participation of conductive and non-conductive (exchange) transmembrane anion pathways in the luminal acidification, alkalinization, and chloride-reabsorptive functions of the turtle bladder is provided from the pattern of Cl- -induced changes in transepithelial electrical parameters of isolated urinary bladders from three groups of donor turtles: control or post-absorptive turtles (those killed 5 days after feeding); acidotic turtles (NH4Cl-loaded); and alkalotic turtles (NaHCO3-loaded). The predominance of each of the three aforementioned transport functions as well as the response to Cl- -addition is altered by the in-vivo electrolyte balance of the turtle. In post-absorptive bladders, which are poised for acidification and Cl- reabsorption, the mucosal and serosal addition of Cl- to Na+-free, (HCO3- + CO2)-containing media increases the negative short-circuiting current (Isc). In acidotic bladders, which are poised for acidification but not Cl- reabsorption, mucosal Cl- addition has no effect on this Isc whereas serosal Cl- addition increases the negative Isc in a manner identical to that observed in the post-absorptive bladders. Alkalotic bladders do not possess an acidification function but instead are poised for Cl- reabsorption and cAMP-dependent electrogenic alkali secretion (positive Isc). In these bladders, serosal Cl- addition is without effect while mucosal Cl- addition produces transient changes in this positive Isc. It is found that these results can be replicated by a model of the turtle bladder in which transmembrane Cl- and HCO3- conductive and exchange paths mediate transepithelial acidification, alkalinization and Cl- reabsorption.  相似文献   

2.
Turtle bladders bathed on both surfaces with identical HCO3-/CO2-rich, Cl--free Na+ media and treated with ouabain and amiloride exhibit a transepithelial potential serosa electronegative to mucosa and a short-circuit current (Isc) which is a measure of the net luminal acidification rate. Addition of calcium ionophore A23187 (10 microM) to the mucosal side of the epithelium rapidly reverses the direction of the potential difference and Isc and decreases tissue resistance. The resulting positive Isc resembles that previously observed in response to isobutylmethylxanthine (IBMX) and cAMP analogs. Reversal of the Isc is enhanced in bladders from severely alkalotic turtles. In contrast, in severely acidotic turtles, ionophore A23187 decreases, but does not reverse, the Isc. The data suggest that, like IBMX and cAMP analogs, the Ca ionophore stimulates an electrogenic alkalinization mechanism, but, unlike the former agents, inhibits the concurrent acidification process as well.  相似文献   

3.
The diuretic furosemide inhibits acid-base transport in the short-circuited turtle bladder. It inhibits luminal acidification when present in either mucosal or serosal bathing fluids, but decreases alkalinization only from the serosal side of the tissue. The inhibition of both acid-base transport processes is independent of ambient Cl-; and the disulfonic stilbene, SITS, an inhibitor of Cl--HCO3- exchange, fails to prevent the furosemide-elicited inhibition of alkalinization. These results preclude an absolute requirement of a furosemide-sensitive Cl--HCO3- exchange by these transport processes. The drug also interferes with the CO2-induced stimulation of acidification and alkalinization. The inhibition of the residual acidification in acetazolamide-treated, acidotic bladders, however, suggests an action at sites other than cytosolic carbonic anhydrase. Although active Na+ and Cl- reabsorption and tissue oxygen uptake are also decreased by furosemide, the rate of oxygen consumption uncoupled by 2,4-dinitrophenol is not diminished, indicating a primary inhibition of the various ion transport processes, not of metabolism. It is proposed that inhibition of transepithelial acid-base transport by furosemide in the turtle bladder includes inhibition of the acid-base pumps.  相似文献   

4.
We have shown elsewhere that membranes isolated from the turtle bladder epithelium have both vanadate-resistant (VR) and vanadate-sensitive (VS) components of ATP-dependent H+ transport. VR appears to be due to a vacuolar-type H+ uniport while VS has properties of an H/K exchanger. In the present study we used bladders from chronically alkalotic turtles, which do not acidify urine, and found them to yield membranes which retain VR but lack VS transport. Thus VS occurs only in membranes from bladders secreting acid, implying that VS H+ transport (1) plays a physiological role in the secretion and (2) is a functional marker for the apical membrane of the acid-secreting cells. These results suggest a new model for distal urinary acidification.  相似文献   

