首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In previous research, an in vitro stepwise procedure permitted us to obtain Nicotiana tabacum regenerated plant lines able to grow in the presence of Mn at 2 and 5 mM (Mn-tolerant plants). These plants showed several morpho-physiological and cytological differences in comparison to the Mn-sensitive regenerated plants. In particular, the number of xylem cells and the degree of lignification appeared to be influenced differently by these Mn concentrations. In the present work these Mn-tolerant and Mn-sensitive N. tabacum plants, maintained in the presence of Mn 2 and 5 mM, have been characterized with regards to the uptake of Mn and Fe, the activity of extracellular peroxidases in the stems, and the activity of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in the leaves. The leaf response to an increasing Mn concentration in the medium, corresponded a parallel decrease of Fe content. Plants tolerant of 5 mM Mn showed almost a doubling Mn content over that of the 5 mM Mn-sensitive plants. In the stem, 2 and 5 mM Mn inhibited the extracellular free peroxidases (guaiacol peroxidases) either in the Mn-tolerant plants or in the Mn-sensitive plants. In the Mn-sensitive plants treated with 2 mM Mn the activity of the peroxidases of the ionically and covalently bound wall peroxidases was also depressed. In 5 mM Mn-tolerant plants, an enhanced activity of the covalently bound wall peroxidases was observed. The effect of Mn on the covalently bound wall syringaldazine peroxidases was identical to that observed in the guaiacol peroxidases; the activity was significantly higher in the Mn-tolerant plants grown in the presence of 5 mM Mn. In the leaf, the increase of Mn content inhibited the activity of guaiacol peroxidase, ascorbate peroxidase and superoxide dismutase in the Mn-tolerant as well as in the Mn-sensitive plants. However, the effect was greater in the Mn-sensitive plants. Only glutathione reductase did not show significant variation except for the 2 mM Mn-sensitive plants, where an increased activity was detected.  相似文献   

2.
Light and Excess Manganese : Implications for Oxidative Stress in Common Bean   总被引:26,自引:1,他引:25  
The effect of light intensity on antioxidants, antioxidant enzymes, and chlorophyll content was studied in common bean (Phaseolus vulgaris L.) exposed to excess Mn. Leaves of bean genotypes contrasting in Mn tolerance were exposed to two different light intensities and to excess Mn; light was controlled by shading a leaflet with filter paper. After 5 d of Mn treatment ascorbate was depleted by 45% in leaves of the Mn-sensitive genotype ZPV-292 and by 20% in the Mn-tolerant genotype CALIMA. Nonprotein sulfhydryl groups and glutathione reductase were not affected by Mn or light treatment. Ten days of Mn-toxicity stress increased leaf ascorbate peroxidase activity of cv ZPV-292 by 78% in low light and by 235% in high light, and superoxide dismutase activity followed a similar trend. Increases of ascorbate peroxidase and superoxide dismutase activity observed in cv CALIMA were lower than those observed in the susceptible cv ZPV-292. The cv CALIMA had less ascorbate oxidation under excess Mn-toxicity stress. Depletion of ascorbate occurred before the onset of chlorosis in Mn-stressed plants, especially in cv ZPV-292. Lipid peroxidation was not detected in floating leaf discs of mature leaves exposed to excess Mn. Our results suggest that Mn toxicity may be mediated by oxidative stress, and that the tolerant genotype may maintain higher ascorbate levels under stress than the sensitive genotype.  相似文献   

