首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The mitosis and cytokinesis of Draparnaldia glomerata as examined here by transmission electron microscopy are in many aspects similar to those described earlier for other chaetophoralean algae. The standard chaetophoralean model of the mechanism of mitosis/cytokinesis is described in detail. Characteristic in this pattern is the movement of sets of centrioles towards the nuclear poles followed by a proliferation of extranuclear microtubules at prophase, the (partial) fusion of centrioles with the spindle poles at metaphase and anaphase, the simultaneous separation of chromosomes apparently caused by both spindle elongation and shortening of the chromosomal microtubules at anaphase, the expulsion of the centrioles by daughter nuclei and finally the non–persistent spindle at telophase. Cytokinesis takes place by formation of a cell plate associated with phycoplast microtubules. The possible function of the phycoplast in cytokinesis in Draparnaldia is discussed.  相似文献   

2.
Summary The flagellar apparatus and its associated structures of the zoospore ofOlpidium brassicae are described and compared with observations of other zoospores of the uniflagellatePhycomycetes. The zoospore ofO. brassicae is shown to have an extensive cone-shaped rhizoplast fused to both the functional and the vestigial kinetosomes. Three-dimensional reconstructions were made of the kinetosomal region. The vestigial kinetosome differs from the functional, as it only has triplet bundles of microtubules and it lacks a system of props. The proximal termination of the central pair of flagellar microtubules occurs within the axoneme. No terminal plate is observed. The occurrence of dictyosomes in theChytridiales, Monoblepharidales, andHyphochytriales is discussed and it is concluded that a dictyosome may be present in the encysting zoospore and the maturing zoosporangium ofO. brassicae but only vestiges of a dictyosome are to be found in the free-swimming zoospore.  相似文献   

3.
Quadriflagellate zoospores ofChaetophora incrassata andPseudoschizomeris caudata have similar features including an appressed membrane between the pyrenoid matrix and the starch sheath, and identical flagellar apparatuses. Components of the flagellar apparatus include: directly opposed upper basal bodies, lower basal bodies in the clockwise absolute orientation, a grooved distal fiber, peripheral and terminal fibers between adjacent basal bodies, proximal fibers connecting the lower basal bodies to the X-membered rootlets two- and X-membered rootlets associated with electron-dense components, and at least one rhizoplast. The X-membered rootlets, are comprised of five microtubules inC. incrassata and four or five inP. caudata. These features of the flagellar apparatus suggest that the two algae are closely related, and together withStigeoclonium, Uronema, Draparnaldia andFritschiella, form a natural group, the Chaetophoraceae, Chaetophorales (sensu Mattox and Stewart).  相似文献   

4.
Summary The ultrastructure of the flagellar apparatus of aPleurochrysis, a coccolithophorid was studied in detail. Three major fibrous connecting bands and several accessory fibrous bands link the basal bodies, haptonema and microtubular flagellar roots. The asymmetrical flagellar root system is composed of three different microtubular roots (referred to here as roots 1,2, and 3) and a fibrous root. Root 1, associated with one of the basal bodies, is of the compound type, constructed of two sets of microtubules,viz. a broad sheet consisting of up to twenty closely aligned microtubules, and a secondary bundle made up of 100–200 microtubules which arises at right angles to the former. A thin electron-dense plate occurs on the surface of the microtubular sheet opposite the secondary bundle. The fibrous root arises from the same basal body and passes along the plasmalemma together with the microtubular sheet of root 1. Root 2 is also of the compound type and arises from one of the major connecting bands (called a distal band) as a four-stranded microtubular root and extends in the opposite direction to the haptonema. From this stranded root a secondary bundle of microtubules arises at approximately right angle. Root 3 is a more simple type, composed of at least six microtubules which are associated with the basal body. The flagellar transition region was found to be unusual for the classPrymnesiophyceae. The phylogenetic significance of the flagellar apparatus in thePrymnesiophyceae is discussed.  相似文献   

5.
6.
T. Hori  Ø. Moestrup 《Protoplasma》1987,138(2-3):137-148
Summary While green algae usually lack one of the outer dynein arms in the axoneme, flagella of the octoflagellated prasinophytePyramimonas octopus possess dynein arms on all peripheral doublets. The outer dynein arm on doublet no. 1 is modified, and additional structures are associated with doublets no. 2 and 6. The flagellar scales are asymmetrically arranged. Thus the two rows of thick flagellar hairscales are displaced towards doublet no. 6,i.e., in the direction of the effective stroke of each flagellum. The underlayer of small scales includes two nearly opposite double rows scales, arranged in the longitudinal direction of the flagellum. The hairscales emerge from these rows. The double rows are separated on one side by 9, on the other by 11 rows of helically arranged scales. The central pair of microtubules twists, but the axoneme itself (represented by the 9 peripheral doublets), does not seem to rotate. The flagella are arranged in two groups, showing modified 180° rotational symmetry. The effective strokes of the two central flagella are exactly opposite, while the other flagella beat in six intermediate directions.  相似文献   

