首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies on the irreversible step of pepsinogen activation   总被引:1,自引:0,他引:1  
D M Glick  Y Shalitin  C R Hilt 《Biochemistry》1989,28(6):2626-2630
The bond cleavage step of pepsinogen activation has been investigated in a kinetic study in which the denatured products of short-term acidifications were separated on SDS-polyacrylamide gels and the peptide products were quantitated by densitometry. Although several peptide products were observed, under the conditions of the experiments (pH values between 2.0 and 2.8, 22 degrees C), the only one that was a product of an initial bond cleavage was the 44-residue peptide, which upon removal from pepsinogen yields pepsin. The rate constant for this bond cleavage is 0.015 s-1 at pH 2.4, which is the same as that at which the alkali-stable potential activity of pepsinogen had been found to convert to the alkali-labile activity of pepsin. When the conversion of zymogen to enzyme was followed by the change in fluorescence of adsorbed 6-(p-toluidinyl)naphthalene-2-sulfonate (TNS), the rate of change in TNS fluorescence was the same as the conversion to alkali lability. However, pepstatin blocked the bond cleavage of pepsinogen to pepsin, but it permitted the fluorescence change to proceed. In fact, it accelerated the apparent rate of change of TNS fluorescence by shifting the pKa of an essential conjugate acid from 1.7 to 2.6. The conversion to alkali lability, therefore, may be considered to be a composite of a relatively slow conformational change (at the measured rate), followed immediately by a relatively fast bond cleavage.  相似文献   

2.
Chicken pepsinogen has been spin-labeled by the attachment of four nitroxides to epsilon-amino groups near the protein's amino terminus. Acidification results in a bond cleavage, generating a nonlabeled, enzymatically active protein. Electron spin resonance spectra of the spin-labeled zymogen, acidified in the presence or absence of pepstatin, are identical and indicate that the nitroxides are quite mobile, compared to the nonacidified zymogen. This mobilization is interpreted as the freeing of the peptide to which the spin-labels are attached, from the protein, subsequent to the acidification that causes a peptide bond cleavage. The rate at which the peptide leaves the protein is 1 order of magnitude slower than the cleavage of the peptide bond, measured by the rate of appearance of milk-clotting activity (first-order rate constants of 0.3 min-1 vs. 6 min-1 at pH 2, 22 degrees C). The inclusion of pepstatin, at molar ratios above 2 during activation, decreases the rate of peptide leaving. These observations, and those previously reported for activation of spin-labeled pig pepsinogen, are incorporated into a model of pepsinogen activation.  相似文献   

3.
The activation of Sepharose-bound monkey pepsinogen A under acidic conditions proceeded by cleavage of the Leu47-Ile48 bond, indicating the occurrence of the intramolecular one-step activation, although the rate of cleavage was very slow. On the other hand the activation of monkey pepsinogen A in solution was highly dependent on pepsinogen concentration and the addition of exogenous pepsin A accelerated the rate of activation, indicating the predominance of intermolecular reaction. The cleavage site, however, was also restricted to the Leu47-Ile48 bond. Thus, apparently exclusive one-step activation occurred in monkey pepsinogen. The activation of porcine pepsinogen A in solution was also dependent on pepsinogen concentration and the addition of exogenous pepsin A accelerated the rate of activation. The major cleavage site by the exogenously added pepsin was the Leu44-Ile45 bond. Therefore the site most susceptible to the intermolecular attacks was the bond connecting the activation segment and the pepsin moiety in both monkey and porcine pepsinogens. In porcine pepsinogen, however, a part of the zymogen was activated through the intermediate form, and an intramolecular reaction was suggested to be involved in the generation of this form. These results showed that in both pepsinogens A the intramolecular reaction occurred, first yielding pepsin A or the intermediate form, which then acted intermolecularly on the remaining pepsinogen or the intermediate form to complete the activation in a short time. A molecular mechanism for the activation reaction was proposed to explain consistently the experimental results.  相似文献   

4.
The mechanism of activation of pepsinogen was studied. It was found that no peptide bond cleavage occurred in the molecule of denatured pepsinogen at pH 2. It was inferred from this that a specific secondary and tertiary structure is formed in the molecule of pepsinogen in acid and that it might be necessary for the hydrolysis of the peptide bond. From the circular dichroism studies on pepsinogen and pepsin, it was found that there is a conformational change in the molecule of pepsinogen at pH 4.3~4.5 and that this change is followed by a gradual formation of pepsin.  相似文献   