3.
After aluminum toxicity, manganese (Mn) toxicity is probably the second most important growth limiting factor in acid soils. The purpose of this study was to determine the feasibility of using chlorophyll content and leaf elongation rate (LER) for regrowth of Mn stressed seedlings as a rapid seedling based screening bioassay for Mn tolerance in segregating populations of wheat (Triticum aestivum L.). In one experiment, chlorophyll was determined for the cultivars Norquay (Mn-tolerant) and Columbus (Mn-sensitive) subjected to twelve Mn levels (2 to 2000 μM) in nutrient solutions. As Mn concentration increased, chlorophyll ‘a’ and ‘b’ contents of the Mn-tolerant cultivar decreased up to 9%, while in the Mn-sensitive cultivar it was reduced by as much as 43%. The chlorophyll ‘a/b’ ratio did not differ among Mn concentrations for either cultivar. In a second experiment, chlorophyll content and LER for regrowth of Mn stressed seedlings (1000 μM) was determined for Columbus and Katepwa (Mn-sensitive), Oslo (Mn-intermediate), and Norquay and Laura (Mn-tolerant). Manganese tolerance as assayed by chlorophyll ‘a’ and ‘b’ and LER was significantly correlated with Mn tolerance as assayed by the relative root weight methodology (RRW). Thus, chlorophyll content of Mn-stressed seedlings and LER of seedling regrowth appear to be suitable techniques for screening unreplicated selections of segregating populations for tolerance to Mn.  相似文献   

4.
Excessive manganese (Mn) supply induced the formation of brown spots on leaves as typical Mn toxicity symptoms in cowpea ( Vigna unguiculata L. Walp.) grown in hydroponics. Differences in Mn resistance between cv. TVu 91 (Mn-sensitive) and cv. TVu 1987 (Mn-tolerant) expressed in the density of brown spots in older leaves were due to higher Mn tissue tolerance. Apoplastic water-soluble peroxidase (POD) in the apoplastic washing fluid (AWF) was enhanced by increasing Mn leaf content and generally significantly higher in leaves of cv. TVu 91 than in cv. TVu 1987. Electrophoresis of AWF revealed the presence of several water-soluble POD isoenzymes. At toxic Mn supply, the activities of these and additional POD isoenzymes increased more in the Mn-sensitive cultivar. Levels of ascorbic acid in the apoplast and cytoplasm of the Mn-sensitive cv. TVu 91 decreased with increasing leaf Mn contents, whereas Mn-tolerant cv. TVu 1987 was not affected. Mn treatment lead to a stimulation of the enzymes of the ascorbic acid regeneration system (monodehydroascorbic acid reductase and glutathione reductase) in both cultivars, but the activation of glutathione reductase was clearly more enhanced in the Mn-tolerant cultivar TVu 1987. The results provide circumstantial evidence that apoplastic ascorbate and peroxidases are involved in the expression of Mn toxicity and genotypic Mn tolerance.  相似文献   

5.
Polyamines and Pectins (I. Ion Exchange and Selectivity)   总被引:2,自引:0,他引:2       下载免费PDF全文
The ion-binding and -exchange properties of putrescine, spermidine, and spermine on purified walls of carrot (Daucus carota L.) cell suspensions were investigated by producing ion-exchange isotherms and comparing them with the behavior of Na+, Mg2+, and Ca2+. The cation exchange capacity of the carrot cell walls was 0.8 equivalent kg-1 dry matter, and the ionic selectivity sequence of the walls for polyamines followed the sequence spermine4+ > spermidine3+ [almost equal to] Ca2+ > putrescine2+. The polyamines were subjected to only electroselectivity and probably did not induce any favorable supramolecular conformation of pectin like the one induced by Ca2+. Triangular ion exchanges were also performed with three diamines: ethanediamine, butanediamine, and octanediamine. The shorter the diamine, the higher the total adsorption and selectivity of the exchange. The lower selectivity of the cell wall for putrescine was partly attributed to its inability to access and displace Ca2+ from higher affinity sites within dimerized pectic sequences. The polyamine adsorption and exchange on pectic sequences could result in pectic signal modulation in pathogenesis and in differentiation.  相似文献   

6.

Background and Aims

Research on manganese (Mn) toxicity and tolerance indicates that Mn toxicity develops apoplastically through increased peroxidase activities mediated by phenolics and Mn, and Mn tolerance could be conferred by sequestration of Mn in inert cell compartments. This comparative study focuses on Mn-sensitive barley (Hordeum vulgare) and Mn-tolerant rice (Oryza sativa) as model organisms to unravel the mechanisms of Mn toxicity and/or tolerance in monocots.