5.
The rate of active H+ secretion (JH) across the luminal cell membrane of the turtle bladder decreases linearly with the chemical (delta pH) or electrical potential gradient (delta psi) against which secretion occurs. To examine the control of JH from the cell side of the pump, acid-base changes were imposed on the cellular compartment by increasing serosal[HCO3-] at constant PCO2 or by varying PCO2 at constant [HCO3-]. When serosal [HCO3-] was increased from 0 to 60 mM, cell [H+] decreased, as estimated by the 5,5-dimethyloxazoladine-2,4- dione method. JH was a saturable function of cell [H+], with an apparent Km of 25 nM. When PCO2 was varied between 1 and 20% at various serosal Km of 25 nM. When PCO2 was varied between 1 and 20% at various serosal [HCO3-], the PCO2 required to reach a maximal JH increased with [HCO3-] so that JH was a function of cell [H+] rather than of cell [HCO3-] or CO2. The proton pump was controlled asymmetrically with respect to the pH component of the electrochemical potential for protons, microH. On the cell side of the pump, a delta pH of < 1 U was required to vary JH between maximal and zero values, whereas on the luminal side a delta pH of 3 U was required. Cell [H+] regulates JH by determining the availability of H+ to the pump in a relationship resembling Michaelis-Menten kinetics. Increasing luminal [H+] generates an energy barrier at a luminal pH near 4.4 that equals the free energy (per H+ translocated) of the metabolic driving reaction.  相似文献   

6.
Ouabain-treated turtle bladders bathed on both surfaces by identical HCO3-/CO2-containing, Cl- -free Na+ media exhibit a short-circuit current (Isc) and transepithelial potential (p.d.) serosa electronegative to mucosa. Addition of 3-isobutyl-1-methylxanthine (IBMX), an inhibitor of cyclic nucleotide phosphodiesterase, rapidly reverses the direction of the Isc and p.d. The IBMX-induced reversal of Isc and p.d. is (1) dependent on the presence of HCO3- (and CO2) in the serosal bathing fluid, (2) independent of Na+ and other ions in the bathing medium, (3) decreased by inhibitors of carbonic anhydrase or oxidative metabolism, (4) increased by the serosal addition of cyclic AMP or the disulfonic stilbene, SITS. The results constitute evidence that the reversed Isc elicited by IBMX represents electrogenic secretion of HCO3-.  相似文献   

7.
8.
We hypothesized that the function of duodenocyte apical membrane acid-base transporters are essential for H(+) absorption from the lumen. We thus examined the effect of inhibition of Na(+)/H(+) exchanger-3 (NHE3), cystic fibrosis transmembrane regulator (CFTR), or apical anion exchangers on transmucosal CO(2) diffusion and HCO(3)(-) secretion in rat duodenum. Duodena were perfused with a pH 6.4 high CO(2) solution or pH 2.2 low CO(2) solution with the NHE3 inhibitor, S3226, the anion transport inhibitor, DIDS, or pretreatment with the potent CFTR inhibitor, CFTR(inh)-172, with simultaneous measurements of luminal and portal venous (PV) pH and carbon dioxide concentration ([CO(2)]). Luminal high CO(2) solution increased CO(2) absorption and HCO(3)(-) secretion, accompanied by PV acidification and PV Pco(2) increase. During CO(2) challenge, CFTR(inh)-172 induced HCO(3)(-) absorption, while inhibiting PV acidification. S3226 reversed CFTR(inh)-associated HCO(3)(-) absorption. Luminal pH 2.2 challenge increased H(+) and CO(2) absorption and acidified the PV, inhibited by CFTR(inh)-172 and DIDS, but not by S3226. CFTR inhibition and DIDS reversed HCO(3)(-) secretion to absorption and inhibited PV acidification during CO(2) challenge, suggesting that HCO(3)(-) secretion helps facilitate CO(2)/H(+) absorption. Furthermore, CFTR inhibition prevented CO(2)-induced cellular acidification reversed by S3226. Reversal of increased HCO(3)(-) loss by NHE3 inhibition and reduced intracellular acidification during CFTR inhibition is consistent with activation or unmasking of NHE3 activity by CFTR inhibition, increasing cell surface H(+) available to neutralize luminal HCO(3)(-) with consequent CO(2) absorption. NHE3, by secreting H(+) into the luminal microclimate, facilitates net transmucosal HCO(3)(-) absorption with a mechanism similar to proximal tubular HCO(3)(-) absorption.  相似文献   

