首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A vector was constructed for the isolation of gene fusions to thelacZ reporter gene following T-DNA integration into the genome ofArabidopsis thaliana. To facilitate the generation of taggedA. thaliana plants, we established a modified method for high-frequency transformation ofA. thaliana byAgrobacterium tumefaciens. The main modification required was to inhibit the methylation of T-DNA in the transformed calli. Apparently, cytosine residues of thenos-nptII gene used as a selectable marker were methylated, and the expression of this gene was suppressed. Treatment of the calli with the cytosine methylation inhibitor 5-azacytidine led to a dramatic increase (from 3% to 96%) in the regeneration of transformed (kanamycin-resistant) shoots. A total of 150 transgenic plants were isolated, and in 17 of these expression of thelacZ reporter was detected byin situ staining. The T-DNA insert together with flanking plant DNA sequences was cloned intoEscherichia coli by plasmid rescue from some of the T3 transformants that harbored one copy of the integrated T-DNA. Comparison of the rescued DNA with the corresponding DNA of the transgenic plant showed that most of the rescued plasmids had undergone rearrangements. These rearrangements could be totally avoided if anmcrAB (modified cytosine restriction) mutant ofE. coli was used as the recipient in plasmid rescue.  相似文献   

2.
It has recently become apparent that many strains ofE. coli contain nucleases encoded by themcrA andmcrB loci that, recognize the modified base 5-methylcytosine in DNA. Plant DNAs have particularly high levels of this modification and the activity of these 5-methylcytosine-specific nucleases is particularly relevant to cloning plant genomic DNAs. We show here that for preparing libraries in a λ replacement vector, the use of suitablemcr hosts andmcr packaging mixes can increase the efficiency of cloning of plant genomic DNAs by at least two orders of magnitude. We also provide evidence that the activity of themcr nucleases is probably a significant source of bias in the representation of sequences in plant genomic libraries.  相似文献   

3.
Zheng  Si-Jun  Henken  Betty  Sofiari  Eri  Jacobsen  Evert  Krens  Frans A.  Kik  Chris 《Transgenic research》2001,10(3):237-245
Genomic DNA blot hybridization is traditionally used to demonstrate that, via genetic transformation, foreign genes are integrated into host genomes. However, in large genome species, such as Allium cepa L., the use of genomic DNA blot hybridization is pushed towards its limits, because a considerable quantity of DNA is needed to obtain enough genome copies for a clear hybridization pattern. Furthermore, genomic DNA blot hybridization is a time-consuming method. Adaptor ligation PCR (AL-PCR) of genomic DNA flanking T-DNA borders does not have these drawbacks and seems to be an adequate alternative to genomic DNA blot hybridization. Using AL-PCR we proved that T-DNA was integrated into the A. cepa genome of three transgenic lines transformed with Agrobacterium tumefaciens EHA105 (pCAMBIA 1301). The AL-PCR patterns obtained were specific and reproducible for a given transgenic line. The results showed that T-DNA integration took place and gave insight in the number of T-DNA copies present. Comparison of AL-PCR and previously obtained genomic DNA blot hybridization results pointed towards complex T-DNA integration patterns in some of the transgenic plants. After cloning and sequencing the AL-PCR products, the junctions between plant genomic DNA and the T-DNA insert could be analysed in great detail. For example it was shown that upon T-DNA integration a 66bp genomic sequence was deleted, and no filler DNA was inserted. Primers located within the left and right flanking genomic DNA in transgenic shallot plants were used to recover the target site of T-DNA integration.  相似文献   

4.
Agrobacterium-mediated transformation of plants is known to result in transgenic plants with a variable number of integrated T-DNA copies [1, 2, 3, 7]. Our aim was to obtain transgenic tobacco plants containing one integrated T-DNA copy per genome. Therefore, a quick method was developed to estimate the T-DNA copy number of young transgenic plantlets within 10 weeks after transformation. Inverse polymerase chain reaction (IPCR) was used to amplify junction fragments, i.e. plant genomic DNA sequences flanking the known T-DNA sequences [5].  相似文献   

5.
We describe the use of plasmid rescue to facilitate studies on the behaviour ofDs andAc elements in transgenic tomato plants. The rescue ofDs elements relies on the presence of a plasmid origin of replication and a marker gene selective inEscherichia coli within the element. The position within the genome of modifiedDs elements, rescued both before and after transposition, is assigned to the RFLP map of tomato. Alternatively to the rescue ofDs elements equipped with plasmid sequences,Ac elements are rescued by virtue of plasmid sequences flanking the element. In this way, the consequences of the presence of an (active)Ac element on the DNA structure at the original site can be studied in detail. Analysis of a library ofAc elements, rescued from the genome of a primary transformant, shows thatAc elements are, infrequently, involved in the formation of deletions. In one case the deletion refers to a 174 bp genomic DNA sequence immediately flankingAc. In another case, a 1878 bp internalAc sequence is deleted.  相似文献   

