首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Many amino acid-related genes in Gram-positive bacteria are regulated by the T box riboswitch. The leader RNA of genes in the T box family controls the expression of downstream genes by monitoring the aminoacylation status of the cognate tRNA. Previous studies identified a three-nucleotide codon, termed the “Specifier Sequence,” in the riboswitch that corresponds to the amino acid identity of the downstream genes. Pairing of the Specifier Sequence with the anticodon of the cognate tRNA is the primary determinant of specific tRNA recognition. This interaction mimics codon-anticodon pairing in translation but occurs in the absence of the ribosome. The goal of the current study was to determine the effect of a full range of mismatches for comparison with codon recognition in translation. Mutations were individually introduced into the Specifier Sequence of the glyQS leader RNA and tRNAGly anticodon to test the effect of all possible pairing combinations on tRNA binding affinity and antitermination efficiency. The functional role of the conserved purine 3′ of the Specifier Sequence was also verifiedin this study. We found that substitutions at the Specifier Sequence resulted in reduced binding, the magnitude of which correlates well with the predicted stability of the RNA-RNA pairing. However, the tolerance for specific mismatches in antitermination was generally different from that during decoding, which reveals a unique tRNA recognition pattern in the T box antitermination system.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
Regulation of the ilv-leu operon probably involves interaction of a tR NA(GAG) with leader region mRNA. Conversion of a CUC (Leu) triplet located within the leader region to UUC (Phe), CGC (Arg), or UAC (Tyr) converted reporter gene expression to control by corresponding amino acids. Conversion of the CUC triplet to CUU (Leu) decreased expression and disrupted regulation. The results suggested that other tRNAs can substitute for tRNA(Leu) but that interactions in addition to pairing of the anticodon with the CUC triplet are important for proper control.  相似文献   

11.
12.
13.
14.
15.
16.
Evolution of the tRNA(Tyr)/TyrRS aminoacylation systems   总被引:1,自引:0,他引:1  
The tRNA identity rules ensuring fidelity of translation are globally conserved throughout evolution except for tyrosyl-tRNA synthetases (TyrRSs) that display species-specific tRNA recognition. This discrimination originates from the presence of a conserved identity pair, G1-C72, located at the top of the acceptor stem of tRNA(Tyr) from eubacteria that is invariably replaced by an unusual C1-G72 pair in archaeal and eubacterial tRNA(Tyr). In addition to the key role of pair 1-72 in tyrosylation, discriminator base A73, the anticodon triplet and the large variable region (present in eubacterial tRNA(Tyr) but not found in eukaryal tRNA(Tyr)) contribute to tyrosylation with variable strengths. Crystallographic structures of two tRNA(Tyr)/TyrRS complexes revealed different interaction modes in accordance with the phylum-specificity. Recent functional studies on the human mitochondrial tRNA(Tyr)/TyrRS system indicates strong deviations from the canonical tyrosylation rules. These differences are discussed in the light of the present knowledge on TyrRSs.  相似文献   

17.
18.
Transfer RNA-mediated antitermination in vitro   总被引:6,自引:0,他引:6  
The threonyl-tRNA synthetase gene (thrS) is a member of the T-box family of ~250 genes, found essentially in Gram-positive bacteria, regulated by a tRNA-dependent antitermination mechanism in response to starvation for the cognate amino acid. While interaction between uncharged tRNA and the untranslated leader region of these genes has been firmly established by genetic means, attempts to show this interaction or to reconstitute the antitermination mechanism in vitro using purified tRNAs have so far failed. In addition, a number of conserved sequences have been identified in the T-box leaders, for which no function has yet been assigned. This suggests that factors other than the tRNA are important for this type of control. Here we demonstrate tRNA-mediated antitermination for the first time in vitro, using the regulatory tRNAThr isoacceptor isolated from Bacillus subtilis and a partially purified protein fraction. As predicted by the model, aminoacylation of tRNAThr(GGU) with threonine completely abolishes its ability to act as an effector. The role of the partially purified protein fraction can be functionally substituted by high concentrations of spermidine. However, this polyamine does not play a significant role in the induction of thrS expression in vivo, suggesting that it is specific protein co-factors that promote T-box gene regulation in conjunction with uncharged tRNA.  相似文献   

19.
A ribosomal ambiguity mutation in the 530 loop of E. coli 16S rRNA.   总被引:14,自引:8,他引:6       下载免费PDF全文
A series of base substitution and deletion mutations were constructed in the highly conserved 530 stem and loop region of E. coli 16S rRNA involved in binding of tRNA to the ribosomal A site. Base substitution and deletion of G517 produced significant effects on cell growth rate and translational fidelity, permitting readthrough of UGA, UAG and UAA stop codons as well as stimulating +1 and -1 frameshifting in vivo. By contrast, mutations at position 534 had little or no effect on growth rate or translational fidelity. The results demonstrate the importance of G517 in maintaining translational fidelity but do not support a base pairing interaction between G517 and U534.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号