Methods

Bulk leaf Mn concentrations as well as peroxidase activities and protein concentrations were analysed in apoplastic washing fluid (AWF) in both species. In rice, Mn distribution between leaf compartments and the leaf proteome using 2D isoelectic focusing IEF/SDS–PAGE and 2D Blue native BN/SDS–PAGE was studied.

Key Results

The Mn sensitivity of barley was confirmed since the formation of brown spots on older leaves was induced by low bulk leaf and AWF Mn concentrations and exhibited strongly enhanced H2O2-producing and consuming peroxidase activities. In contrast, by a factor of 50, higher Mn concentrations did not produce Mn toxicity symptoms on older leaves in rice. Peroxidase activities, lower by a factor of about 100 in the rice leaf AWF compared with barley, support the view of a central role for these peroxidases in the apoplastic expression of Mn toxicity. The high Mn tolerance of old rice leaves could be related to a high Mn binding capacity of the cell walls. Proteomic studies suggest that the lower Mn tolerance of young rice leaves could be related to Mn excess-induced displacement of Mg and Fe from essential metabolic functions.

Conclusions

The results provide evidence that Mn toxicity in barley involves apoplastic lesions mediated by peroxidases. The high Mn tolerance of old leaves of rice involves a high Mn binding capacity of the cell walls, whereas Mn toxicity in less Mn-tolerant young leaves is related to Mn-induced Mg and Fe deficiencies.  相似文献   

7.
To determine the tolerance of soybean genotypes to Mn toxicity, a green house study was conducted. Hayesville sandy loam (clayey, oxidic, mesic, Typic Hapludult), high in manganese, was used for the experiment. The experimental design was split-plot with three replications. Forty-one different soybean genotypes were planted in pots at two different pH levels: 5.2 (original soil pH) and 6.4 (amended with lime). Soybean genotypes were allowed to grow to the dry pod stage.Soil pH levels affected the soybean genotypes yields significantly (p < 0.01). Tolerant genotypes showed a higher or similar seed yield at pH 5.2 compared to pH 6.4. Sensitive genotype yields were lower at pH 5.2 than at pH 6.4. In general, Mn in leaves was higher at pH 5.2 than at pH 6.4. Some of the sensitive genotypes at pH 5.2. showed severe chlorosis and crinkle leaf symptoms as a result of Mn toxicity. Excess available Mn at pH 5.2. induced Ca deficiency. Soybean genotypes PI423758, PI417440, Aoda, Kingston, Rokusum and some others were tolerant to Mn toxicity, whereas PI417288, Verde, Wilson 5, Sango, Funk Delicious and some others were sensitive to Mn toxicity. The genotypes found to be tolerant can be recommended to plant breeders for development of Mn-tolerant cultivars.  相似文献   

8.
Crown-gall tumor tissue cultures release peroxidase into the medium in response to the concentration of specific ions in the medium. This release is not due to diffusion from cut surfaces or injured cells. Calcium, magnesium, and ammonium were, in that order, most effective in increasing peroxidase release. The enzyme was demonstrated cytochemically on the cell walls and in the cytoplasm. Cell wall fractions, exhaustively washed in buffer, still contained bound peroxidase. This bound peroxidase could be released by treating the wall fractions with certain divalent cations or ammonium. The order of effectiveness for removing the enzyme from the washed cell walls is: Ca++ ≈ Sr++ > Ba++ > Mg++ > NH4+. These data support the thesis presented that specific ions can control the deposition of lignin on cell walls by affecting the peroxidase levels on these walls.  相似文献   