6.
7.
Introduction of large-DNA fragments into cereals by Agrobacterium-mediated transformation is a useful technique for map-based cloning and molecular breeding. However, little is known about the organization and stability of large fragments of foreign DNA introduced into plant genomes. In this study, we produced transgenic rice plants by Agrobacterium-mediated transformation with a large-insert T-DNA containing a 92-kb region of the wheat genome. The structures of the T-DNA in four independent transgenic lines were visualized by fluorescence in situ hybridization on extended DNA fibers (fiber FISH). By using this cytogenetic technique, we showed that rearrangements of the large-insert T-DNA, involving duplication, deletion and insertion, had occurred in all four lines. Deletion of long stretches of the large-insert DNA was also observed in Agrobacterium.  相似文献   

8.
We analyzed 29 T-DNA inserts in transgenicArabidopsis thaliana plants for the junction of the right border sequences and the flanking plant DNA. DNA sequencing showed that in most lines the right border sequences transferred had been preserved during integration, corroborating literature data. Surprisingly, in four independent transgenic lines a complete right border repeat was present followed by binary vector sequences. Cloning of two of these T-DNA inserts by plasmid rescue showed that in these lines the transferred DNA consisted of the complete binary vector sequences in addition to the T-region. On the basis of the structure of the transferred DNA we propose that in these lines T-DNA transfer started at the left-border repeat, continued through the vector part, passed the right border repeat, and ended only after reaching again this left-border repeat.  相似文献   

9.
Arabidopsis mutants generated by insertion of the T-DNA from Ti plasmid 3850∶1003 serve as a starting point for the isolation of novel genes. The disrupted plant DNA can be recovered using a plasmid rescue technique utilizing high efficiency electroporation. Rescued plasmids are resistant to ampicillin and contain an origin of replication from pBR322. Plasmids generated from either the left or right border of the T-DNA that carry flanking DNA sequences can be identified by analyzing the products of restriction enzyme digests on agarose gels. The plasmids with flanking sequences can then serve as a starting point for cloning plant sequences that share homology to the DNA at the point of T-DNA insertion.  相似文献   

10.
We have designed a new method for the recovery of T-DNA flanking sequences from T-DNA-tagged lines ofArabidopsis thaliana. Since most transformation vectors in use contain a plant-selectable marker for kanamycin resistance, we can use the 3′ part of thenptII coding region from the T-DNA to complement the bacterial 5′ region of thenptII gene from Tn5 to reconstruct a functional kanamycin-resistance gene inEscherichia coli. We have constructed a vector that contains the 5′ part of thenptII gene from Tn5 up to the uniquePst I site. By cloning total DNA from transformed lines in this vector, we were able to select directly for clones containing a T-DNA fragment, which reconstitutes a functional kanamycin gene, and a fragment of arabidopsis genomic DNA adjacent to the insertion. Flanking sequences up to 4 kb were rescued by this system.  相似文献   

11.
Agrobacterium-mediated genetic transformation is a method of choice for the development of transgenic plants. The presence of latentAgrobacterium that multiplies in the plant tissue in spite of antibiotic application confounds the results obtained by polymerase chain reaction (PCR) analysis of putative transgenic plants. The presence ofAgrobacterium can be confirmed by amplification of eitherAgrobacterium chromosomal genes or genes present out of transfer DNA (T-DNA) in the binary vector. However, the transgenic nature ofAgrobacterium-contaminated transgenic plants cannot be confirmed by PCR. Here we report a simple protocol for PCR analysis ofAgrobacterium-contaminated transgenic plants. This protocol is based on denaturation and renaturation of DNA. The contaminating plasmid vector becomes double-stranded after renaturation and is cut by a restriction enzyme having site(s) within the PCR amplicon. As a result, amplification by PCR is not possible. The genomic DNA with a few copies of the transgene remains single-stranded and unaffected by the restriction enzyme, leading to amplification by PCR. This protocol has been successfully tested with 4 different binary vectors and 3Agrobacterium tumefaciens strains: EHA105, LBA4404, and GV3101.  相似文献   

