首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The following fractions were prepared from rat kidney and characterized ultrastructurally, biochemically and enzymically: (a) an ordinary rough microsomal (RM(1)) fraction; (b) a special rough microsomal (RM(2)) fraction enriched seven- to nine-fold in acid hydrolases over the homogenate; (c) a smooth microsomal (SM) fraction; (d) a Golgi (GM) fraction enriched 2.5-fold in acid hydrolases and 10-, 15- and 20-fold in sialyltransferase, N-acetyl-lactosamine synthetase and galactosyltransferase respectively; (e) a lysosomal (L) fraction enriched 15- to 23-fold in acid hydrolases. The frequency of Golgi sacs and tubules seen in the electron microscope and the specific activity of the three glycosyltransferases in these fractions increased in the order: RM(2)相似文献   

2.
Isoelectric focusing was used to investigate the multiple forms of acid phosphatase, arylsulfatase, beta-glucuronidase, beta-galactosidase and beta-N-acetylhexosaminidase in the following, previously characterized subcellular fractions from rat kidney: a special rough microsomal fraction, enriched up to 9-fold over the homogenate in acid hydrolases; a smooth microsomal fraction; a Golgi membrane fraction enriched about 2.5-fold in acid hydrolases and 10- to 20-fold in several glycosyl transferases; and a lysosomal fraction enriched up to 25-fold in acid hydrolases. The electro-focusing behavior of the hydrolases in these fractions was markedly sensitive to the autolytic changes that occur under acidic conditions, even at 4 degrees C. Autolysis was minimized by extracting fractions in an alkaline medium (0.2% Triton X-100, 0.1 M sodium glycinate buffer, pH 10, 0.1 % p-nitrophenyloxamic acid) and adding p-nitrophenyloxamic acid (0.1 %), AN INHIBITOR OF LYSOSOMAL NEURAMINIDASE AND cathepsin D, to the pH gradient. The enzymes in the lysosomal fraction displayed a characteristic bimodal or trimodal distribution. Arylsulfatase, beta-glucuronidase and beta-N-acetylhexosaminidase occurred in an acidic form with an isoelectric point of 4.4, and a basic form with an isoelectric point of 6.2, 6.7 and 8.0, respectively. Acid phosphatase and beta-galactosidase occurred in an acidic, intermediate and basic form with isoelectric points of about 4. 1, 5.6 and 7.4, respectively. In the special rough microsomal fraction these enzymes were mostly in a basic form with isoelectric points between 7.5 and 9; these were 1-2 units higher than the corresponding basic forms in the lysosomal fraction. Treatment of extracts of the rough microsomal fraction with bacterial neuraminidase raised the isoelectric points of all five hydrolases by 1-2.5 units, indicating the presence of some N-acetylneuraminic acid residues in these basic glycoenzymes. The hydrolases in the Golgi fraction were largely in an acidic form with isoelectric points similar to or lower than those of the corresponding acidic components in the lysosomal fraction. The hydrolases in the smooth microsomal fraction showed isoelectric-focusing patterns intermediate between those in the rough microsomal and the Golgi fractions. These findings support the following scheme for the synthesis, transport and packaging of the lysosomal enzymes. Each hydrolase is synthesized in a restricted portion of the r  相似文献   

