首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During development the content of mesenchymal glycosaminoglycans (GAG) undergoes prominent changes, currently considered to act as regulatory signals in the epithelial-mesenchymal interactions. The factors involved in controlling GAG composition are as yet completely unknown. Lysosomal enzymes play a key role in GAG turnover. A possible mechanism for regulating GAG content could therefore be linked to developmental modulation of lysosomal glycosidases activity. We have examined the activity of the beta-N-acetyl-D-glucosaminidase (EC 3.2.1.30; a lysosomal hydrolase cleaving glycosidic linkage of the non-reducing terminal beta-N-acetyl-D-glucosamine residues) in chick embryo skin and lung (rudiments whose GAG composition has previously been studied) at various embryonic stages. Determinations were carried out on whole organs as well as on primary cultures of fibroblasts obtained from the two rudiments. beta-N-acetyl-D-glucosaminidase activity varied greatly during development, and it was significantly different in embryonic skin and lung tissues at various incubation days. In cultured fibroblasts, the enzymatic activity varied at different incubation days correlating with the in vivo data. Developmental changes of beta-N-acetyl-D-glucosaminidase paralleled mesenchymal GAG pattern both in vivo and in vitro. Our results, therefore, support the possibility that lysosomal enzymes could be involved in the regulation of mesenchymal GAG content during development.  相似文献   

2.
Lung branching morphogenesis is a result of epithelial-mesenchymal interactions, which are in turn dependent on extracellular matrix composition and cytokine regulation. Polyamines have recently been demonstrated as able to modify chick embryo skin differentiation. In this work we have examined the effects of putrescine and spermidine during chick embryo lung morphogenesis in organotypic cultures by morphological, histochemical and biochemical examination. To verify the role of polyamines, we used specific inhibitors, such as bis-cyclohexylammonium sulphate and alfa-difluoromethylornithine, and transforming growth factor beta1, an ornithine decarboxylase and polyamine stimulator. Our data show that lung morphogenesis is significantly altered following the induced mesenchymal glycosaminoglycan changes. The increase of mesenchymal glycosaminoglycans is correlated with a stimulation of lung development in the presence of polyamines, and with its inhibition when transforming growth factor beta1 is added to the culture medium. The morphometric data show a uniform increase of both the mesenchyme and epithelial branching with spermidine and putrescine stimulus, whereas the mesenchymal substance alone is significantly increased in apical-median lung sections with transforming growth factor beta1 and transforming growth factor beta1 + spermidine lung cultures. Transforming growth factor beta1 and transforming growth factor beta1 + spermidine confirm the blocking of epithelial branching formations and fibroblast activation, and show that polyamines are unable to prevent the blocking of epithelial cells due to the inhibitory effect of transforming growth factor beta1.  相似文献   

3.
Normal branching development is dependent on the correlation between cells and extracellular matrix. In this interaction glycosaminoglycans, cytokines and growth factors play a fundamental role. In order to verify the distribution and influence of extracellular matrix and related enzymes on chick embryo lung development, 6 day-old whole lungs were maintained in vitro with testicular hyaluronidase, beta-N-acetyl-D-glucosaminidase and chondrotinase ABC or in linkage with apical, medial and caudal lung regions of 6-day development before and after enzyme treatment. In a separate lung region beta-N-acetyl-D-glucosaminidase and hyaluronidase were determined. Our data show that the whole lung cultures increase bronchial branching development when the medial region is admixed separately, while the separate apical or caudal regions or apical combined with caudal region do not affect bronchial branching development. The enzyme treatment of medial region prevents the branching development in associated whole lung. The bronchial branching development of whole lung cultured in medium containing the enzymes related to glycosaminoglycans turnover is significantly altered. In conclusion, these data show that the different influence of separate apical, medial, caudal lung regions on bronchial branching development is related to the extracellular matrix composition.  相似文献   

4.
The concept that extracellular matrix materials are involvedin the morphogeuetic process is supported by substantial indirectevidence. Essential morphogenetically active materials are obscurewith regard to their nature, their mode of action, and whetherthey are causally involved in tissue interactions. Studies are presented indicating that glycosaminoglycans arecomponents of embryonic epithelial basal laminae, and that materialswithin the basal lamina which are, at least in part, glycosaminoglycanare required for establishing and maintaining braching epithelialmorphogenesis. The tissue of origin and molecular nature ofbasal laminar glycosaminoglycan are described and speculationsare made regarding its possible mode of action in the contextof a model for branching morphogenesis.  相似文献   