5.
Most eukaryotic aspartic protease zymogens are synthesized as a single polypeptide chain that contains two distinct homologous lobes and a pro peptide, which is removed upon activation. In pepsinogen, the pro peptide precedes the N-terminal lobe (designated pep) and the C-terminal lobe (designated sin). Based on the three-dimensional structure of pepsinogen, we have designed a pepsinogen polypeptide with the internal rearrangement of domains from pro-pep-sin (native pepsinogen) to sin-pro-pep. The domain-rearranged zymogen also contains a 10-residue linker designed to connect sin and pro domains. Recombinant sin-pro-pep was synthesized in Escherichia coli, refolded from 8 M urea, and purified. Upon acidification, sin-pro-pep autoactivates to a two-chain enzyme. However, the emergence of activity is much slower than the conversion of the single-chain zymogen to a two-chain intermediate. In the activation of native pepsinogen and sin-pro-pep, the pro region is cleaved at two sites between residues 16P and 17P and 44P and 1 successively, and complete activation of sin-pro-pep requires an additional cleavage at a third site between residues 1P and 2P. In pepsinogen activation, the cleavage of the first site is rate limiting because the second site is cleaved more rapidly to generate activity. In the activation of sin-pro-pep, however, the second site is cleaved slower than the first, and cleavage of the third site is the rate limiting step.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Intramolecular pepsinogen activation is inhibited either by pepstatin, a potent pepsin inhibitor, or by purified globin from hemoglobin, a good pepsin substrate. Also, pepsinogen at pH 2 can be bound to a pepstatin-Sepharose column and recovered as native zymogen upon elution in pH 8 buffer. Kinetic studies of the globin inhibition of pepsinogen activation show that globin binds to a pepsinogen intermediate. This interaction gives rise to competitive inhibition of intramolecular pepsinogen activation. The evidence presented in this paper suggests that pepsinogen is converted rapidly upon acidification to the pepsinogen intermediate delta. In the absence of an inhibitor, the intermediate undergoes conformational change to bind the activation peptide portion of this same pepsinogen molecule in the active center to form an intramolecular enzyme-substrate complex (intermediate theta). This is followed by the intramolecular hydrolysis of the peptide bond between residues 44 and 45 of the pepsinogen molecule and the dissociation of the activation peptide from the pepsin. Intermediate delta apparently does not activate another pepsinogen molecule via an intermolecular process. Neither does intermediate delta hydrolyze globin substrate.  相似文献   

7.
The activation processes of two human pepsinogens A (pepsinogens 3 and 5) and progastricsin were compared with special attention to pepsinogens 3 and 5. Each zymogen was converted to pepsin in a stepwise manner through intermediate forms. In pepsinogens A, the major cleavage site was the Leu23-Lys24 bond and this cleavage was suggested to occur intramolecularly. When each of the pepsins A was added to the corresponding pepsinogen A exogenously, the latter was rapidly converted to pepsin, releasing the 47-residue intact activation segment. In this case, the Leu47-Val48 bond connecting the activation segment with the pepsin moiety was cleaved by an intermolecular reaction. On the other hand, when the pepsinogen A-pepstatin complex was attacked by each corresponding pepsin A added exogenously, significant cleavage by an intermolecular reaction occurred at the Asp25-Phe26 bond, generating the Phe26-intermediate form. These shifts of the cleavage sites in pepsinogens A depending on the activation conditions are likely to correlate with the conformation of the activation segment. These results can be explained consistently in terms of a proposed molecular model of activation.  相似文献   

8.
B Foltmann 《FEBS letters》1988,241(1-2):69-72
Human pepsinogen A3 and A5 have been purified to chromatographic and electrophoretic homogeneity. At pH 2 pepsinogen A3 activates at a much faster rate than pepsinogen A5. Leu-23-Lys-24 is the first bond cleaved during activation of pepsinogen A3. This bond is also cleaved in pepsinogen A5, but together with the cleavage of Asp-25-Phe-26. Amino acid sequencing shows that pepsinogen A3 has Glu at position 43, whereas pepsinogen A5 has Lys.  相似文献   