3.
Carbohydrate-containing structures in rat liver rough microsomes (RM) were localized and characterized using iodinated lectins of defined specificity. Binding of [125I]Con A increased six- to sevenfold in the presence of low DOC (0.04--0.05%) which opens the vesicles and allows the penetration of the lectins. On the other hand, binding of [125I]WGA and [125I]RCA increased only slightly when the microsomal vesicles were opened by DOC. Sites available in the intact microsomal fraction had an affinity for [125I]Con A 14 times higher than sites for lectin binding which were exposed by the detergent treatment. Lectin-binding sites in RM were also localized electron microscopically with lectins covalently bound to biotin, which, in turn, were visualized after their reaction with ferritin-avidin (F-Av) markers. Using this method, it was demonstrated that in untreated RM samples, binding sites for lectins are not present on the cytoplasmic face of the microsomal vesicles, even after removal of ribosomes by treatment with high salt buffer and puromycin, but are located on smooth membranes which contaminate the rough microsomal fraction. Combining this technique with procedures which render the interior of the microsomal vesicles accessible to lectins and remove luminal proteins, it was found that RM membranes contain binding sites for Con A and for Lens culinaris agglutinin (LCA) located exclusively on the cisternal face of the membrane. No sites for WGA, RCA, soybean (SBA) and Lotus tetragonobulus (LTA) agglutinins were detected on either the cytoplasmic or the luminal faces of the rough microsomes. These observations demonstrate that: (a) sugar moieties of microsomal glycoproteins are exposed only on the luminal surface of the membranes and (b) microsomal membrane glycoproteins have incomplete carbohydrate chains without the characteristic terminal trisaccharides N-acetylglucosamine comes from galactose comes from sialic acid or fucose present in most glycoproteins secreted by the liver. The orientation and composition of the carbohydrate chains in microsomal glycoproteins indicate that the passage of these glycoproteins through the Golgi apparatus, followed by their return to the endoplasmic reticulum, is not required for their biogenesis and insertion into the endoplasmic reticulum (ER) membrane.  相似文献   

4.
Subcellular localization of acid hydrolases in pea seedlingroots was studied by differential and sucrose density gradientcentrifugations. Significant parts of hydrolase activities inthe tissue were recovered in mitochondrial and microsomal fractions.Sedimentable phosphatase was separated into two subtractions:denser and lighter membrane fractions. The distribution of phosphataseactivity after sucrose density gradient centrifugation of thedenser fraction coincided with that of antimycin AinsensitiveNADH-cytochrome c reductase activity. Electron microscopic observationssuggested that the fraction contained only microsomes. RNasein the denser fraction seemed to associate with ribosomes. Phosphataseand RNase were solubilized by sonic treatment in the presenceof high concentrations of salt. On the other hand, a-amylasewas tightly bound to a membrane. The results are discussed withspecial regard to the relationship between the membranes andlysosomes. (Received May 4, 1973; )  相似文献   

5.
1. Acyl-CoA hydrolase activities, using palmitoyl-CoA and decanoyl-CoA as substrates, were highest in the proximal part and lowest in the distal part of the guinea-pig small intestine. Butyryl-CoA hydrolase activity was not found in any of the homogenates. 2. The acyl-CoA hydrolases showed a complex subcellular distribution when compared to classical marker enzymes. The specific activity of the hydrolase was highest in the microsomal fraction, and lowest in the soluble fraction when palmitoyl-CoA was used as substrate. When decanoyl-CoA was used as substrate, highest activity was found in the mitochondrial/lysosomal fraction and lowest in the microsomal fraction. 3. Gel filtration on an ultrogel AcA-44 column separated the palmitoyl-CoA hydrolase of the cytosol fraction into three or four fractions. 4. Palmitoyl-carnitine hydrolase was present in the microsomal and the nuclei fractions. The distribution was mostly similar to the alkaline phosphatase suggesting a brush border localization.  相似文献   

6.
The glycoproteins of microsomes and cytosol were studied. Various washing procedures did not release the proteins from the microsomes, and immunological tests demonstrated that the sialoproteins are not serum components. Low concentrations of deoxycholate and incubation in 0.25 M sucrose solution liberated a small amount of microsomal sialoprotein and this fraction exhibited a high degree of labeling of protein-bound N-acetylneuraminic acid. A part of the glycoprotein fraction could not be solubilized, even with a high concentration of the detergent. Thoroughly perfused rat liver contained sialoproteins in the particle-free supernate. The level of sialoprotein present could not be due to contamination with serum or broken organelles. The high in vivo incorporation of [3H]glucosamine into protein-bound sialic acid of Golgi membranes and cytosol was paralleled by a delayed and lesser rate of incorporation into the rough and smooth microsomal membranes. This incorporation pattern suggests the possibility that the glycoproteins of cytosol and Golgi may later be incorporated into the membrane of the endoplasmic reticulum.  相似文献   