9.
The purpose of this study was to determine whether phospholipids (PL) play a role in the adaptation to metabolic acidosis by toad urinary bladder epithelium. Toads were placed in an NH4Cl acidosis for 48 hr. Quarter bladders were removed and incubated with [32P]orthophosphate or [3H]arachidonic acid for 1 hr at 25 degrees C. PL were detected by thin layer chromatography, autoradiography, and quantitated by liquid scintillation counting or fractional amounts were determined from phosphate content and expressed as counts per minute per micromolar of total phosphate or as percentage of fraction of total PL. Incorporation of [3H]arachidonic acid into urinary bladder PL was measured in acidotic and normal toads. There was a higher rate of arachidonic acid incorporation into several PL in acidotic animals. Phosphatidic acid and phosphatidylserine fraction in acidosis was 37,705 +/- 6,821 and in normal bladders was 9,254 +/- 2,652 (P less than 0.005); phosphatidylcholine fraction in acidotic toads was 80,462 +/- 16,862 and in normal bladders was 26,892 +/- 5,198 (P less than 0.025); and the phosphatidylethanolamine (PE) fraction in acidotic was 48,665 +/- 10,998 and in normal animals was 17,441 +/- 3,905 (P less than 0.025). 32P labeling revealed a higher rate of incorporation in bladders from acidotic toads compared with normal toads. In the acidotic bladders, the phosphatidic acid and phosphatidylserine fraction was 19,754 +/- 3,597 and in normal bladders was 12,980 +/- 1,394 (P less than 0.05) and for PE acidotic bladders was 9,129 +/- 1,304 and in normal bladders was 3,285 +/- 416 (P less than 0.001). Fractional PL (reported as percentage of fraction of total PL based on total lipid phosphorus) analysis in normal toads revealed phosphatidylinositol = 8.1 +/- 0.6% and PE = 27 +/- 1.2%, whereas for acidotic toads phosphatidylinositol = 11 +/- 0.6% and PE = 32 +/- 1.0% (P less than 0.01 for both). Aldosterone, a known stimulator of acidification, had no effect on 32P incorporation into PL fractions of the bladder. The increase in PL turnover following induction of acidosis is consistent with increased membrane synthesis or turnover during metabolic acidosis and this may reflect an increased transport of vesicular H+-ATPase into the apical membrane or the result of a proliferation of acid-secreting mitochondria-rich cells or both.  相似文献   

10.
The effect of in vivo respiratory acidosis for 4 and 48 hr was examined in the turtle bladder by placing turtles in hypercapnic chambers. Blood pH was significantly lowered and pCO2 was significantly elevated over control values both 4 and 48 hr, while blood bicarbonate was only increased after 48 hr. In vitro rates for H+ secretion determined by the reverse short-circuit current were significantly greater in bladders from 48 hr of respiratory acidosis than those of controls (27.3 +/- 2.7 vs 20.6 +/- 1.7 microA, P less than 0.05). In vitro rates for HCO3- secretion determined by pH stat were not altered. Fluorescence microscopy was used to study cell morphology. The number of carbonic anhydrase cells (corrected for the total number of cells) as determined by four different fluorescence stains (6-carboxyfluorescein, rhodamine 123, acridine orange, and 3,3'-diethyloxacarbocyaninine iodide) was increased both after 4 and 48 hr of respiratory acidosis. However, the number of HCO3(-)-secreting (beta subtype) carbonic anhydrase cells, determined by a probe for the anion exchanger, NBD-taurine, was not increased. In vitro 1% CO2 for 4 hr also resulted in an increase in H+ secretion and in the number of 6-carboxyfluorescein-positive cells, both of which could be blocked with SITS pretreatment. We conclude that CO2 changes the mucosal cells more toward the carbonic anhydrase phenotype, and that if NBD-taurine accurately identifies the beta cells, that the adaptation produces or recruits more alpha-carbonic anhydrase cells.  相似文献   