12.
We describe a novel modification of the polymerase chain reaction for efficient in vitro amplification of genomic DNA sequences flanking short stretches of known sequence. The technique utilizes a target enrichment step, based on the selective isolation of biotinylated fragments from the bulk of genomic DNA on streptavidin-containing support. Subsequently, following ligation with a second universal linker primer, the selected fragments can be amplified to amounts suitable for further molecular studies. The procedure has been applied to recover T-DNA flanking sequences in transgenic tomato plants which could subsequently be used to assign the positions of T-DNA to the molecular map of tomato. The method called supported PCR (sPCR) is a simple and efficient alternative to techniques used in the isolation of specific sequences flanking a known DNA segment.  相似文献   

13.
We report a simple and efficient method, which combines restriction endonuclease digestion and deoxynucleotide tailing, for cloning unknown genomic sequences adjacent to a known sequence. Total genomic DNA is partially digested with the frequent-cutting restriction enzymeNla III. A homo-oligomeric cytosine tail is added by terminal transferase. The tailed DNA fragments are used as the template for cloning flanking regions from all sequences of interest. A first round PCR amplification is performed with a gene-specific primer and the selective (modified polyguanine) anchor primer complementary to the cytosine tail and theNla III recognition site, with a universal amplification primer sequence at its 5′ end. This is followed by another PCR amplification with a nested gene-specific primer and the universal amplification primer. Finally, the amplified products are fractionated, cloned, and sequenced. Using this method, we cloned the upstream region of a salt-induced gene based upon a partial cDNA clone (RSC5-U) obtained from sunflower (Helianthus annuus L.).  相似文献   

14.
15.
There is an inverse relationship between the level of cytosine methylation in genomic DNA and the activity of plant transposable elements. Increased transpositional activity is seen during early plant development when genomic methylation patterns are first erased and then reset. Prolonging the period of hypomethylation might therefore result in an increased transposition frequency, which would be useful for rapid genome saturation in transposon-tagged plant lines. We tested this hypothesis using transgenic rice plants containing Activator (Ac) from maize. R1 seeds from an Ac-tagged transgenic rice line were either directly germinated and grown to maturity, or induced to dedifferentiate in vitro, resulting in cell lines that were subsequently regenerated into multiple mature plants. Both populations were then analyzed for the presence, active reinsertion and amplification of Ac. Plants from each population showed excision-reinsertion events to both linked and unlinked sites. However, the frequency of transposition in plants regenerated from cell lines was more than nine-fold greater than that observed in plants germinated directly from seeds. Other aspects of transposon behavior were also markedly affected. For example, we observed a significantly larger proportion of transposition events to unlinked sites in cell line-derived plants. The tendency for Ac to insert into transcribed DNA was not affected by dedifferentiation. The differences in Ac activity coincided with a pronounced reduction in the level of genomic cytosine methylation in dedifferentiated cell cultures. We used the differential transposon behavior induced by dedifferentiation in the cell-line derived population for direct applications in functional genomics and validated the approach by recovering Ac insertions in a number of genes. Our results demonstrate that obtaining multiple Ac insertions is useful for functional annotation of the rice genome.These authors contributed equally to the work  相似文献   

16.
Over 5000 transgenic families of Arabidopsis thaliana produced following seed transformation with Agrobacterium tumefaciens were screened for embryonic lethals, defectives, and pattern mutants. One hundred and seventy-eight mutants with a wide range of developmental abnormalities were identified. Forty-one mutants appear from genetic studies to be tagged (36% of the 115 mutants examined in detail). Mapping with visible markers demonstrated that mutant genes were randomly distributed throughout the genome. Seven mutant families appeared to contain chromosomal translocations because the mutant genes exhibited linkage to visible markers on two different chromosomes. Chromosomal rearrangements may therefore be widespread following seed transformation. DNA gel blot hybridizations with 34 tagged mutants and three T-DNA probes revealed a wide range of insertion patterns. Models of T-DNA structure at each mutant locus were constructed to facilitate gene isolation. The value of such models was demonstrated by using plasmid rescue to clone flanking plant DNA from four tagged mutants. Further analysis of genes isolated from these insertional mutants should help to elucidate the relationship between gene function and plant embryogenesis.  相似文献   

17.
T-DNA insertions are currently used as a tool to introduce, or knock out, specific genes. The expression of the inserted gene is frequently haphazard and up to now, it was proposed that transgene expression depends on the site of insertion within the genome, as well as the number of copies of the transgene. In this paper, we show that the allelic state of a T-DNA insertion can be at the origin of epigenetic silencing. A T-DNA insertional mutant was characterized to explore the function of AtBP80a′, a vacuolar sorting receptor previously associated with germination. Seeds homozygous for the T-DNA do not germinate, but this can be overcome by a cold treatment and maintained by the following generations. The non-germinating phenotype is only observed in homozygous seed produced by heterozygous plants indicating that it is correlated with the allelic state of the T-DNA in parental lines. Analysis of the region between the T-DNA insertion and the ATG codon of atbp80a′ showed that cytosine methylation is highly enhanced in chromatin containing the T-DNA. Data presented here show that an unpaired DNA region during meiosis could be at the origin of a de novo cytosine methylation mechanism.  相似文献   