7.
Rat liver microsomal glycoproteins were purified by affinity chromatography on concanavalin A Sepharose columns from membrane and content fractions, separated from rough microsomes (RM) treated with low concentrations of deoxycholate (DOC). All periodic acid-Schiff (PAS)-positive glycoproteins of RM showed affinity for concanavalin A Sepharose; even after sodium dodecyl sulfate (SDS) acrylamide gel electrophoresis, most of the microsomal glycoproteins bound [125I]concanavalin A added to the gels, as detected by autoradiography. Two distinct sets of glycoproteins are present in the membrane and content fractions derived from RM. SDS acrylamide gel electrophoresis showed that RM membranes contain 15--20 glycoproteins (15--22% of the total microsomal protein) which range in apparent mol wt from 23,000 to 240,000 daltons. A smaller set of glycoproteins (five to seven polypeptides), with apparent mol wt between 60,000 and 200,000 daltons, was present in the microsomal content fraction. The disposition of the membrane glycoproteins with respect to the membrane plane was determined by selective iodination with the lactoperoxidase (LPO) technique. Intact RM were labeled on their outer face with 131I and, after opening of the vesicles with 0.05% DOC, in both faces with 125I. An analysis of iodination ratios for individual proteins separated electrophoretically showed that in most membrane glycoproteins, tyrosine residues are predominantly exposed on the luminal face of the vesicles, which is the same face on which the carbohydrate moieties are exposed. Several membrane glycoproteins are also exposed on the cytoplasmic surface and therefore have a transmembrane disposition. In this study, ribophorins I and II, two integral membrane proteins (mol wt 65,000 and 63,000) characteristic of RM, were found to be transmembrane glycoproteins. It is suggested that the transmembrane disposition of the ribophorins may be related to their possible role in ribosome binding and in the vectorial transfer of nascent polypeptides into the microsomal lumen.  相似文献   

8.
A membrane protein fraction showing affinity for ribosomes was isolated from rat liver microsomes (microsomal fractions) in association with ribosomes by treatment of the microsomes with Emulgen 913 and then solubilized from the ribosomes with sodium deoxycholate. This protein fraction was separated into two fractions, glycoproteins, including ribophorins I and II, and non-glycoproteins, virtually free from ribophorins I and II, on concanavalin A-Sepharose columns. The two fractions were each reconstituted into liposomes to determine their ribosome-binding activities. The specific binding activity of the non-glycoprotein fraction was approx. 2.3-fold higher than that of the glycoprotein fraction. The recovery of ribosome-binding capacity of the two fractions was about 85% of the total binding capacity of the material applied to a concanavalin A-Sepharose column, and about 90% of it was found in the non-glycoprotein fraction. The affinity constants of the ribosomes for the reconstituted liposomes were somewhat higher than those for stripped rough microsomes. The mode of ribosome binding to the reconstituted liposomes was very similar to that to the stripped rough microsomes, in its sensitivity to proteolytic enzymes and its strong inhibition by increasing KCl concentration. These results support the idea that ribosome binding to rat liver microsomes is not directly mediated by ribophorins I and II, but that another unidentified membrane protein(s) plays a role in ribosome binding.  相似文献   

9.
We have examined the distribution of the cation-independent mannose 6-phosphate receptor and five acid hydrolases in early and late endosomes and a receptor-recycling fraction isolated from livers of estradiol-treated rats. Enrichment of mannose 6-phosphate receptor mass relative to that of crude liver membranes was comparable in membranes of early and late endosomes but was even greater in membranes of the receptor-recycling fraction. Enrichment of acid hydrolase activities (aryl sulfatase, N-acetyl-beta-glucosaminidase, tartrate-sensitive acid phosphatase, and cholesteryl ester acid hydrolase) and cathepsin D mass was also comparable in early and late endosomes but was considerably lower in the receptor-recycling fraction. The enrichment of two acid hydrolases, acid phosphatase and cholesteryl ester acid hydrolase, in endosomes was severalfold greater than that of the other three examined, about 40% of that found in lysosomes. Acid phosphatase and cholesteryl ester acid hydrolase were partially associated with endosome membranes, whereas cathepsin D was found entirely in the endosome contents. These findings raise the possibility that lysosomal enzymes traverse early endosomes during transport to lysosomes in rat hepatocytes and suggest that the greater enrichment of some acid hydrolases in endosomes is related to their association with endosome membranes. Despite the substantial enrichment of lysosomal enzymes in hepatocytic endosomes, we found that two, cholesteryl ester acid hydrolase and cathepsin D, did not degrade cholesteryl esters and apolipoprotein B-100 of endocytosed low density lipoproteins in vivo, presumably because they are inactive at the pH within endosomes.  相似文献   