5.
Most of the sulfotransferases participating in glycosaminoglycan biosynthesis have now been identified. Their essential role in generating binding sites for proteins interacting with glycosaminoglycans is apparent. These interactions may influence important biological processes such as growth control, signal transduction, cell adhesion and lipid metabolism. Gene targeting in mice as well as studies in Drosophila melanogaster and Caenorhabditis elegans have shown that dysfunction or lack of glycosaminoglycan sulfotransferases may result in severely disturbed embryonic development.  相似文献   

6.
Remodeling of the extracellular matrix by matrix-degrading metalloproteinases (MMPs) has been implicated in the early morphogenesis of branched organs. Growth factors such as EGF and TGF alpha are known to regulate the expression of MMPs in a variety of systems. We therefore examined the effects of EGF, TGF alpha, and collagenase upon in vitro branching of the embryonic lung. Lung rudiments from 11.5 day post coitum mice underwent extensive growth and repetitive branching during a 3-day period in organ culture. Lungs treated with EGF or TGF alpha were larger than controls, yet displayed fewer branches along with markedly dilated end buds which lacked clefts, indicating that these growth factors inhibit normal lung branching. Addition of purified mammalian collagenase to lung cultures similarly inhibited epithelial branching and produced end bud enlargement. In addition, gelatin-substrate enzymography of the conditioned medium from EGF- and TGF alpha-treated lungs revealed a marked induction of a metalloproteinase activity which most likely corresponds to the 72kDa type IV collagenase/gelatinase which degrades basement membrane collagens. Lungs maintained in the presence of both TGF alpha and TIMP, a specific inhibitor of MMPs, branched repeatedly and displayed normal, narrow end buds as seen with controls, suggesting that TIMP is capable of preventing or reversing the observed growth factor mediated effects upon lung branching. Taken together, these results provide evidence that the growth factors EGF and TGF alpha guide lung development, at least in part, by inducing the expression of matrix-degrading metalloproteinases.  相似文献   

7.
Early embryonic lung branching morphogenesis is regulated by many growth factor-mediated pathways. Bone morphogenetic protein 4 (BMP4) is one of the morphogens that stimulate epithelial branching in mouse embryonic lung explant culture. To further understand the molecular mechanisms of BMP4-regulated lung development, we studied the biological role of Smad-ubiquitin regulatory factor 1 (Smurf1), an ubiquitin ligase specific for BMP receptor-regulated Smads, during mouse lung development. The temporo-spatial expression pattern of Smurf1 in mouse embryonic lung was first determined by quantitative real-time PCR and immunohistochemistry. Overexpression of Smurf1 in airway epithelial cells by intratracheal introduction of recombinant adenoviral vector dramatically inhibited embryonic day (E) 11.5 lung explant growth in vitro. This inhibition of lung epithelial branching was restored by coexpression of Smad1 or by addition of soluble BMP4 ligand into the culture medium. Studies at the cellular level show that overexpression of Smurf1 reduced epithelial cell proliferation and differentiation, as documented by reduced PCNA-positive cell index and by reduced mRNA levels for surfactant protein C and Clara cell protein 10 expression. Further studies found that overexpression of Smurf1 reduced BMP-specific Smad1 and Smad5, but not Smad8, protein levels. Thus overexpression of Smurf1 specifically promotes Smad1 and Smad5 ubiquitination and degradation in embryonic lung epithelium, thereby modulating the effects of BMP4 on embryonic lung growth.  相似文献   