9.
The inositol 1,4,5-trisphosphate receptor (InsP3R), an intracellular calcium release channel, is found in virtually all cells and is abundant in the cerebellum. We used Mn2+ as a tool to study two aspects of the cerebellar InsP3R. First, to investigate the structure of the ion pore, Mn2+ permeation through the channel was determined. We found that Mn2+ can pass through the InsP3R; the selectivity sequence for divalent cations is Ba2+ > Sr2+ > Ca2+ > Mg2+ > Mn2+. Second, to begin characterization of the cytosolic regulatory sites responsible for the Ca(2+)-dependent modulation of InsP3R function, the ability of Mn2+ to replace Ca2+ was investigated. We show that Mn2+, as Ca2+, modulates InsP3R activity with a bell-shaped dependence where the affinity of the activation site of the InsP3R is similar for both ions, but higher concentrations of Mn2+ were necessary to inhibit the channel. These results suggest that the two regulatory sites are structurally distinct. Our findings are also important for the understanding of cellular responses when Mn2+ is used to quench the intracellular fluorescence of Ca2+ indicator dyes.  相似文献   

10.

Objectives

To evaluate the effects of the interactions between polymorphisms in Nalp3, caspase-1, and interleukin(IL)-1β genes and occupational dust exposure on the risk of silicosis.

Methods

We conducted a population-based case-control study in a large iron mine in China. Between January 2006 and December 2009, we identified 179 patients with silicosis to evaluate as cases and 201 individuals without silicosis to evaluate as controls. We estimated cumulative dust exposure (CDE) for all subjects and we genotyped polymorphisms in Nalp3, caspase-1, and IL-1β genes. We estimated odds ratios(ORs), 95% confidence intervals(95%CIs), and p-values using logistic regression models adjusted for selected confounders.

Results

After adjusting for age, smoking status, and CDE, subjects with the CT genotype of Ex4-849C>T in Nalp3 and the GA genotype of Ex2+37G>A in caspase-1 had increased risks of silicosis (adjusted ORs[95%CIs] = 2.40 [1.12–5.12] and 3.62 [1.63–8.02], respectively). Among subjects younger than 70 years old, those with the CC genotype of IVS8-7652A>C in Nalp3 had a lower risk of silicosis than those with other genotypes (adjusted OR[95%CI] = 0.24[0.06–0.88]). Among subjects aged 70 years and older, those with the CT genotype of Ex4-849C>T in Nalp3 and those with the GA genotype of Ex2+37G>A in caspase-1 had a higher risk of silicosis than those with other genotypes (adjusted ORs [95%CI] = 2.52[1.04–6.12] and 5.19[1.88–14.35], respectively). Among subjects with CDE greater than 120 mg/m3×year and among smokers, those with the GA genotype of Ex2+37G>A in caspase-1 had a higher risk of silicosis than those with other genotypes (adjusted ORs[95%CIs] = 26.37[3.35–207.39] and 3.47[1.40–8.64], respectively).

Conclusions

Genetic polymorphisms in Nalp3 and caspase-1 may be associated with individual susceptibility to silicosis, especially when the polymorphisms interact with age, CDE, or smoking status.  相似文献   

11.
A variety of degradative treatments have been used to investigate the nature of the structure and components of the cell walls of Escherichia coli B. The binding and localization of the endotoxin-like particles found on the cell walls were of special interest because some of them are associated with the site where the inner tail tube of bacteriophage T4D penetrates the cell wall. Modified cell walls were obtained by heating a suspension of bacterial cells originally in 0.1 M phosphate, pH 7.0, after the addition of 12.5 M NaOH to a final concentration of 0.25 M. With regard to the endotoxin-like particles, it was found that: (i) at least part of them still remained bound to the modified cell wall after the alkali treatment; (ii) the subsequent incubation of alkali-treated cell walls with lysozyme destroyed the bacterial form and released a complex of endotoxin-like particles together with a fibrous material; (iii) on the other hand, treatment with 45% phenol at 70°C removed the endotoxin-like particles from the surface of the alkali-treated cell walls, but most of the fibrous material was left on the cell wall; and (iv) incubation of alkali-treated cell walls with 5 mM ethylenediaminetetraacetic acid at 20°C also removed the endotoxin-like particles, but did not disrupt the rodlike bacterial form. However, if the ethylenediaminetetraacetic acid treatment was performed at 55°C, the bacterium-like form was destroyed. These differential sensitivities to ethylenediaminetetraacetic acid suggested that loosely bound divalent metal ions normally hold these endotoxin-like particles on the cell wall surface, but that probably more tightly bound metal ions are involved in the determination of cell shape. Analysis of the protein components of the alkalitreated cell walls showed that only one protein was present in significant amounts, and this protein had an electrophoretic mobility similar to that of the Braun lipoprotein. This protein was released from the alkali-treated cell walls upon heating with 2% sodium dodecyl sulfate at 100°C. Phospholipids were also absent from this structure. The distribution of the remaining cell wall components on the alkali-treated cell walls is discussed.  相似文献   