7.
Chondrichthyes possess an evolved type of spermatozoa. Their flagellar apparatus is characterized by the presence of flagellar roots which form the axis of the midpiece, and the existence of one or two lateral elements associated with the axoneme. Osteichthyes, mainly teleosteans, show a great diversity of spermatic forms. The primitive spermatozoon with a 9 + 2 pattern flagellum is common. The primitive spermatozoon has evolved along different lines. The spermatic diversity which results from this is mainly evident in the structure of the flagellar apparatus. In the animal kingdom the primitive spermatozoon with a 9 + 2 pattern flagellum, present in primitive metazoa, is retained in phyla where external fertilization is maintained. The main evolutionary tendencies--elongation, aflagellarity or biflagellarity--are generally connected with the acquisition of internal fertilization. These evolutionary tendencies are found in teleosteans. It is not possible to link aflagellarity or biflagellarity of the gamete in certain fishes to this method of fertilization. Only the elongation of the spermatozoon is connected, in certain cases, with internal fertilization, but this cannot be taken as general.  相似文献   

8.
Summary— Oxyrrhis marina, like all dinoflagellates, possesses one transverse and one longitudinal flagellum, which show structural differences. The transverse flagellum contains a small fibre, 20 nm in diameter, associated with doublet no.7, whereas the longitudinal flagellum is substantially by a large (200–300 nm) hollows structure closely resembling the paraflagellar rod described by several authors in kinetoplastidae and in euglenoids. This structure is made up of a hemicylindrical network of filaments which are often linked on one side to the outer doublet no. 4, and on the other side to a dense plate. Another thinner filamentous network closes this hemicyclinder. In cross-section, the wall of this structure is made up of 8 filaments 2–4 nm in diameter that show a thicker periodic structure. In longitudinal section the same filaments appear arranged in periodic rhombus meshes or a helicoidal pattern, depending on the orientation of the section relative to the axoneme.  相似文献   

9.
Summary The anterior end of the zoospore ofUlothrix belkae has been examined in detail and is compared toStigeoclonium and other filamentous green algae. The nature of the symmetry of green algal motile cells is discussed and the term, 180° rotational symmetry, is proposed to describe the type of arrangement of anterior end components seen inU. belkae, including the four basal bodies, rootlets and striated fibers. The four microtubular rootlets are cruciately arranged. A striated microtubule-associated component (SMAC) has a periodicity of 6.4 nm and extends with each 2-membered rootlet posteriorly into the cell. One 5-membered rootlet passes very near the eyespot. Phylogeny in green algal motile cells is discussed.  相似文献   

10.
Summary The ultrastructure of the flagellar apparatus of the marine quadriflagellate green algaTetraselmis subcordiformis is described in detail. Special consideration is given to the functional significance of the contractile rhizoplast and also to a complex structure which anchors the flagellar apparatus to the cell membrane and theca. The flagellar apparatus lies at the base of a deep apical depression. Four basal bodies lie in a zigzag row with their long axes nearly parallel. Outer adjacent pairs of basal bodies are structurally linked by a Z-shaped, ribbon-like structure. A striated fiber (transfiber) connects each outer basal body with the inner basal body of the opposite, mirror image pair. A complex system of four laminated oval discs (rhizanchora), microtubule rootlets and fibrous material anchor the flagellar apparatus and rhizoplasts to the plasma membrane and theca. A 4-2-4-2 arrangement of microtubule rootlets is present. Rhizoplasts, which are contractile organelles, branch into five distinct arms and associate with the near outer basal body and each of the four rhizanchora. Rhizoplast contraction is thought to be linked to flagellar activity and may act to alter the direction of motion of the cell.  相似文献   