8.
Transforming growth factors beta (TGF-beta) are known negative regulators of lung development, and excessive TGF-beta production has been noted in pulmonary hypoplasia associated with lung fibrosis. Inhibitory Smad7 was recently identified to antagonize TGF-beta family signaling by interfering with the activation of TGF-beta signal-transducing Smad complexes. To investigate whether Smad7 can regulate TGF-beta-induced inhibition of lung morphogenesis, ectopic overexpression of Smad7 was introduced into embryonic mouse lungs in culture using a recombinant adenovirus containing Smad7 cDNA. Although exogenous TGF-beta efficiently reduced epithelial lung branching morphogenesis in control virus-infected lung culture, TGF-beta-induced branching inhibition was abolished after epithelial transfer of the Smad7 gene into lungs in culture. Smad7 also prevented TGF-beta-mediated down-regulation of surfactant protein C gene expression, a marker of bronchial epithelial differentiation, in cultured embryonic lungs. Moreover, we found that Smad7 transgene expression blocked Smad2 phosphorylation induced by exogenous TGF-beta ligand in lung culture, indicating that Smad7 exerts its inhibitory effect on both lung growth and epithelial cell differentiation through modulation of TGF-beta pathway-restricted Smad activity. However, the above anti-TGF-beta signal transduction effects were not observed in cultured embryonic lungs with Smad6 adenoviral gene transfer, suggesting that Smad7 and Smad6 differentially regulate TGF-beta signaling in developing lungs. Our data therefore provide direct evidence that Smad7, but not Smad6, prevents TGF-beta-mediated inhibition of both lung branching morphogenesis and cytodifferentiation, establishing the mechanistic basis for Smad7 as a novel target to ameliorate aberrant TGF-beta signaling during lung development, injury, and repair.  相似文献   

9.
10.
Experimental evidence is rapidly emerging that the coupling of positive regulatory signals with the induction of negative feedback modulators is a mechanism of fine regulation in development. Studies in Drosophila and chick have shown that members of the SPROUTY family are inducible negative regulators of growth factors that act through tyrosine kinase receptors. We and others have shown that Fibroblast Growth Factor 10 (FGF10) is a key positive regulator of lung branching morphogenesis. Herein, we provide direct evidence that mSprouty2 is dynamically expressed in the peripheral endoderm in embryonic lung and is downregulated in the clefts between new branches at E12.5. We found that mSprouty2 was expressed in a domain restricted in time and space, adjacent to that of Fgf10 in the peripheral mesenchyme. By E14.5, Fgf10 expression was restricted to a narrow domain of mesenchyme along the extreme edges of the individual lung lobes, whereas mSprouty2 was most highly expressed in the subjacent epithelial terminal buds. FGF10 beads upregulated the expression of mSprouty2 in adjacent epithelium in embryonic lung explant culture. Lung cultures treated with exogenous FGF10 showed greater branching and higher levels of mSpry2 mRNA. Conversely, Fgf10 antisense oligonucleotides reduced branching and decreased mSpry2 mRNA levels. However, treatment with exogenous FGF10 or antisense Fgf10 did not change Shh and FgfR2 mRNA levels in the lungs. We investigated Sprouty2 function during lung development by two different but complementary approaches. The targeted overexpression of mSprouty2 in the peripheral lung epithelium in vivo, using the Surfactant Protein C promoter, resulted in a low level of branching, lung lobe edges abnormal in appearance and the inhibition of epithelial proliferation. Transient high-level overexpression of mSpry2 throughout the pulmonary epithelium by intra-tracheal adenovirus microinjection also resulted in a low level of branching. These results indicate for the first time that mSPROUTY2 functions as a negative regulator of embryonic lung morphogenesis and growth.  相似文献   

11.
In this study mouse lung development was examined using an in vitro model system. The culture system permitted examination of a morphogenic process that eventually led to the formation of presumptive alveoli (terminal sacs). The observations included changes in epithelial cell morphology (transition from a columnar to a spindle shape), and evidence for motile activity on the part of primitive airway epithelial cells. The importance of Type IV collagen to the cellular events associated with branching morphogenesis was investigated by immunolocalization. In addition, we assessed the similarity of normal lung development to in vitro development by comparing cultured lungs with equivalent stages of embryonic and fetal mouse lungs. The results show that cultured embryonic lung explants proceed along a morphogenic pathway that parallels normal lung development; that primitive pulmonary epithelial cells engage in motile activity and transiently acquire an extended cell shape both in vitro and in vivo; that, as suggested by others, the pattern of late branching morphogenesis is not dichotomous, but irregular; and that short wisplike fibers of Type IV collagen are present in developing embryonic and fetal lung mesenchyme. Taken together, the results show that early and late lung branching patterns differ significantly, and suggest that later stages of lung branching involve distinct epithelial cell shape transitions. The immunofluorescence data suggest that fibrous Type IV collagen may be the extracellular matrix scaffold within which early epithelial cells accomplish lung branching morphogenesis.  相似文献   