12.
We have examined the formation of alternate strand triple-helices at the target sequence A11(TC)6.(GA)6T11 using the oligonucleotides T11(AG)6 and T11(TG)6, by DNase I footprinting. These third strands were designed so as to form parallel T.AT triplets together with antiparallel G.GC and A.AT or T.AT triplets. We find that, although both oligonucleotides yield clear footprints at similar concentrations (0.3 microM) in the presence of manganese, only T11(TG)6 forms a stable complex in magnesium-containing buffers, albeit at a higher concentration (10-30 microM). Examination of the interaction of (AG)6 and (TG)6 with half the target site confirmed that the complex containing A.AT triplets was only stable in the presence of manganese. In contrast no binding of (TG)6 was detected in the presence of either metal ion, suggesting that the reverse-Hoogsteen T.AT triplet is less stable that G.GC. We suggest that, within the context of G.GC triplets, the rank order of antiparallel triplet stability is A.AT (Mn2+) > T.AT (Mn2+) > T.AT (Mg2+) > A.AT (Mg2+). Third strands containing a single base substitution in the centre of either the parallel or antiparallel portion showed a (10-fold) weaker interaction in manganese-containing buffers, and no interaction in the presence of magnesium.  相似文献   

13.
To investigate the functional significance of putative integrin divalent cation binding sites, several mutated alpha 4 subunit cDNAs were constructed. Mutants contained the conservative substitution of Glu for Asp or Asn at the third position in each of three putative divalent cation sites. Transfection of wild-type or mutated alpha 4 into K562 cells yielded comparable expression levels and immunoprecipitation profiles. However, for all three alpha 4 mutants, adhesion to CS1/fibronectin was greatly diminished in either the presence or absence of the stimulatory anti-beta 1 mAb TS2/16. Constitutive adhesion to vascular cell adhesion molecule (VCAM) 1 was also diminished but, unlike CS1 adhesion, was restored upon TS2/16 stimulation. In contrast, adhesion to the bacterial protein invasin was minimally affected by any of the three mutations. For each of the mutants, the order of preference for divalent cations was unchanged compared to wild-type alpha 4, on CS1/fibronectin (Mn2+ > Mg2+ > Ca2+), on VCAM-1 (Mn2+ > Mg2+ = Ca2+) and on invasin (Mg2+ = Ca2+). However for the three mutants, the efficiency of divalent cation utilization was decreased. On VCAM-1, 68-108 microM Mn2+ was required to support half-maximal adhesion for the mutants compared with 14-18 microM for wild-type alpha 4. These results indicate (a) that three different ligands for VLA-4 show widely differing sensitivities to mutations within putative divalent cation sites, and (b) each of the three putative divalent cation sites in alpha 4 have comparable functional importance with respect to both divalent cation usage and cell adhesion.  相似文献   