11.
The inner stripe of the outer medullary collecting tubule is a major distal nephron segment in urinary acidification. To examine the mechanism of basolateral membrane H+/OH-/HCO3- transport in this segment, cell pH was measured microfluorometrically in the inner stripe of the rabbit outer medullary collecting tubule perfused in vitro using the pH-sensitive fluorescent dye, (2',7')-bis(carboxyethyl)-(5,6)-carboxyfluorescein. Decreasing peritubular pH from 7.4 to 6.8 (changing [HCO3-] from 25 to 5 mM) caused a cell acidification of 0.25 +/- 0.02 pH units, while a similar luminal change resulted in a smaller cell acidification of only 0.04 +/- 0.01 pH units. Total replacement of peritubular Cl- with gluconate caused cell pH to increase by 0.18 +/- 0.04 pH units, an effect inhibited by 100 microM peritubular DIDS and independent of Na+. Direct coupling between Cl- and base was suggested by the continued presence of peritubular Cl- removal-induced cell alkalinization under the condition of a cell voltage clamp (K(+)-valinomycin). In addition, 90% of basolateral membrane H+/OH-/HCO3- permeability was inhibited by complete removal of luminal and peritubular Cl-. Peritubular Cl(-)-induced cell pH changes were inhibited two-thirds by removal of exogenous CO2/HCO3- from the system. The apparent Km for peritubular Cl- determined in the presence of 25 mM luminal and peritubular [HCO3-] was 113.5 +/- 14.8 mM. These results demonstrate that the basolateral membrane of the inner stripe of the outer medullary collecting tubule possesses a stilbene-sensitive Cl-/HCO3- exchanger which mediates 90% of basolateral membrane H+/OH-/HCO3- permeability and may be regulated by physiologic Cl- concentrations.  相似文献   

12.
Previous reports have indicated that metabolic acidosis stimulates H+ excretion, and this excretion is accompanied by an increased turnover of phospholipids (PL) in toad urinary bladder. The purpose of this experiment was to determine if other known stimulators of H+ excretion [insulin, deoxycorticosterone acetate (DOCA), epinephrine, parathyroid hormone, and CO2] might also stimulate PL turnover in the toad urinary bladder. Quarter bladders from normal toads were removed, weighed, and then incubated with [32P]orthophosphate for 2 hr at 25 degrees C. PL were extracted, separated, and detected using thin layer chromatography and autoradiography, and quantitated by liquid scintillation counting. Results were expressed in cpm (100 mg bladder)-1 (hr)-1. One quarter bladder received insulin (100 milliunits/ml), DOCA (10(-6) M), epinephrine (50 mM), parathyroid hormone (100 micrograms/ml), or 5% CO2 during the incubation, whereas the paired quarter bladder received no treatment. Phosphatidylcholine (PC) and phosphatidylinositol turnover were increased by insulin (P less than 0.025 and less than 0.05, respectively). DOCA had no effect on PL turnover, but stimulated the percentage fraction of PC (P less than 0.05) expressed as percentage fraction of total lipids. Five percent CO2 in the bath resulted in an increased rate of turnover of the PL fractions phosphatidylinositol (P less than 0.05), and the phosphatidic acid plus phosphatidyl-serine (P less than 0.01). Epinephrine and parathyroid hormone were both without effect on PL metabolism. We conclude that insulin, DOCA, and CO2 may stimulated H+ excretion in toad bladder in part by increasing turnover of membrane PL, PC, and phosphatidylinositol, and in the case of CO2, phosphatidic acid plus phosphatidylserine as well, but not PC.  相似文献   