12.
The mechanisms by which the branching of epithelial tissue occurs and is regulated to generate different organ structures are not well understood. In this work, image analyses of the organ rudiments demonstrate specific epithelial branching patterns for the early lung and kidney; the lung type typically generating several side branches, whereas kidney branching was mainly dichotomous. Parameters such as the number of epithelial tips, the angle of the first branch, the position index of the first branch (PIFB) in a module, and the percentage of epithelial module type (PMT) were analysed. The branching patterns in the cultured lung and kidney, and in homotypic tissue recombinants recapitulated their early in vivo branching patterns. The parameters were applied to heterotypic tissue recombinants between lung mesenchyme and ureteric bud, and tip number, PIFB and PMT values qualified the change in ureter morphogenesis and the reprogramming of the ureteric bud with lung mesenchyme. All the values for the heterotypic recombinant between ureteric bud and lung mesenchyme were significantly different from those for kidney samples but similar to those of the lung samples. Hence, lung mesenchyme can instruct the ureteric bud to undergo aspects of early lung-type epithelial morphogenesis. Different areas of the lung mesenchyme, except the tracheal region, were sufficient to promote ureteric bud growth and branching. In conclusion, our findings provide morphogenetic parameters for monitoring epithelial development in early embryonic lung and kidney and demonstrate the use of heterotypic tissue recombinants as a model for studying tissue-specific epithelial branching during organogenesis.  相似文献   

13.
《The Journal of cell biology》1983,96(5):1443-1450
The proteoglycans and glycosaminoglycans synthesized by embryonic mouse salivary glands during normal morphogenesis and in the presence of beta- xyloside, an inhibitor of branching morphogenesis, have been partially characterized. Control and rho-nitrophenyl-beta-D-xyloside-treated salivary rudiments synthesize proteoglycans that are qualitatively similar, based on mobility on Sepharose CL-4B under dissociative conditions and glycosaminoglycan composition. However, beta-xyloside inhibits total proteoglycan-associated glycosaminoglycan synthesis by 50%, and also stimulates synthesis of large amounts of free chondroitin (dermatan) sulfate. This free glycosaminoglycan accounts for the threefold stimulation of total glycosaminoglycan synthesis in beta- xyloside-treated cultures. Several observations suggest that the disruption of proteoglycan synthesis rather than the presence of large amounts of free glycosaminoglycan is responsible for the inhibition of branching morphogenesis. (a) We have been unable to inhibit branching activity by adding large amounts of chondroitin (dermatan) sulfate, extracted from beta-xyloside-treated cultures, to the medium of salivary rudiments undergoing morphogenesis. (b) In the range of 0.1- 0.4 mM beta-xyloside, the dose-dependent inhibition of branching morphogenesis is directly correlated with the inhibition of proteoglycan synthesis. The stimulation of free glycosaminoglycan synthesis is independent of dose in this range, since stimulation is maximal even at the lowest concentration used, 0.1 mM. The data strongly suggest that the inhibition of branching morphogenesis is caused by the disruption of proteoglycan synthesis in beta-xyloside- treated salivary glands.  相似文献   

14.
Branching morphogenesis of many organs, including the embryonic lung, is a dynamic process in which growth factor mediated tyrosine kinase receptor activation is required, but must be tightly regulated to direct ramifications of the terminal branches. However, the specific regulators that modulate growth factor signaling downstream of the tyrosine kinase receptor remain to be determined. Herein, we demonstrate for the first time an important function for the intracellular protein tyrosine phosphatase Shp2 in directing embryonic lung epithelial morphogenesis. We show that Shp2 is specifically expressed in embryonic lung epithelial buds, and that loss of function by the suppression of Shp2 mRNA expression results in a 53% reduction in branching morphogenesis. Furthermore, by intra-tracheal microinjection of a catalytically inactive adenoviral Shp2 construct, we provide direct evidence that the catalytic activity of Shp2 is required for proper embryonic lung branch formation. We demonstrate that Shp2 activity is required for FGF10 induced endodermal budding. Furthermore, a loss of Shp2 catalytic activity in the embryonic lung was associated with a reduction in ERK phosphorylation and epithelial cell proliferation. However, epithelial cell differentiation was not affected. Our results show that the protein tyrosine phosphatase Shp2 plays an essential role in modulating growth factor mediated tyrosine kinase receptor activation in early embryonic lung branching morphogenesis.  相似文献   