10.
Human liver epoxide hydrolases were characterized by several criteria and a cytosolic cis-stilbene oxide hydrolase (cEHCSO) was purified to apparent homogeneity. Styrene oxide and five phenylmethyloxiranes were tested as substrates for human liver epoxide hydrolases. With microsomes activity was highest with trans-2-methylstyrene oxide, followed by styrene 7,8-oxide, cis-2-methylstyrene oxide, cis-1,2-dimethylstyrene oxide, trans-1,2-dimethylstyrene oxide and 2,2-dimethylstyrene oxide. With cytosol the same order was obtained for the first three substrates, whereas activity with 2,2-dimethylstyrene oxide was higher than with cis-1,2-dimethylstyrene oxide and no hydrolysis occurred with trans-1,2-dimethylstyrene oxide. Generally, activities were lower with cytosol than with microsomes. The isoelectric point for both microsomal styrene 7,8-oxide and cis-stilbene oxide hydrolyzing activity was 7.0, whereas cEHCSO had an isoelectric point of 9.2 and cytosolic trans-stilbene oxide hydrolase (cEHTSO) of 5.7. The cytosolic epoxide hydrolases could be separated by anion-exchange chromatography and gel filtration. The latter technique revealed a higher molecular mass for cEHCSO than for cEHTSO. Both cytosolic epoxide hydrolases showed higher activities at pH 7.4 than at pH 9.0, whereas the opposite was true for microsomal epoxide hydrolase. The effects of ethanol, methanol, tetrahydrofuran, acetonitrile, acetone and dimethylsulfoxide on microsomal epoxide hydrolase depended on the substrate tested, whereas both cytosolic enzymes were not at all, or only slightly, affected by these solvents. Effects of different enzyme modulators on microsomal epoxide hydrolase also depended on the substrates used. Trichloropropene oxide and styrene 7,8-oxide strongly inhibited cEHCSO whereas cEHTSO was moderately affected by these compounds. Immunochemical investigations revealed a close relationship between cEHCSO and rat liver microsomal, but not cytosolic, epoxide hydrolase. Interestingly, cEHTSO has no immunological relationship to rat microsomal, nor to rat cytosolic epoxide hydrolase. cEHTSO from human liver differed also from its counterpart in the rat in that it was only moderately affected by tetrahydrofuran, acetonitrile and trichloropropene oxide. Five steps were necessary to purify cEHCSO. The enzyme has a molecular mass (49 kDa) identical to that of rat liver microsomal epoxide hydrolase.  相似文献   

11.
Tetrahymena pyriformis were grown in proteose-peptone medium and then washed and incubated in a dilute salt solution for one hour. The cells were then discarded and the lysosomal hydrolases that had been secreted were subjected to DEAE cellulose column chromatography. At least three isoenzymes of acid phosphatase, three of acid protease, and two of beta-N-acetylhexoseaminidase were found, as well as single peaks of alpha-mannosidase, beta-galactosidase, and beta-fucosidase. The latter two activities were not resolved by the DEAE column and could not be separated in a second chromatographic step on CM-cellulose. Cells were also grown under identical conditions and homogenized in 0.25 M sucrose in order to allow comparison of some of the intracellular lysosomal hydrolases with their secreted counterparts. Two lysosomal populations were resolved by sucrose density gradient sedimentation, a heavy lysosomal fraction, contered at a density of about 1.25 gm/cm3, and a light lysosomal fraction, centered at a density of about 1.16 gm/cm3. These two populations differed in that the light lysosomes did not appear to contain significant amounts of beta-fucosidase, beta-galactosidase, or acid protease, whereas all six of the hydrolase activities studied were present in the heavy lysosomes. The light lysosomal peak occurred in cells grown to transition phase, but was markedly reduced in cells from cultures grown to stationary phase. In addition to these two fractions a third very light particle, containing only alpha-mannosidase activity, was detected just inside the gradient. Measurements were made of the effect of heat (10 minutes at 66 degrees) and of a change in pH from 4.5 (standard assay condition) to 6.0 on the three acid phosphatases and two beta-N-acetylhexoseaminidase isoenzymes resolved by DEAE column chromatography of the secreted hydrolases and on these hydrolyases in the heavy and light lysosomal fractions on the sucrose gradient. Use of the thermostability and pH criteria permitted computation of the expected properties of the intralysosomal acid phosphatase and hexoseaminidase activities if these consisted of the respective isoenzymes in the proportions secreted. It was found that neither the intralysosomal acid phosphatase nor the intralysosomal hexoseaminidase had the properties expected if they consisted of the secreted mixture of the respective isoenzymes, indicating that modification of some of these isoenzymes may have occurred during the 1-hour starvation period or after secretion.  相似文献   