13.
Bicarbonate is a recycling substrate for cyanase   总被引:1,自引:0,他引:1  
Cyanase is an inducible enzyme in Escherichia coli that catalyzes bicarbonate-dependent decomposition of cyanate to ammonia and bicarbonate. Previous studies provided evidence that carbamate is an initial product and that the kinetic mechanism is rapid equilibrium random (bicarbonate serving as substrate as opposed to activator); the following mechanism was proposed (Anderson, P. M. (1980) Biochemistry 19, 2282-2888; Anderson, P. M., and Little, R. M. (1986) Biochemistry 25, 1621-1626). (formula; see text) Direct evidence for this mechanism was obtained in this study by 1) determining whether CO2 or HCO3- serves as substrate and is formed as product, 2) identifying the products formed from [14C]HCO3- and [14C] OCN-, 3) identifying the products formed from [13C] HCO3- and [12C]OCN- in the presence of [18O]H2O, and 4) determining whether 18O from [18O]HCO3- is incorporated into CO2 derived from OCN-. Bicarbonate (not CO2) is the substrate. Carbon dioxide (not HCO3-) is produced in stoichiometric amounts from both HCO3- and OCN-. 18O from [18O]H2O is not incorporated into CO2 formed from either HCO3- or OCN-. Oxygen-18 from [18O]HCO3- is incorporated into CO2 derived from OCN-. These results support the above mechanism, indicating that decomposition of cyanate catalyzed by cyanase is not a hydrolysis reaction and that bicarbonate functions as a recycling substrate.  相似文献   

14.
The turtle urinary bladder acidifies the contents of its lumen by actively transporting protons. H+ secretion by the isolated bladder was measured simultaneously with the rate of 14CO2 evolution from [14C]glucose. The application of an adverse pH gradient resulted in a decline in the rate of H+ secretion (JH) and in the rate of glucose oxidation (JCO2). The changes in JH and JCO2 were linear functions of the pH difference across the membrane. Hence, JH and JCO2 were linearly related to each other. The slope, deltaJH/deltaJCO2 was found to be similar in half-bladders from the same animal but was seen to vary widely in a population of turtles. To investigate the effect of pH gradients on deltaJH/deltaJCO2, two experiments were performed in each of 14 hemibladders. In one, JH and JCO2 were altered by changing the luminal pH. In the other, they were altered by changing the ambient pCO2 while the luminal pH was kept constant. The average slope, deltaJH/deltaJCO2, in the presence of pH gradients was 14.45 eq-mol-1. In the absence of gradients in the same hemibladders it was 14.72, delta = 0.27 +/- 1.46. The results show that H+ transport is organized in such a way that leaks to protons in parallel to the pump are negligible. Analysis of the transport system by use of the Essig-Caplan linear irreversible thermodynamic formalism shows that the system is tightly coupled. The degree of coupling, q, given by that analysis was measured and found to be at or very near the maximum theoretical value.  相似文献   

15.
The importance of blood hemoglobin to aquatic oxygen uptake by turtles (Chrysemys picta bellii) submerged in aerated water at 3 degrees C was tested by comparing the responses of anemic turtles (hematocrit approximately 6%) to turtles with normal hematocrits (hematocrit approximately 33%). All turtles were submerged for 42 days and blood samples were collected at 0, 7, 21, 32 and 42 days. Blood was analyzed for pH, PCO(2), PO(2), hematocrit, hemoglobin concentration ([Hb]) and plasma was analyzed for concentrations of lactate, glucose, Na(+), K(+), Ca(2+) and Mg(2+). Plasma [HCO(3)(-)] was calculated. [Hb] correlated closely with hematocrit levels. [Lactate] reached higher final values in anemic turtles (34.5+/-5.3 mmol l(-1)) than in normal turtles (14.5+/-4.6 mmol l(-1)) indicating a greater reliance of the anemic animals on anaerobic metabolism. Both groups compensated for acidosis by reduced PCO(2) and anemic turtles also had increased [Ca(2+)] and [Mg(2+)]. Blood pH fell significantly in the anemic turtles but not in the controls. Although the data indicate that the anemic turtles relied more on anaerobic metabolism than the controls, the effect was much less than expected on the basis of the reduced blood O(2) carrying capacity. Possible compensatory mechanisms utilized by the anemic turtles to minimize anaerobic metabolism are discussed.  相似文献   