15.
Bone morphogenetic protein-4 (BMP-4) is a key morphogen for embryonic lung development that is expressed at high levels in the peripheral epithelium, but the mechanisms that modulate BMP-4 function in early mouse lung branching morphogenesis are unclear. Here, we studied the BMP-4 antagonist Gremlin, which is a member of the DAN family of BMP antagonists that can bind and block BMP-2/4 activity. The expression level of gremlin in embryonic mouse lungs is highest in the early embryonic pseudoglandular stage [embryonic days (E) 11.5-14.5] and is reduced during fetal lung maturation (E18.5 to postnatal day 1). In situ hybridization indicates that gremlin is diffusely expressed in peripheral lung mesenchyme and epithelium, but relatively high epithelial expression occurs in branching buds at E11.5 and in large airways after E16.5. In E11.5 lung organ culture, we found that exogenous BMP-4 dramatically enhanced peripheral lung epithelial branching morphogenesis, whereas reduction of endogenous gremlin expression with antisense oligonucleotides achieved the same gain-of-function phenotype as exogenous BMP-4, including increased epithelial cell proliferation and surfactant protein C expression. On the other hand, adenoviral overexpression of gremlin blocked the stimulatory effects of exogenous BMP-4. Therefore, our data support the hypothesis that Gremlin is a physiologically negative regulator of BMP-4 in lung branching morphogenesis.  相似文献   

16.
Branching morphogenesis of epithelium is a common and important feature of organogenesis; it is, for example, responsible for development of renal collecting ducts, lung airways, milk ducts of mammary glands and seminal ducts of the prostate. In each case, epithelial development is controlled by a variety of mesenchyme-derived molecules, both soluble (e.g. growth factors) and insoluble (e.g. extracellular matrix). Little is known about how these varied influences are integrated to produce a coherent morphogenetic response, but integration is likely to be achieved at least partly by cytoplasmic signal transduction networks. Work in other systems (Drosophila tracheae, MDCK models) suggests that the mitogen-activated protein (MAP) kinase pathway might be important to epithelial branching. We have investigated the role of the MAP kinase pathway in one of the best characterised mammalian examples of branching morphogenesis, the ureteric bud of the metanephric kidney. We find that Erk MAP kinase is normally active in ureteric bud, and that inhibiting Erk activation with the MAP kinase kinase inhibitor, PD98059, reversibly inhibits branching in a dose-dependent manner, while allowing tubule elongation to continue. When Erk activation is inhibited, ureteric bud tips show less cell proliferation than controls and they also produce fewer laminin-rich processes penetrating the mesenchyme and fail to show the strong concentration of apical actin filaments typical of controls; apoptosis and expression of Ret and Ros, are, however, normal. The activity of the Erk MAP kinase pathway is dependent on at least two known regulators of ureteric bud branching; the GDNF-Ret signalling system and sulphated glycosaminoglycans. MAP kinase is therefore essential for normal branching morphogenesis of the ureteric bud, and lies downstream of significant extracellular regulators of ureteric bud development.  相似文献   

17.
Epithelial-mesenchymal interactions and extracellular matrix remodeling are key processes of embryonic lung development. Lung smooth muscle cells, which are derived from the mesenchyme, form a sheath around bronchi and blood vessels. During lung organogenesis, smooth muscle differentiation coincides with epithelial branching morphogenesis and closely follows developing airways spatially and temporally. The precise function of parabronchial smooth muscle (PBSM) cells in healthy adult lung remains unclear. However, PBSM may regulate epithelial branching morphogenesis during lung development by the induction of mechanical stress or through regulation of paracrine signaling pathways. Alveolar myofibroblasts are interstitial contractile cells that share features and may share an origin with smooth muscle cells. Alveolar myofibroblasts are essential for secondary septation, a process critical for the development of the gas-exchange region of the lung. Dysregulation of PBSM or alveolar myofibroblast development is thought to underlie the pathogenesis of many lung diseases, including bronchopulmonary dysplasia, asthma, and interstitial fibrosis. We review the current understanding of the regulation of PBSM and alveolar myofibroblast development, and discuss the role of PBSM in lung development. We specifically focus on the role of these cells in the context of fibroblast growth factor-10, sonic hedgehog, bone morphogenetic protein-4, retinoic acid, and Wnt signaling pathways in the regulation of lung branching morphogenesis.  相似文献   