12.
R K Margolis  R U Margolis  C Preti  D Lai 《Biochemistry》1975,14(22):4797-4804
The distribution, carbohydrate composition, and metabolism of glycoproteins have been studied in mitochondria, microsomes, axons, and whole rat brain, as well as in various synaptosomal subfractions, including the soluble protein, mitochondria, and synaptic membranes. Approximately 90% of the brain glycoproteins occur in the particulate fraction, and they are present in particularly high amounts in synaptic and microsomal membranes, where the concentration of glycoprotein carbohydrate is 2-3% of the lipid-free dry weight. Treatment of purified synaptic membranes with 0.2% Triton X-100 extracted 70% of the glycoprotein carbohydrate but only 35% of the lipid-free protein residue, and the resulting synaptic membrane subfractions differed significantly in carbohydrate composition. The glycoproteins which are not extracted by Triton X-100 also have a more rapid turnover, as indicated by the 80-155% higher specific activity of hexosamine and sialic acid 1 day after labeling with [3H]glucosamine in vivo. The specific activity of sialic acid in the synaptosomal soluble glycoproteins 2 hr after labeling was greater than 100 times that of the synaptosomal particulate fraction, whereas the difference in hexosamine specific activity in these two fractions was only twofold, and by 22 hr there was little or no difference in the specific activities of sialic acid and hexosamine in synaptosomal soluble as compared to membrane glycoproteins. These data indicate that sialic acid may be added locally to synaptosomal soluble glycoproteins before there is significant labeling of nerve ending glycoproteins by axoplasmic transport. Fifty to sixty percent of the hyaluronic acid and heparan sulfate of brain is located in the various membranes comprising the microsomal fraction, whereas half of the chondroitin sulfate is soluble and only one-third is in microsomal membranes. When microsomes are subfractionated on a discontinuous density gradient over half of the hyaluronic acid and chondroitin sulfate are found in membranes with a density less than that of 0.5 M sucrose (representing a six- to sevenfold enrichment over their concentrations in the membranes applied to the gradient), whereas half of the heparan sulfate is present in membranes with a density greater than that of 0.8 M.  相似文献   

13.
Topological studies on rat liver microsomal cholesterol ester hydrolase   总被引:2,自引:0,他引:2  
Lateral and transversal distribution of cholesterol ester hydrolase activity in rat liver microsomal membranes has been studied. Total cholesterol ester hydrolase activity was found predominantly (75%) in rough microsomes though specific esterase activities were similar in rough and smooth microsomal fractions. The transversal asymmetry of the enzyme was examined using the criteria of protease sensitivity and latency of mannose-6-phosphate phosphatase. Cholesterol ester hydrolase resulted drastically inhibited by proteolysis with trypsin when microsomal integrity had been previously disrupted with sodium deoxycholate or sodium taurocholate. Under these conditions, most lumenal mannose-6-phosphate phosphatase activity was destroyed. However, cholesterol esterase was unaffected by preincubating microsomes with the detergent alone, which led to the complete expression of latent mannose-6-phosphate phosphatase or by preincubating them with trypsin, where less than a 15% of the lumenal mannose-6-phosphate phosphatase was lost. These findings suggest that cholesterol ester hydrolase activity is located on the lumenal surface of the hepatic microsomal vesicles.  相似文献   