9.
Early events of pepsinogen activation   总被引:1,自引:0,他引:1  
H E Auer  D M Glick 《Biochemistry》1984,23(12):2735-2739
Stopped-flow measurements both with native pig pepsinogen and with a fluorescent derivative, labeled near the carboxyl terminus with a toluidinylnaphthalenesulfonyl (TNS) group at Lys364, show rapid fluorescence changes following acidification. The rate constants observed by intrinsic fluorescence of the native zymogen are distinctly greater than those exhibited by the TNS derivative in the pH range examined. The rate constants for two early events in the activation of the derivative increase as the pH decreases from pH 3 to pH 2. The fluorescent intensities of these two processes also vary with pH. Because the ratios of these amplitudes fit the Henderson-Hasselbalch equation, it is concluded that the two processes represent concurrent events, rather than sequential ones. It is proposed that a protonation separates two forms of the zymogen. The conjugate acid undergoes the slower event, whereas the conjugate base, which predominates at pH 3, undergoes the faster event. It is proposed that both these pathways result in activation.  相似文献   

10.
Exposure of pepsinogen to acid for less than 2 min yields a product with proteolytic activity. This activity is due to intramolecular and intermolecular formation of pepsin from pepsinogen. We find no evidence for intermolecular proteolytic activity in the zymogen. These conclusions are based upon two sets of experiments. First, chemical cleavage of pepsinogen during short activation is demonstrated by quantitative analysis of the NH2-terminal 2 residues of the pepsin and pepsinogen in an activation mixture. In addition, quantitative NH2-terminal analyses after activation under different conditions confirm our previous inference that the product of unimolecular pepsinogen activation is homogeneous whereas bimolecular activation produces a pepsin product with a variety of NH2 termini. Second, spectral changes which occur upon acidification of a pepsinogen solution and are reversed by neutralization are shown to be consistent with the chemical cleavage of pepsinogen during acidification. The first order rate constant for pepsinogen activation, calculated from these spectral experiments, agrees well with the value we had determined previously.  相似文献   

11.
Unusual zymogen-processing properties of a mutated form of prochymosin   总被引:2,自引:0,他引:2  
Site-specific mutagenesis of the gene encoding bovine prochymosin was used to produce a mutated zymogen in which seven contiguous amino acids of the N-terminal propeptide had been deleted and an eighth residue had been substituted. This altered region spans the normal site of autocatalytic proteolysis that occurs at the same time as (enzymatic) activation of prochymosin at acidic pH. Activation of the mutated zymogen at pH 4.5 was extremely slow, and cleavage occurred at an unusual Ser-Lys bond in the propeptide of the zymogen. The mutated prochymosin incubated at pH 2 generated the usual pseudochymosin by cleavage of the normal Phe-Leu bond, but at a rate severalfold slower than the authentic zymogen. These results indicate that even after deletion of seven of 42 amino acids of the propeptide the mutant protein could still assume a prochymosin (zymogen) structure, although these changes did result in striking differences in acid-catalyzed activation and processing reactions at one but not the other of the two processing sites of prochymosin.  相似文献   

12.
The sequence of 119 amino acids of swine pepsinogen comprising the fragment released during the zymogen activation as well as the N-terminal part of pepsin is established. The activation of swine pepsinogen is shown to be accompanied by specific cleavage of Leu-Ile bond in the sequence:
Ala41Ala Ala Leu Ile Gly46
where Ile-45 represents the N-terminal residue of pepsin. This sequence is attacked in the course of pepsinogen activation by external enzymes — neutral proteinases and elastase.  相似文献   

13.
The structure of porcine pepsinogen at pH 6.1 has been refined to an R-factor of 0.173 for data extending to 1.65 A. The final model contains 180 solvent molecules and lacks density for residues 157-161. The structure of this aspartic proteinase zymogen possesses many of the characteristics of pepsin, the mature enzyme. The secondary structure of the zymogen consists predominantly of beta-sheet, with an approximate 2-fold axis of symmetry. The activation peptide packs into the active site cleft, and the N-terminus (1P-9P) occupies the position of the mature N-terminus (1-9). Thus changes upon activation include excision of the activation peptide and proper relocation of the mature N-terminus. The activation peptide or residues of the displaced mature N-terminus make specific interactions with the substrate binding subsites. The active site of pepsinogen is intact; thus the lack of activity of pepsinogen is not due to a deformation of the active site. Nine ion pairs in pepsinogen may be important in the advent of activation and involve the activation peptide or regions of the mature N-terminus which are relocated in the mature enzyme. The activation peptide-pepsin junction, 44P-1, is characterized by high thermal parameters and weak density, indicating a flexible structure which would be accessible to cleavage. Pepsinogen is an appropriate model for the structures of other zymogens in the aspartic proteinase family.  相似文献   

14.
Experiments were carried out on the effects of substrate or competitive inhibitor on the rate of appearance of N-terminal isoleucine residue of pepsin and peptides released from pepsinogen in its conversion to pepsin. Assumptions were made from these experiments, that an active site is initially formed in pepsinogen by acidification of its solution, and that peptide bond between 41-glutamyl and 42-isoleucyl residues locates in the juxtaposition to the active site forming an intramolecular enzyme-substrate complex. Thus, N-terminal tail of pepsinogen is released by a hydrolysis catalyzed by its own active site.