11.
The ultrastructure of the flagellar apparatus of the naked, biflagellate green algaSpermatozopsis similis Preisig & Melkonian has been studied in detail using an absolute configuration analysis. The two basal bodies are displaced by 350 nm in the 1/7 o'clock direction and do not overlap proximally. They are interconnected by a principal distal connecting fibre consisting of a bundle of 5–8 nm filaments and possibly two proximal striated connecting fibres. The flagellar root system is cruciate (5-2-5-2 or 4-2-4-2 system) and contains a prominent continuous system I fibre overlying the two opposite two-stranded roots. A system II fibre is absent. Pronounced structural differences have been observed in the flagellar apparatus ultrastructure at two types of flagella orientation: During backward swimming basal bodies are parallel, the distal connecting fibre is extremely contracted; during forward swimming basal bodies assume various angles (from 20° to 180°) and the connecting fibre is about five times longer compared to the contracted state. The function of the connecting fibre as a contractile organelle and the mechanism of its contraction are discussed. On the basis of the flagellar apparatus ultrastructure,Spermatozopsis similis is related toChlamydomonas-type green algae.  相似文献   

12.
Electron microscopy of the colonial dinoflagellate Polykrikos kofoidi revealed a nuclear cortex formed of two electron-dense cortical layers directly beneath the nuclear envelope. Nuclear pores were confined to vesicular outpocketings of the nuclear envelope over circular discontinuities in the cortical layers. A conspicuous fibrous ribbon extended from the nucleus to the flagellar apparatus of each zooid. The ribbons resembled in their structure and position the attractophores of termite flagellates. Each flagellar apparatus consisted of two flagella, two elongate axial kinetosomes, an oblique kinetosome, and two roots of markedly different periodicities.  相似文献   

13.
The spatial configuration of the flagellar apparatus of the biflagellate zoospores of the green algal genusMicrospora is reconstructed by serial sectioning analysis using transmission electron microscopy. Along with the unequal length of the flagella, the most remarkable characteristics of the flagellar apparatus are: (1) the subapical emergence of the flagella (especially apparent with scanning electron microscopy); (2) the parallel orientation of the two basal bodies which are interconnected by a prominent one-piece distal connecting fiber; (3) the unique ultrastructure of the distal connecting fiber composed of a central tubular region which is bordered on both sides by a striated zone; (4) the different origin of the d-rootlets from their relative basal bodies; (5) the asymmetry of the papillar region which together with the subapical position of the basal bodies apparently cause the different paths of corresponding rootlets in the zoospore anterior; (6) the presence of single-membered d-rootlets and multi-membered s-rootlets resulting in a 7-1-7-1 cruciate microtubular root system which, through the different rootlet origin, does not exhibit a strict 180° rotational symmetry. It is speculated that the different basal body origin of the d-rootlets is correlated with the subapical implant of flagella. It is further hypothesized that in the course of evolution the ancestors ofMicrospora had a flagellar papilla that has migrated from a strictly apical position towards a subapical position. Simultaneously, ancestral shift of flagella along the apical cell body periphery has taken place as can be concluded from the presence of an upper flagellum overlying a lower flagellum in the flagellar apparatus ofMicrospora. The basic features of the flagellar apparatus of theMicrospora zoospore resemble those of the coccoid green algal generaDictyochloris andBracteacoccus and also those of the flagellate green algal genusHeterochlamydomonas. This strengthens the general supposition thatMicrospora is evolutionarily closely related to taxa which were formerly classified in the traditionalChlorococcales.  相似文献   

14.
M. Melkonian 《Protoplasma》1979,98(1-2):139-151
Summary The ultrastructure of the freshwater flagellateTetraselmis cordiformis Stein (Chlorophyceae) was investigated. The general morphology could be described as typical prasinophycean (Prasinophyceae sensu Christensen) and the organism shares all generic characteristics ofPlatymonas West. The flagellar apparatus has been examined in detail. The four flagella emerge from an apical trough in the theca and are arranged in a zig-zag row. They are covered by three types of scales. Four cruciate flagellar roots of compound type are present. One part is microtubular (4-2-4-2 system) and the other prominent part is fibrillar with distinctive cross striations. The four roots are short and terminate at the bottom of the apical through, where they attach the flagellar apparatus to the theca. The four-stranded root shows no changes in root tubule configuration. In addition to the cruciate root system there are two massive rhizoplasts. The rhizoplasts exhibit different striation patterns along their length. Taxonomic implications and flagellar root system structure as it relates to current theories of evolution in green algae are discussed.  相似文献   