18.
Summary The detailed structural organization of DNA sequences transferred to the plant genome via Agrobacterium tumefaciens has been determined in 11 transgenic tomato plants that carry the transferred DNA (T-DNA) at a single genetic locus. The majority (seven) of these plants were found to carry multiple copies of T-DNA arranged in inverted repeat structures. Such a high frequency of inverted repeats among transgenotes has not been previously reported and appears to be characteristic of transformation events caused by C58/pGV3850 strains of Agrobacterium. The inverted repeats were found to be centered on either the left or the right T-DNA boundary and both types were observed at similar frequency. In several plants both types of inverted repeat were found to coexist in the same linear array of elements. Direct repeats were observed in two plants, each time at the end of an array of inverted repeat elements, and at a lower frequency than inverted repeats. The junctions between T-DNA elements and plant DNA sequences and the junctions between adjacent T-DNA elements were mapped in the same 11 plants, allowing the determination of the distribution of junction points at each end for both types of junction. Based on a total of 17 distinct junctions at the right end of T-DNA and 19 at the left end, the distribution of junction points was found to be much more homogeneous at the right end than at the left end. Left end junctions were found to be distributed over a 3 kb region of T-DNA with two thirds of the junctions within 217 bp of the left repeat. Two thirds of the right end junctions were found to lie within 11 bp of the right repeat with the rest more than 39 bp from the right repeat. T-DNA::plant DNA junctions and T-DNA::T-DNA inverted repeat junctions showed similar distributions of junction points at both right and left ends. The possibilities that T-DNA inverted repeats are unstable in plants and refractory to cloning in wild type Escherichia coli is discussed. Two distinct types of mechanisms for inverted repeat formation are contrasted, replication and ligation mechanisms.  相似文献   

19.
The genetic loci and phenotypic effects of the transgene Xa21, a bacterial blight (BB) resistance gene cloned from rice, were investigated in transgenic rice produced through an Agrobacterium-mediated transformation system. The flanking sequences of integrated T-DNAs were isolated from Xa21 transgenic rice lines using thermal asymmetric interlaced PCR. Based on the analysis of 24 T-DNA- Xa21 flanking sequences, T-DNA loci in rice could be classified into three types: the typical T-DNA integration with the definite left and right borders, the T-DNA integration linked with the adjacent vector backbone sequences and the T-DNA integration involved in a complicated recombination in the flanking sequences. The T-DNA integration in rice was similar to that in dicotyledonous genomes but was significantly different from the integration produced through direct DNA transformation approaches. All three types of integrated transgene Xa21 could be stably inherited and expressed the BB resistance through derived generations in their respective transgenic lines. The flanking sequences of the typical T-DNA integration consisted of actual rice genomic DNA and could be used as probes to locate the transgene on the rice genetic map. A total of 15 different rice T-DNA flanking sequences were identified. They displayed restriction fragment length polymorphisms (RFLPs) between two rice varieties, ZYQ8 and JX17, and were mapped on rice chromosomes 1, 3, 4, 5, 7, 9, 10, 11 and 12, respectively, by using a double haploid population derived from a cross between ZYQ8 and JX17. The blast search and homology comparison of the rice T-DNA flanking sequences with the rice chromosome-anchored sequence database confirmed the RFLP mapping results. On the basis of genetic mapping of the T-DNA- Xa21 loci, the BB resistance effects of the transgene Xa21 at different chromosome locations were investigated using homozygous transgenic lines with only one copy of the transgene. Among the transgenic lines, no obvious position effects of the transgene Xa21 were observed. In addition, the BB resistance levels of the Xa21 transgenic plants with different transgene copy numbers and on different genetic backgrounds were also investigated. It was observed that genetic background (or genome) effects were more obvious than dosage effects and position effects on the BB resistance level of the transgenic plants.  相似文献   

20.
The chromosomal location of T-DNa inserts in ten independently derived and confirmed transgenic plants ofP. hybrida was detected byin situ hybridization. Nine transgenic plants had the T-DNA inerts at single sites distributed among each of the seven chromosomes; in one plant the T-DNA inserts were detected on two different chromosomes. Although the T-DNA inserts were integrated randomly among the chromosomes, seven of the 11 total inserts were located at or near the telomere. Thus, T-DNA inserts appear to have potential for tagging chromosomes and chromosome fragments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号