It was Indeed ascertained in this study that neither a small amount of pepsin which could be accompanied by pepsinogen preparation used contributes to the initial step of hydrolysis of pepsinogen nor pepsin formed accelerates the following activation process.

Therefore, it was concluded that the conversion of pepsinogen to pepsin is self-degrad-ation process.  相似文献   

15.
Flexible loops, often referred to as flaps, have been shown to play a role in catalytic mechanisms of different enzymes. Flaps at the active site regions have been observed in the crystal structures of aspartic proteinases and their residues implicated in the catalytic processes. This research investigated the role of the flap residue, threonine 77, in the activation of pepsinogen and the catalytic mechanism of pepsin. Three mutants, T77S, T77V and T77G, were constructed. Differences in amino acid polarity and hydrogen bonding potential were shown to have an influence on the activation and catalytic processes. T77S activated at the same rate and had similar catalytic parameters as the wild-type pepsin. The activation rates of T77V and T77G were slower and their catalytic efficiencies lower than the wild-type. The results demonstrated that the threonine 77 polar side chain played a role in a proteolysis. The contribution of the side chain to zymogen activation was associated with the proteolytic cleavage of the prosegment. It was postulated that the hydroxyl group at position 77 provided an essential hydrogen bond that contributed to proper substrate alignment and, indirectly, to a catalytically favorable geometry of the transition state.  相似文献   

16.
Plasma kallikrein was found to be a good activator of pro-urokinase, the inactive zymogen form of urokinase. The complete activation of pro-urokinase by plasma kallikrein was obtained in 2 h with an enzyme/substrate weight ratio of 1/30. The rate of activation of pro-urokinase by plasma kallikrein was comparable to that catalyzed by plasmin and trypsin. The rate of activation of pro-urokinase by factor XIIa was approximately one-seventh of that by plasma kallikrein. The activation of the zymogen was due to the cleavage of a single internal peptide bond, resulting in the conversion of a single chain pro-urokinase (Mr = 55,000) into two-chain urokinase (Mr = 33,000 and 22,000), and these two chains were linked by a disulfide bond(s). These results indicate an important role of plasma kallikrein for the activation of pro-urokinase in the factor XII-dependent intrinsic pathway of fibrinolysis. Thrombin also converted pro-urokinase to a two-chain form that was not activatable by plasmin, plasma kallikrein, and factor XIIa. Thrombin specifically cleaved the Arg 156-Phe 157 bond which is located 2 residues prior to the activation site of Lys 158-Ile 159.  相似文献   

17.
Affinity chromatography of porcine protease and its zymogen was carried out on immobilized components of specific substrate used for the pepsin determination. For the immobilization of N-acetyl-L-phenylalanine and iodinated derivative of L-tyrosine, divinyl sulfone activated Sepharose was used. Ligands with blocked amino group and free carboxyl one were linked to Sepharose via ethylene diamine spacer using carbodiimide reaction. Conditions of affinity chromatography of porcine pepsin and pepsinogen on the prepared carriers were optimized: the effect of pH, ionic strength and a nature of the buffers used on adsorption of the enzyme and zymogen to an affinity carrier, as well as their elution was studied. The following parameters were taken into consideration: capacity of the prepared affinity matrices, reproducibility of experiments and the enzyme stability. Pepsin was adsorbed to both immobilized ligands at pH 3.5-4.0; for the elution of the enzyme it was necessary to increase ionic strength (up to 0.5 M). For the adsorption of pepsinogen pH 5.2 was found to be optimum, for its desorption, an increase of ionic strength was used.  相似文献   