14.
This study was carried out to elucidate the effect of glutathione S-transferase (GST) Ml and Tl polymorphisms on the aflatoxin-related hepatocarcinogenesis among chronic carriers of hepatitis B surface antigen (HBsAg). A total of 32 newly diagnosed hepatocellular carcinoma (HCC) cases and 73 age-matched controls selected from a cohort of 4,841 chronic HBsAg carriers who had been followed for 5 years were studied. The level of aflatoxin B1 (AFB1)-albumin adducts in their serum samples collected at the recruitment was examined by competitive enzyme-linked immunosorbance assay, and genotypes of GST M1 and T1 were determined by PCR. There was a dose-response relationship between serum level of AFB1-albumin adducts and risk of HCC. The biological gradients between serum AFB1-albumin adducts level and HCC risk were observed among chronic HBsAg carriers who had null genotypes of GST M1 and/or T1 but not among those who had non-null genotypes. The multivariate-adjusted odds ratios of developing HCC for those who had low and high serum levels of AFB1-albumin adducts compared with those who had a undetectable adduct level as the referent (odds ratio = 1.0) were 4.1 and 12.4, respectively, for HBsAg carriers with null GST M1 genotype (P < .01, on the basis of the significance test for trend); 0.7 and 1.4 for those with non-null GST Ml genotype (P = .98); 1.8 and 10.2 for those with null GST T1 genotype (P < .05); and 1.3 and 0.8 for those with non-null GST T1 genotype (P = .93). The interaction between serum AFB1-albumin adduct level and polymorphisms of GST M1 and T1 was at marginal statistical significance levels (.05 < P < .10).  相似文献   

15.
Transition protein 2 (TNP2) participates in removing nucleohistones and the initial condensation of spermatid nucleus during spermiogenesis. This study investigated the relationship between the variants of the bovine TNP2 gene and the semen quality traits of Chinese Holstein bulls. We detected three single nucleotide polymorphisms (SNPs) of the TNP2 gene in 392 Chinese Holstein bulls, namely, g.269 G>A (exon 1), g.480 C>T (intron 1), and g.1536 C>T (3′-UTR). Association analysis showed that the semen quality traits of the Chinese Holstein bulls was significantly affected by the three SNPs. The bulls with the haplotypic combinations H6H4, H6H6, and H6H8 had higher initial semen motility than those with the H7H8 and H8H4 haplotypic combinations (P<0.05). SNPs in the microRNA (miRNA) binding region of the TNP2 gene 3′-UTR may have contributed to the phenotypic differences. The phenotypic differences are caused by the altered expression of the miRNAs and their targets. Bioinformatics analysis predicted that the g.1536 C>T site in the TNP2 3′-UTR is located in the bta-miR-154 binding region. The quantitative real-time polymerase chain reaction results showed that the TNP2 mRNA relative expression in bulls with the CT and CC genotypes was significantly higher than those with the TT genotype (P<0.05) in the g.1536 C>T site. The luciferase assay also indicated that bta-miR-154 directly targets TNP2 in a murine Leydig cell tumor cell line. The SNP g.1536 C>T in the TNP2 3′-UTR, which altered the binding of TNP2 with bta-miR-154, was found to be associated with the semen quality traits of Chinese Holstein bulls.  相似文献   