14.
A study of intracellular transport of secretory glycoproteins in rat liver   总被引:1,自引:0,他引:1  
To study the transport of secretory glycoproteins in the endoplasmic reticulum of rat liver, the distribution of nascent glycoproteins in the membrane and luminal fraction of rough and smooth microsomes has been examined after a short-time incorporation of radioactive glucosamine in vivo. 50--60% of the radioactivity was associated with the membranes of rough and smooth microsomes, whereas about 10% of the serum albumin was found in the same fractions. The relative amount of radioactivity in the membranes was the same whether the luminal content of the microsomal vesicles was released by sonication, French press, Triton X-100, Brij 35 or sodium deoxycholate. The distribution of labeled glycoproteins between the membrane and luminal fraction of rough and smooth microsomes did not change during the time interval of 15--120 min after administration of the isotope. The similarity of the labeling patterns obtained after sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis indicated that the same set of glycoproteins were located in the lumen and the membrane of rough and smooth microsomes. A specific precipitation of nascent glycoproteins from both the membrane and luminal fractions of rough and smooth microsomes were obtained with rabbit antiserum against rat serum. The nascent glycoproteins associated with the membranes were not released by high ionic strength or treatment with mercaptoethanol. A slow exchange between [14C]glucosamine-labeled glycoproteins in the lumen and membrane fraction was, however, found.  相似文献   

15.
Endogenous ligands for the hepatic lectin which is specific for mannose and N-acetylglucosamine (mannan-binding protein, MBP) were isolated from rat liver rough microsomes and primary cultured hepatocytes by affinity chromatography on an immobilized MBP column. Western blotting using specific antisera revealed that serum glycoproteins, alpha 1-macroglobulin, alpha 1-antitrypsin, and alpha 1-acid glycoprotein, and a lysosomal enzyme, beta-glucuronidase were the major constituents of the endogenous ligands. These endogenous ligands consisted of high mannose-type oligosaccharides of Man9GlcNAc2 and Man8GlcNAc2, and had rapid turnover rates with an average half-life of 45 min, indicating that they were mainly composed of biosynthetic intermediates of glycoproteins. In view of the identification of the endogenous ligands as the biosynthetic intermediates of glycoproteins, the possible functions of the intracellular lectin are discussed in relation to the intracellular transport of glycoproteins.  相似文献   

16.
Sex and species differences in hepatic epoxide hydrolase activities towards cis- and trans-stilbene oxide were examined in common laboratory animals, as well as in monkey and man. In general trans-stilbene oxide was found to be a good substrate for epoxide hydrolase activity in cytosolic fractions, whereas the cis isomer was selectively hydrated by the microsomal fraction (with the exception of man, where the cytosol also hydrated this isomer efficiently). The specific cytosolic epoxide hydrolase activity was highest in mouse, followed by hamster and rabbit. Epoxide hydrolase activity in the crude 'mitochondrial' fraction towards trans-stilbene oxide was also highest in mouse and low in all other species examined. Microsomal epoxide hydrolase activity was highest in monkey, followed by guinea pig, human and rabbit, which all had similar activities. Sex differences were generally small, but where significant, male animals had higher catalytic activities than females of the same species in most cases. Antibodies raised against microsomal epoxide hydrolase purified from rat liver reacted with microsomes from all species investigated, indicating structural conservation of this protein. Antibodies directed towards cytosolic epoxide hydrolase purified from mouse liver reacted only with liver cytosol from mouse and hamster and with the 'mitochondrial' fraction from mouse in immunodiffusion experiments. Immunoblotting also revealed reaction with rat liver cytosol. The cytosolic and 'mitochondrial' epoxide hydrolases in all three mouse strains and in both sexes for each strain were immunochemically identical. The anomalies in human liver epoxide hydrolase activities observed here indicate that no single common laboratory animal is a good model for man with regard to these activities.  相似文献   