18.
Matrix metalloproteinase 9 (MMP-9), also known as 92-kDa gelatinase/type IV collagenase, is secreted from neutrophils, macrophages, and a number of transformed cells in zymogen form. Here we report that matrix metalloproteinase 3 (MMP-3/stromelysin) is an activator of the precursor of matrix metalloproteinase 9 (proMMP-9). MMP-3 initially cleaves proMMP-9 at the Glu40-Met41 bond located in the middle of the propeptide to generate an 86-kDa intermediate. Cleavage of this bond triggers a change in proMMP-9 that renders the Arg87-Phe88 bond susceptible to the second cleavage by MMP-3, resulting in conversion to an 82-kDa form. alpha 2-Macroglobulin binding studies of partially activated MMP-9 demonstrate that the 82-kDa species is proteolytically active, but not the initial intermediate of 86 kDa. This stepwise activation mechanism of proMMP-9 is analogous to those of other members of the MMP family, but the action of MMP-3 on proMMP-9 is the first example of zymogen activation that can be triggered by another member of the MMP family. The results imply that MMP-3 may be an effective activator of proMMP-9 in vivo.  相似文献   

19.
Mutation of Arg(117), an autocatalytic cleavage site, is the most frequent amino acid change found in the cationic trypsinogen (Tg) of patients with hereditary pancreatitis. In the present study, the role of Arg(117) was investigated in wild-type cationic Tg and in the activation-resistant Lys(15) --> Gln mutant (K15Q-Tg), in which Tg-specific properties of Arg(117) can be examined selectively. We found that trypsinolytic cleavage of the Arg(117)-Val(118) bond did not proceed to completion, but due to trypsin-catalyzed re-synthesis an equilibrium was established between intact Tg and its cleaved, two-chain form. In the absence of Ca(2+), at pH 8.0, the hydrolysis equilibrium (K(hyd) = [cleaved Tg]/[intact Tg]) was 5.4, whereas 5 mm Ca(2+) reduced the rate of cleavage at Arg(117) at least 20-fold, and shifted K(hyd) to 0.7. These observations indicate that the Arg(117)-Val(118) bond exhibits properties analogous to the reactive site bond of canonical trypsin inhibitors and suggest that this surface loop might serve as a low affinity inhibitor of zymogen activation. Consistent with this notion, autoactivation of cationic Tg was inhibited by the cleaved form of K15Q-Tg, with an estimated K(i) of 80 microm, while no inhibition was observed with K15Q-Tg carrying the Arg(117) --> His mutation. Finally, zymogen breakdown due to other trypsinolytic pathways was shown to proceed almost 2000-fold slower than cleavage at Arg(117). Taken together, the findings suggest two independent, successively functional trypsin-mediated mechanisms against pathological Tg activation in the pancreas. At low trypsin concentrations, cleavage at Arg(117) results in inhibition of trypsin, whereas high trypsin concentrations degrade Tg, thus limiting further zymogen activation. Loss of Arg(117)-dependent trypsin inhibition can contribute to the development of hereditary pancreatitis associated with the Arg(117) --> His mutation.  相似文献   

20.
Prorenin is an inactive form of the aspartic protease renin. Like pepsinogen, it is activated at low pH. The kinetics of acid activation of prorenin were studied in human amniotic fluid and plasma and in preparations of purified prorenin isolated from amniotic fluid and plasma. Conversion of prorenin (pR) into active renin (R) appeared to be a two-step process involving the generation of an intermediary form of activated prorenin (pRa). The pR----pRa step is an acid-induced reversible change in the conformation of the molecule, and the pRa----R step is proteolytic. pRa----R conversion occurred in amniotic fluid at low pH by the action of an endogenous aspartic protease. In plasma pRa----R conversion occurs after restoration of pH to neutral and is caused by the serine protease plasma kallikrein. pRa----R conversion did not occur in purified preparations of prorenin. Thus, in contrast to pepsinogen, the acid-induced reversible conformational change is not followed by autocatalysis. pRa of amniotic fluid and plasma could be separated from R by affinity chromatography on Cibacron blue F3GA-agarose, and R but not pRa was detected by an immunoassay using monoclonal antibodies reacting with R and not with pR. The first-order rate constant for pR----pRa conversion depends on the protonation of a polar group (or groups) with pK approximately 3.4, the rate constant being proportional to the fraction of pR molecules that have this group protonated. This is analogous to the reversible acid-induced conformational change of pepsinogen that occurs before its proteolytic conversion into pepsin. kcat/Km for pRa----R conversion by plasmin and plasma kallikrein at pH 7.4 and 37 degrees C was 7.8 X 10(6) and 5.2 X 10(6) M-1 min-1, respectively, which was about 50-70 times greater than for pR----R conversion. The susceptibility of pRa to proteolytic attack is high enough for the intrinsic factor XII-kallikrein pathway to cause rapid pRa----R conversion at 37 degrees C even in whole blood with its abundance of serine protease inhibitors. Formation of pRa may occur in vivo in an acidic cellular compartment, such as exo- or endocytotic vesicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号