16.
During summer of 2001, venous blood gases were determined in loggerhead sea turtles (Caretta caretta) captured by trawl (n = 16) in coastal waters of South Carolina and Georgia (USA) as part of a sea turtle census program and captured in pound nets (n = 6) in coastal North Carolina (USA) during a study of sea turtle population biology. Trawls were towed for 30 min, so turtles captured were forcibly submerged for < or = 30 min. Pound nets are passive gear in which fish and sea turtles are funneled into a concentrated area and removed periodically. Sea turtles in pound nets are free to surface and to feed at will. Blood was obtained from the dorsal cervical sinus as quickly as possible after landing on the boat (range 2-10 min trawl, 1-2 min pound net) and at 30 min after landing just prior to release. Blood gases including pH, partial pressures of O2 and CO2 (pO2, pCO2), and lactate were measured within 10 min. Instrument measurements for pH, pO2, and pCO2 made at 37 C were corrected to cloacal temperature and HCO3- was calculated from temperature-corrected pH and pCO2. Venous blood pH and bicarbonate were higher, and pO2 and lactate were lower from pound net-captured turtles compared to trawl captured turtles at the initial sampling time. In pound net turtles, pH and bicarbonate declined and lactate increased during 30 min on deck. In trawled sea turtles, venous blood pH increased and pCO2 and pO2 decreased during the 30 min on deck. Both capture systems caused perturbations in blood gas, acid-base, and lactate status, though alterations were greater in trawl captured turtles.  相似文献   

17.
Softshell turtles (Apalone spinifera) were submerged at 3 degrees C in anoxic or normoxic water. Periodically, blood PO(2), PCO(2), pH, plasma [Cl(-)], [Na(+)], [K(+)], total Ca, total Mg, lactate, glucose, and osmolality were measured; hematocrit and body mass determined; and blood [HCO(3)(-)] calculated. On day 14 of anoxic submergence, five of eight softshell turtles were dead, one died immediately after removal, and the remaining two showed no signs of life other than a heartbeat. After 11 days of submergence in anoxic water, blood pH fell from 7.923 to 7.281 and lactate increased to 62.1 mM. Plasma [HCO(3)(-)] was titrated from 34.57 mM to 4.53 mM. Plasma [Cl(-)] fell, but [K(+)] and total Ca and Mg increased. In normoxic submergence, turtles survived over 150 days and no lactate accumulated. A respiratory alkalosis developed (pH-8.195, PCO(2)-5.49 after 10 days) early and persisted throughout; no other variables changed in normoxic submergence. Softshell turtles are very capable of extrapulmonary extraction of O(2), but are an anoxia-intolerant species of turtle forcing them to utilize hibernacula that are unlikely to become hypoxic or anoxic (e.g., large lakes and rivers).  相似文献   

18.
The effect of chronic hyperfiltration, a model of cell hypertrophy, on H/HCO3 transporters was examined in the in vivo microperfused rat proximal tubule. Hyperfiltration was induced by uninephrectomy with subsequent increased dietary protein. After 2 wk the hyperfiltration group had a higher glomerular filtration rate (2.21 +/- 0.13 vs. 1.48 +/- 0.12 ml/min), associated with increased kidney weight (1.71 +/- 0.05 vs. 1.23 +/- 0.04 g). HCO3 absorptive rate measured in tubules perfused with an ultrafiltrate-like solution (25 mM HCO3) was higher in the hyperfiltration group (183 +/- 17 vs. 109 +/- 16 pmol/mm per min). The activities of the apical membrane Na/H antiporter and basolateral membrane Na/3HCO3 symporter were assayed using the measurement of cell pH [(2'7')-bis(carboxyethyl)-(5,6)-carboxyfluorescein] in the doubly microperfused tubule in the absence of contact with native fluids. After 2 wk of hyperfiltration Na/H antiporter activity, assayed as the effect of luminal Na removal on cell pH, was increased 114%. Basolateral membrane Na/3HCO3 symporter activity, assayed as the effect of a decrease in peritubular [HCO3] (25 to 5 mM) or in peritubular [Na] (147 to 25 mM) in the absence of luminal and peritubular chloride, was increased 77 and 113%, respectively, in the hyperfiltration group. Steady-state cell pH, measured with physiologic, ultrafiltrate-like luminal and peritubular perfusates, was significantly higher in the hyperfiltration group (7.27 +/- 0.02 vs. 7.14 +/- 0.03). In similar studies, performed 24 h after uninephrectomy and protein feeding, kidney weight was increased 10%, Na/H antiporter activity 39%, and Na/3HCO3 symporter activity 46%. At this time cell pH was not different between the two groups. The results demonstrate that chronic hyperfiltration is associated with parallel increases in Na/H antiporter and Na/3HCO3 symporter activities. If a decrease in cell pH is the signal that triggers these adaptations, it occurs early, and the adaptations can be maintained in the absence of sustained cell acidification.  相似文献   