17.
By in vitro translation of mRNA’s isolated from free and membrane-bound polysomes, direct evidence was obtained for the synthesis of two lysosomal hydrolases, β-glucuronidase of the rat preputial gland and cathespin D of mouse spleen, on polysomes bound to rough endoplasmic reticulum (ER) membranes. When the mRNA’s for these two proteins were translated in the presence of microsomal membranes, the in vitro synthesized polypeptides were cotranslationally glycosylated and transferred into the microsomal lumen. Polypeptides synthesized in the absence of microsomal membranes were approximately 2,000 daltons larger than the respective unglycosylated microsomal polypeptides found after short times of labeling in cultured rat liver cells treated with tunicamycin. This strongly suggests that nascent chains of the lysosomal enzymes bear transient amino terminal signals which determine synthesis on bound polysomes and are removed during the cotranslational insertion of the polypeptides into the ER membranes. In the line of cultured rat liver cells used for this work, newly synthesized lysosomal hydrolases showed a dual destination; approximately 60 percent of the microsomal polypeptides detected after short times of labeling were subsequently processed proteolytically to lower molecular weight forms characteristic of the mature enzymes. The remainder was secreted from the cells without further proteolytic processing. As previously observed by other investigations in cultured fibroblasts (A. Gonzalez-Noriega, J.H. Grubbs, V. Talkad, and W.S. Sly, 1980, J Cell Biol. 85: 839-852; A. Hasilik and E.F. Neufeld, 1980, J. Biol. Chem., 255:4937-4945.) the lysosomotropic amine chloroquine prevented the proteolytic maturation of newly synthesized hydrolases and enhanced their section. In addition, unglycosylated hydrolases synthesized in cells treated with tunicamycin were exclusively exported from the cells without undergoing proteolytic processing. These results support the notions that modified sugar residues serve as sorting out signals which address the hydrolases to their lysosomal destination and that final proteolytic cleavage of hydrolase precursors take place within lysosome itself. Structural differences in the carbohydrate chains of intracellular and secreted precursors of cathespin D were detected from their differential sensitivity to digestion with endoglycosidases H and D. These observations suggest that the hydrolases exported into the medium follow the normal secretory route and that some of their oligosaccharides are subject to modifications known to affect many secretory glycoproteins during their passage through the Golgi apparatus.  相似文献   

18.
We Previously demonstrated two distinct cholesterol ester hydrolases in rat brain (Eto and Suzuki , 1971). One of the two hydrolases had a pH optimum of 6·6 and showed a bimodal subcellular distribution, in microsomes and myelin. A substantial activity of this enzyme was present in newborn rat brain. The activity remained relatively unchanged during the first 12 days and then increased sharply, concomitant with the period of active myelination (Eto and Suzuki , 1972a). The more recent investigation, however, clearly demonstrated that this pH 6·6 cholesterol ester hydrolase actually consists of two distinct cholesterol ester hydrolases, one primarily localized in microsomes and the other almost exclusively localized in the myelin sheath (Eto and Suzuki , 1972b, 1973). The microsomal hydrolase had a pH optimum of 6·0 and was activated by sodium taurocholate and Triton X-100, particularly by the latter. The myelin enzyme had a pH optimum of 7·2. It was activated by sodium taurocholate but slightly inhibited by Triton X-100. These new findings suggested that the previously reported developmental curve of the pH 6·6 cholesterol ester hydrolase was probably a composite of developmental changes of these two distinct cholesterol ester hydrolases. We report here the findings which confirm the above prediction and update the information regarding the developmental changes of the enzymes involved in cholesterol ester metabolism in rat brain.  相似文献   

19.
Rat liver microsomal glycerol monoester hydrolase (EC 3.1.1.23) has been purified 130 fold. The enzyme has a molecular weight of about 60,000. An antibody raised against this enzyme in rabbit did not inhibit heparin-releasable liver lipase, which hydrolyses long-chain 1- and 2-monoglycerides effectively. This confirms an earlier conclusion, based on results obtained with an antibody raised against the latter enzyme, that the non-releasable and heparin-releasable liver enzymes are different proteins. The antibody against the liver microsomal glycerol monoester hydrolase, however, inhibited also the monoglyceridase activities of acetone powder extracts of rat small intestinal epithelial microsomes and rat epididymal fat pads, suggesting structural similarities between the endoplasmic reticulum hydrolases of various tissues. These findings also apply to pig where an antibody against adipose tissue lipases inhibits the monoglyceridase activities of small intestinal and liver microsomal acetone powder extracts.  相似文献   

20.
The subcellular and organ distributions of microsomal epoxide hydrolases measured with cis-stilbene oxide and cholesterol 5,6 alpha-epoxide as substrates have been investigated. These two enzyme activities were found to have essentially the same subcellular distribution, with the highest total and specific activities localized in rough and smooth endoplasmic reticulum. Among the tissues studied (i.e., liver, kidney, lung, testis, spleen, brain and intestinal epithelium), the highest specific activities were recovered in liver microsomes, where the activities were at least 5-fold greater than in any of the other microsomal preparations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号