16.
Ca(2+)-activated K+[K(Ca)] channels in resting and activated human peripheral blood T lymphocytes were characterized using simultaneous patch-clamp recording and fura-2 monitoring of cytosolic Ca2+ concentration, [Ca2+]i. Whole-cell experiments, using EGTA-buffered pipette solutions to raise [Ca2+]i to 1 microM, revealed a 25-fold increase in the number of conducting K(Ca) channels per cell, from an average of 20 in resting T cells to > 500 channels per cell in T cell blasts after mitogenic activation. The opening of K(Ca) channels in both whole-cell and inside-out patch experiments was highly sensitive to [Ca2+]i (Hill coefficient of 4, with a midpoint of approximately 300 nM). At optimal [Ca2+]i, the open probability of a K(Ca) channel was 0.3-0.5. K(Ca) channels showed little or no voltage dependence from - 100 to 0 mV. Single-channel I-V curves were linear with a unitary conductance of 11 pS in normal Ringer and exhibited modest inward rectification with a unitary conductance of approximately 35 pS in symmetrical 160 mM K+. Permeability ratios, relative to K+, determined from reversal potential measurements were: K+ (1.0) > Rb+ (0.96) > NH4+ (0.17) > Cs+ (0.07). Slope conductance ratios were: NH4+ (1.2) > K+ (1.0) > Rb+ (0.6) > Cs+ (0.10). Extracellular Cs+ or Ba2+ each induced voltage-dependent block of K(Ca) channels, with block increasing at hyperpolarizing potentials in a manner suggesting a site of block 75% across the membrane field from the outside. K(Ca) channels were blocked by tetraethylammonium (TEA) applied externally (Kd = 40 mM), but were unaffected by 10 mM TEA applied inside by pipette perfusion. K(Ca) channels were blocked by charybdotoxin (CTX) with a half-blocking dose of 3-4 nM, but were resistant to block by noxiustoxin (NTX) at 1-100 nM. Unlike K(Ca) channels in Jurkat T cells, the K(Ca) channels of normal resting or activated T cells were not blocked by apamin. We conclude that while K(Ca) and voltage-gated K+ channels in the same cells share similarities in ion permeation, Cs+ and Ba2+ block, and sensitivity to CTX, the underlying proteins differ in structural characteristics that determine channel gating and block by NTX and TEA.  相似文献   

17.
The cation exchange properties of cell walls isolated from collard (Bassica oleracea var acephala D.C.) leaves were investigated. Cation sorption on cell walls was described by mass-action expressions of ion exchange, rather than by the traditional Donnan equilibrium. The mass-action expressions enable the selectivity of the wall for one cation over another to be determined unambiguously from ion exchange isotherms. We found that: (a) the cation composition of the wall varied as a function of the solution cation concentration, solution cation composition, and pH in a way predicted by mass action; (b) the affinity of the wall for divalent cations increased as the equivalent fraction of divalent cation on the wall increased, and as the concentration of divalent cations in solution increased; (c) the selectivity of the wall for any metal cation pair was not altered by the concentration of H+ in solution or on the wall; (d) H+ sorption on the wall may be treated as a cation exchange reaction making it possible to calculate the relative affinity of the wall for metal cation pairs from H+-metal (Me) titration curves; and (e) the relative affinity of the wall for the cations we studied was: H+ (K+ ≥ Ca2+) > Mg2+. A cation-exchange model including surface complexes is consistent with observed cation selectivity. We conclude that metal cations interact with the wall to minimize or eliminate long-range electrostatic interactions and suggest that this may be due to the formation of site-specific cation-wall surface complexes.  相似文献   

18.
Pretreatment serum levels of interferon-γ-inducible protein-10 (IP-10, CXCL10) and dipeptidyl peptidase-4 (DPP IV) predict treatment response in chronic hepatitis C (CHC). The association between functional genetic polymorphisms of CXCL10 and DPP4 and treatment outcome has not previously been studied. This study aimed to determine the association between genetic variations of CXCL10 and DPP4 and the outcome of treatment with pegylated interferon-α (PEG-IFN-α) based therapy in Thai patients with CHC. 602 Thai patients with CHC treated using a PEG-IFN-α based regimen were genotyped for CXCL10 rs56061981 G>A and IL28B rs12979860 C>T. In addition, in patients infected with CHC genotype 1, DPP4 (rs13015258 A>C, rs17848916 T>C, rs41268649 G>A, and rs 17574 T>C) were genotyped. Correlations between single nucleotide polymorphisms, genotype, and treatment response were analyzed. The rate of sustained virologic response (SVR) was higher for the CC genotype of IL28B rs12979860 polymorphisms than for non-CC in both genotype 1 (60.6% vs. 29.4%, P < 0.001) and non-genotype 1 (69.4% vs. 49.1%, P < 0.05) CHC. SVR was not associated with the CXCL10 gene variant in all viral genotypes or DPP4 gene polymorphisms in viral genotype1. Multivariate analysis revealed IL28B rs12979860 CC genotype (OR = 3.12; 95% CI, 1.72–5.67; P < 0.001), hepatitis C virus RNA < 400,000 IU/ml (OR = 2.21; 95% CI, 1.22–3.99, P < 0.05), age < 45 years (OR = 2.03; 95% CI, 1.11–3.68; P < 0.05), and liver fibrosis stage 0–1 (OR = 1.64; 95% CI, 1.01–2.65, P < 0.05) were independent factors for SVR. Unfavorable IL28B rs12979860 CT or TT genotypes with the CXCL10 rs56061981 non-GG genotype were associated with a higher SVR than GG genotype (66.7% vs. 33.0%, P = 0.004) in viral genotype 1. In Thai CHC genotype 1 infected patients with an unfavorable IL28B rs12979860 CT/TT genotype, the complementary CXCL10 polymorphism strongly enhances prediction of treatment response.  相似文献   