18.
K Peters  S Werner  X Liao  S Wert  J Whitsett    L Williams 《The EMBO journal》1994,13(14):3296-3301
Mouse lung development begins when two lung buds sprout from the epithelium of the embryonic gut. Patterning of the airways is then accomplished by the outgrowth and repetitive branching of the two lung buds, a process called branching morphogenesis. One of the four fibroblast growth factor (FGF) receptor genes, FGFR2, is expressed in the epithelium of a number of embryonic organs including the lung buds. To block the function of FGFR2 during branching morphogenesis of the lung without affecting its function in other embryonic tissues, the human surfactant protein C promoter was used to target expression of a dominant negative FGFR2 exclusively to lung bud epithelium in transgenic mice. Newborn mice expressing the transgene were completely normal except that instead of normally developed lungs they had two undifferentiated epithelial tubes that extended from the bifurcation of the trachea down to the diaphragm, a defect that resulted in perinatal death. Thus, the dominant negative FGF receptor completely blocked airway branching and epithelial differentiation, without prohibiting outgrowth, establishing a specific role for FGFs in branching morphogenesis of the mammalian lung.  相似文献   

19.
Salivary gland branching morphogenesis   总被引:3,自引:0,他引:3  
Salivary gland branching morphogenesis involves coordinated cell growth, proliferation, differentiation, migration, apoptosis, and interaction of epithelial, mesenchymal, endothelial, and neuronal cells. The ex vivo analysis of embryonic mouse submandibular glands, which branch so reproducibly and beautifully in culture, is a powerful tool to investigate the molecular mechanisms regulating epithelium-mesenchyme interactions during development. The more recent analysis of genetically modified mice provides insight into the genetic regulation of branching morphogenesis. The review begins, as did the field historically, focusing on the role of the extracellular matrix (ECM), and its components such as glycosaminoglycans, collagens, and laminins. Following sections describe the modification of the ECM by proteases and the role of cell-matrix and cell-cell receptors. The review then focuses on two major families of growth factors implicated in salivary gland development, the fibroblast growth factors (FGFs) and the epidermal growth factors (EGFs). The salivary gland phenotypes in mice with genetic modification of FGFs and their receptors highlight the central role of FGFs during salivary gland branching morphogenesis. A broader section mentions other molecules implicated from analysis of the phenotypes of genetically modified mice or organ culture experiments. The review concludes with speculation on some future areas of research.  相似文献   

20.
Recent investigations have suggested an active role for endothelial cells in organ development, including the lung. Herein, we investigated some of the molecular mechanisms underlying normal pulmonary vascular development and their influence on epithelial branching morphogenesis. Because the lung in utero develops in a relative hypoxic environment, we first investigated the influence of low oxygen on epithelial and vascular branching morphogenesis. Two transgenic mouse models, the C101-LacZ (epithelial-LacZ marker) and the Tie2-LacZ (endothelial-LacZ marker), were used. At embryonic day 11.5, primitive lung buds were dissected and cultured at either 20 or 3% oxygen. At 24-h intervals, epithelial and endothelial LacZ gene expression was visualized by X-galactosidase staining. The rate of branching of both tissue elements was increased in explants cultured at 3% oxygen compared with 20% oxygen. Low oxygen increased expression of VEGF, but not that of the VEGF receptor (Flk-1). Expression of two crucial epithelial branching factors, fibroblast growth factor-10 and bone morphogenetic protein-4, were not affected by low oxygen. Epithelial differentiation was maintained at low oxygen as shown by surfactant protein C in situ hybridization. To explore epithelial-vascular interactions, we inhibited vascular development with antisense oligonucleotides targeted against either hypoxia inducible factor-1 alpha or VEGF. Epithelial branching morphogenesis in vitro was dramatically abrogated when pulmonary vascular development was inhibited. Collectively, the in vitro data show that a low-oxygen environment enhances branching of both distal lung epithelium and vascular tissue and that pulmonary vascular development appears to be rate limiting for epithelial branching morphogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号