19.
The maintenance of chondrocyte pH is an important parameter controlling cartilage matrix turnover rates. Previous studies have shown that, to varying degrees, chondrocytes rely on Na(+)/H(+) exchange to regulate pH. HCO(3)(-)-dependent buffering and HCO(3)(-)-dependent acid-extrusion systems seem to play relatively minor roles. This situation may reflect minimal carbonic anhydrase activity in cartilage cells. In the present study, the pH regulation of the human chondrocyte cell line, C-20/A4 has been characterised. Intracellular pH (pH(i)) was measured using the H(+)-sensitive fluoroprobe BCECF. In solutions lacking HCO(3)(-)/CO(2), pH(i) was approximately 7.5, and the recovery from intracellular acidification was predominantly mediated by a Na(+)-dependent, amiloride- and HOE 694-sensitive process. A small additional component which was sensitive to chloro-7-nitrobenz-2-oxa-1,3-diazole, an inhibitor of the V-type H(+)-ATPase, was also apparent. In solutions containing HCO(3)(-)/CO(2), pH(i) was approximately 7.2. Comparison of buffering capacity in the two conditions showed that this variable was not significantly augmented in HCO(3)(-)/CO(2)-containing media. The recovery from intracellular acidification was more rapid in the presence of HCO(3)(-)/CO(2), although under these conditions it was again largely dependent on Na(+) ions and inhibited by amiloride and HOE 694. A small component was inhibited by SITS, although this effect did not reach the level of statistical significance. These findings indicate that HCO(3)(-)-dependent processes play only a minimal role in pH regulation in C-20/A4 chondrocytes. pH regulation instead relies heavily on the Na(+)/H(+) exchanger together with a H(+)-ATPase. The absence of extrinsic (HCO(3)(-)/CO(2)) buffering is likely to reflect the low levels of carbonic anhydrase in these cells. In addition to providing fundamental information about a widely-used cell line, these findings support the contention that the unusual nature of pH regulation in chondrocytes reflects the paucity of carbonic anhydrase activity in these cells.  相似文献   

20.
The aim of the current study was to investigate the effects of ambient temperature on thyroid activity of the soft-shelled turtle (Lissemys punctata pucntata). Turtles exposed to low ambient temperature (10 degrees C for 15 days) showed a significant decrease in relative thyroid weight, follicular cell size (cell became squamous from cuboidal type) and epithelial height in both the peripheral and central follicles of the gland, with the appearance of homogeneous colloid materials in the follicular lumen. Thyroid peroxidase activity declined significantly. In contrast, high ambient temperatures (32/34 degrees C for 15 days) caused reverse changes to those observed after exposure with low ambient temperature. No significant difference was marked in thyroid activity between 32 and 34 degrees C temperature treatments. The findings provide evidence that low ambient temperature inhibits thyroid activity and high ambient temperature stimulates the gland activity in soft-shelled turtles. Ambient temperature acts presumably via the hypothalamo-hypophysial (TRF-TSH) axis which in turn alters thyroid function in turtles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号