19.
In an accompanying paper we reported the use of differential scanning calorimetry and optical densitometry to characterize the melting and aggregation of 160 bp fragments of calf thymus DNA during heating in the presence of divalent metal cations. Aggregation is observed as thermal denaturation begins and becomes more extensive with increasing temperature until the melting temperature Tm is reached, after which the aggregates dissolve extensively. The order of effectiveness of the metals in inducing aggregation is generally consistent with their ability to induce melting: Cd > Ni > Co > Mn approximately Ca > Mg. Under our experimental conditions (50 mg/ml DNA, 100 mM MCl2, [metal]/[DNA phosphate] approximately 0.6), no measurable aggregates were observed for BaDNA or SrDNA. In this paper we show that the Shibata-Schurr theory of aggregation in the thermal denaturation region provides a good model for our observations. Free energies of cross-linking, induced by the divalent cations, are estimated to be between 34% and 38% of the free energies of base stacking. The ability of a divalent metal cation to induce DNA aggregation can be attributed to its ability to disrupt DNA base pairing and simultaneously to link two different DNA sites.  相似文献   

20.
Mycobacterium immunogenum is an emerging pathogen of the immune-mediated lung disease hypersensitivity pneumonitis (HP) reported in machinists occupationally exposed to contaminated metal working fluid (MWF). However, the mechanism of its interaction with the host lung is unclear. Considering that alveolar macrophages play a central role in host defense in the exposed lung, understanding their interaction with the pathogen could provide initial insights into the underlying immunopathogenesis events and mechanisms. In the current study, M. immunogenum 700506, a predominant genotype isolated from HP-linked fluids, was shown to multiply intracellularly, induce proinflammatory mediators (TNF-α, IL-1α, IL-1β, IL-6, GM-CSF, NO) and cause cytotoxicity/cell death in the cultured murine alveolar macrophage cell line MH-S in a dose- and time-dependent manner. The responses were detected as early as 3h post-infection. Comparison of this and four additional genotypes of M. immunogenum (MJY-3, MJY-4, MJY-12, MJY-14) using an effective dose-time combination (100 MOI for 24h) showed these macrophage responses in the following order (albeit with some variations for individual response indicators). Inflammatory: MJY-3 ≥ 700506 > MJY-4 ≥ MJY-14 ≥ MJY-12; Cytotoxic: 700506 ≥ MJY-3 > MJY-4 ≥ MJY-12 ≥ MJY-14. In general, 700506 and MJY-3 showed a more aggressive response than other genotypes. Chemical blocking of either p38 or JNK inhibited the induction of proinflammatory mediators (cytokines, NO) by 700506. However, the cellular responses showed a somewhat opposite effect. This is the first report on M. immunogenum interactions with alveolar macrophages and on the identification of JNK- and p38- mediated signaling and its role in mediating the proinflammatory responses during these interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号