15.
16.
C. confervae is a eucarpic, monocentric chytrid that has been cultured synchronously (L. P. Gauriloff and M. S. Fuller, 1979,Exp. Mycol.3: 3–5). In this study we use light and electron microscopy to examine the development of zoospores and the discharge apparatus, focusing on the multiple roles of the Golgi apparatus. The Golgi apparatus produces, in succession, vesicles with electron-opaque cores that may function in cell wall formation, secretory vesicles that form the extracellular lenticular deposit of the discharge apparatus, cleavage vesicles that fuse to form the plasma membranes of the developing zoospores, and vesicles that contain cell coat material for the zoospores. The discharge apparatus consists of the operculum (a circle of sporangial wall delimited from the rest of the wall), the lenticular deposit, and an outer layer found between the lens and the operculum. At discharge, the operculum dehisces, the outer layer ruptures, and the lenticular deposit expands to form a vesicle that constrains the zoospores. The outer layer provides the mechanical connection between the wall and the vesicle. Comparison of discharge apparatus development with other Chytridiomycetes suggests that the order of the developmental steps leading to discharge may be as important to chytrid taxonomy as the steps themselves.  相似文献   

17.
18.
Filamentous green algae Chaetophorales present numerous taxonomic problems as many other green algae. Phylogenetic analyses based on nuclear genes have limited solutions. Studies with appropriate chloroplast molecular markers may solve this problems; however, suitable molecular markers for the order Chaetophorales are still unknown. In this study, 50 chloroplast genomes of Chlorophyceae, including 15 of Chaetophorales, were subjected to single protein-coding gene phylogenetic analyses, and substitution rate and evolutionary rate assays, and PCR amplification verification was conducted to screen the suitable molecular markers. Phylogenetic analyses of three chloroplast representative genes (psaB, tufA, and rbcL) amplified from 124 strains of Chaetophorales showed that phylogenetic relationships were not improved by increasing the number of samples, implying that the genes themselves, rather than limited samples, were the reason for the unsupported Topology I. Seven genes (atpF, atpI, ccsA, cemA, chlB, psbB, and rpl2) with robust support were selected to be the most suitable molecular markers for phylogenetic analyses of Chaetophorales, and the concatenated seven genes could replace the time-consuming and labor-intensive phylogenetic analyses based on chloroplast genome to some extent. To further solve the taxonomic problems of Chaetophorales, suitable chloroplast markers combined with more taxon-rich approach could be helpful and efficient.  相似文献   

19.
Four species of Stigeoclonium from Argentina were studied by means of transmission electron microscopy and light microscopy. For species identification, we collected data related to the prostrate system and zoospore germination. We also determined the chromosome number for each species. Stigeoclonium aestivale showed a more developed erect system than the prostrate one, zoospore germination was predominantly of erect type and the chromosome number was 8. Stigeoclonium tenue presented well developed, erect and prostrate systems, zoospore germination was initially of the prostrate type and the chromosome number was 5. In Stigeoclonium variabile the prostrate system predominated over the erect one, zoospore germination was strictly of the prostrate type and the chromosome number was 3. Stigeoclonium farctum presented a more developed prostrate system than the erect one, zoospore germination was strictly of the prostrate type and the chromosome number was 8. The ontogeny of the zoospore germination was related to the final relative development of the prostrate and erect portions of adult thalli.  相似文献   

20.

Background and Aims

The green algal class Chlorophyceae comprises five orders (Chlamydomonadales, Sphaeropleales, Chaetophorales, Chaetopeltidales and Oedogoniales). Attempts to resolve the relationships among these groups have met with limited success. Studies of single genes (18S rRNA, 26S rRNA, rbcL or atpB) have largely failed to unambiguously resolve the relative positions of Oedogoniales, Chaetophorales and Chaetopeltidales (the OCC taxa). In contrast, recent genomics analyses of plastid data from OCC exemplars provided a robust phylogenetic analysis that supports a monophyletic OCC alliance.

Methods

An ITS2 data set was assembled to independently test the OCC hypothesis and to evaluate the performance of these data in assessing green algal phylogeny at the ordinal or class level. Sequence-structure analysis designed for use with ITS2 data was employed for phylogenetic reconstruction.

Key Results

Results of this study yielded trees that were, in general, topologically congruent with the results from the genomic analyses, including support for the monophyly of the OCC alliance.

Conclusions

Not all nodes from the ITS2 analyses exhibited robust support, but our investigation demonstrates that sequence-structure analyses of ITS2 provide a taxon-rich means of testing phylogenetic hypotheses at high taxonomic levels. Thus, the ITS2 data, in the context of sequence-structure analysis, provide an economical supplement or alternative to the single-marker approaches used in green algal phylogeny.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号